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A major pathogenic hallmark of Alzheimer’s disease is the presence of

neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients’ brains.

The pathway of plaque formation remains elusive, though some clues appear

to lie in the dominant presence of Aβ1−42 in these plaques despite Aβ1−40

making up approximately 90% of the Aβ pool. We hypothesize that this

asymmetry is driven by the hydrophobicity of the two extra amino acids that

are incorporated in Aβ1−42. To investigate this hypothesis at the level of single

molecules, we have developed a molecular “sticker-and-spacer lattice model”

of unfolded Aβ. The model protein has a single sticker that may reversibly

dimerise and elongate into semi-flexible linear chains. The growth is hampered

by excluded-volume interactions that are encoded by the hydrophilic spacers

but are rendered cooperative by the attractive interactions of hydrophobic

spacers. For su�ciently strong hydrophobicity, the chains undergo liquid-

liquid phase-separation (LLPS) into condensates that facilitate the nucleation

of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and

Aβ1−42 shifts the critical concentration for LLPS to lower values. This study

provides theoretical support for the hypothesis that LLPS condensates act

as a precursor for aggregation and provides an explanation for the Aβ1−42-

enrichment of aggregates in terms of hydrophobic interactions.

KEYWORDS

Alzheimer’s disease, amyloid, aggregation, condensates, liquid-liquid phase

separation, single-molecule, bond-fluctuation model

1. Introduction

Alzheimer’s disease (AD), the most common cause of dementia (60–80% of cases

Abeysinghe et al., 2020), and is a fatal neurodegenerative disease causing severe and

devastating cognitive impairment. Age is the biggest risk factor for AD, of which, most

cases are sporadic (around 95%) and occur over the age of 65 (Abeysinghe et al.,

2020; Zhang et al., 2020; Zhao et al., 2020; Ayodele et al., 2021). The exact cause of

AD is not fully understood and with better living conditions meaning average life

expectancy in developed countries is increasing, the number of cases and the burden of

neurodegenerative disease is increasing worldwide. As of 2018, an estimated 50 million

people worldwide suffer from dementia, with this number expected to triple by 2050

(Patterson, 2018).
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A major pathogenic hallmark in AD brains is the presence

of extracellular neurotoxic plaques made up of amyloid beta

(Aβ) (Stelzmann et al., 1995; Breijyeh and Karaman, 2020).

Aβ is produced from amyloid precursor protein (APP) which

is cleaved by α, β and γ secretases (Chen et al., 2017; Guo

et al., 2020; Hampel et al., 2021). APP proteolytic cleavage

can be separated into non-amyloidogenic and amyloidogenic

pathways. We will focus on the amyloidogenic pathway as it is

relevant to AD. First APP is cleaved by β secretase into soluble

APPβ and a 99 amino acid C-terminal fragment (C99). C99

is then cleaved by γ secretase at multiple sites giving rise to

Aβ of multiple lengths ranging from 39-51 amino acids (Zhang

et al., 2011; Haass et al., 2012). After cleavage, Aβ is secreted

from the cell where it can then form oligomers, fibrils, and

finally plaques. The amyloid cascade hypothesis suggests that the

deposition of Aβ into senile plaques is critical for AD pathology

(Hardy and Higgins, 1992; Karran et al., 2011; Castellani et al.,

2019) but the exact mechanism and change in AD brains that

lead to this neurotoxic aggregation is not fully understood.

Recently, this hypothesis has been called into question based on

amounting evidence in disagreement. Amyloid deposition does

not correlate with neuronal loss (Kametani and Hasegawa, 2018)

and amyloid burden can be identified in cognitively unimpaired

individuals (Arenaza-Urquijo and Vemuri, 2018; Dubois et al.,

2021). Furthermore, clinical trials using therapeutics that target

Aβ for degradation have been ineffective thus far (Ricciarelli and

Fedele, 2017). A particular issue for anti-Aβ therapeutics is that

most treatments focus on clearing insoluble aggregates (Tolar

et al., 2019) with increasing evidence suggesting that pre-fibrillar

soluble oligomers are orders of magnitudemore toxic than fibrils

and plaques (Chafekar et al., 2008; Ono et al., 2009; Sengupta

et al., 2016; Huang and Liu, 2020). Unlike plaques, oligomers

have been shown to impair both synaptic function and structure

(Selkoe and Hardy, 2016; Kametani and Hasegawa, 2018). A

recent study by Ghadami et al. (2020) has demonstrated that

transthyretin is neuroprotective which is achieved by binding

to Aβ oligomers, inhibiting primary and secondary nucleation

without altering elongation, ephasising the role of oligomers in

Aβ-mediated neurotoxicity. Consequently, understanding the

role of pre-fibrillar Aβ species such as soluble oligomers and

their contribution to AD pathology have gained significant

interest in recent years.

The most predominant Aβ species is 40 amino acids long

(Aβ1−40) and makes up ∼90% of the Aβ pool. A less prevalent

42 amino acid long species of Aβ (Aβ1−42), which accounts

for ∼10 % of the Aβ population is of particular importance

to AD due to a higher aggregation propensity. Compared to

Aβ1−40, Aβ1−42 has a longer chain length that increases a

repulsive excluded-volume interaction but adds an attractive

hydrophobic interaction due to the addition of two C-terminal

hydrophobic amino acids. As such, Aβ1−42 has increased

aggregation propensity and is a predominant component of

senile plaques (Iwatsubo et al., 1994; Tamaoka et al., 1994; Gu

and Guo, 2021). Familial AD mutations in APP, PSEN1, and

PSEN2, cause increased production of Aβ , with abnormally

high levels of Aβ1−42 relative to Aβ1−40 (Scheuner et al.,

1996; Hecimovic et al., 2004; Kumar-Singh et al., 2006; Chávez-

Gutiérrez and Szaruga, 2020). Recent work shows that the ratio

of Aβ1−42:Aβ1−40 in plasma and cerebrospinal fluid can be

used as a biomarker for AD diagnosis (Baldeiras et al., 2018;

Lehmann et al., 2018; Nakamura et al., 2018; Zetterberg, 2019;

Doecke et al., 2020; Mahaman et al., 2022; Teunissen et al., 2022)

as it correlates with Aβ deposition (Fandos et al., 2017) and

cognitive decline (Yaffe et al., 2011; Pérez-Grijalba et al., 2019;

Giudici et al., 2020; Lim et al., 2020). This evidence suggests

that an increased ratio of Aβ1−42:Aβ1−40 may promote the

formation of neurotoxic aggregation and the progression of AD.

Hence, in summary, while the physico-chemical properties

of Aβ remains subject to debate, these properties appear to

correlate with the structural properties of the aggregates. In

this study, we focus our attention on the pathway of self-

assembly (Michaels et al., 2020), and aim to understand how

this pathway is affected by the molecular properties of Aβ , such

as hydrophobicity and intrinsic disorder. We hypothesize that

when Aβ1−42 interacts with Aβ1−40 sufficient hydrophobicity

is added to enhance self-assembly, while the excluded volume

interaction is limited. We will model this on a molecular level

by describing the intrinsically disordered protein as chains

with hydrophilic and hydrophobic segments, as well as ‘sticky’

building blocks that may reversibly self-ensemble into needle-

like aggregates.

The aggregation of intrinsically disordered poly-peptides

(IDPs) is an important topic in the biological physics of vital

intracellular and extracellular processes. In particular, this class

of proteins is known to undergo liquid-liquid phase separation

(LLPS) to serve biological functionality, such as the (temporary)

formation of membraneless organelles (Shin and Brangwynne,

2017; Jin et al., 2021), but also appears responsible to form large

droplet-like precursors for the aggregation of the tau protein

(Wegmann et al., 2018), which is another hallmark for AD. Large

structures (possibly micellar) of approximately 50 Aβ molecules

that are speculated to facilitate Aβ aggregation have also been

observed (Wegmann et al., 2018). In the present study, we

analyse the self-assembly of single peptides to address the

current lack of physical models that explain both the formation

of large agglomerates and the transition into fibrillar structures

in terms of the molecular properties of the IDPs.

We argue that the general mechanism of coupled LLPS

and aggregation is an example of physics that emerges

from simple concepts such as (non-specific) hydrophobic

interactions, excluded volume, and specific interactions. This

is a hopeful scenario, as it implies that we may gain

relevant molecular insight into this mechanism using strongly

coarse-grained molecular models, rather than full atomistic

molecular-dynamics simulations that are computationally too

demanding to reach the relevant timescales. A commonly
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used coarse-graining approach to capture both the polymer

physics of the polypeptide and the localized formation of

reversible non-covalent bonds is to develop a sticker-and-

spacer model. Such models were originally developed for

synthetic associating polymers (Leibler et al., 1991), and were

later adopted for disordered, multivalent proteins, including

natural silk (Schaefer et al., 2020; Schaefer and McLeish,

2022) and scaffolding proteins in biological condensates

(Shin and Brangwynne, 2017 and Choi et al., 2019, 2020).

Typical simulation approaches solve the Brownian dynamics

of the proteins using simulation software packages such

as MARTINI or LAMMPS. A major challenge, which is

receiving wide attention from the modeling community

(Gissinger et al., 2017; Cui et al., 2018; Raffaelli et al.,

2020; Schaefer and McLeish, 2022), remains to couple the

(continuum-time) conformational dynamics to model the

stochastic (instantaneous) association and dissociation of

reversible bonds between the molecules. To circumvent the

current methodological challenges, in the present study, we will

employ the fully stochastic Bond-Fluctuation Model (Carmesin

and Kremer, 1988, 1990), which by modeling the molecular

dynamics on a 3D lattice successfully describes the (self-

avoiding) random walk statistic of flexible and persistent chains

(Bates, 2002; Feric et al., 2016; Harmon et al., 2017), LLPS,

Reister et al. (2001), Reister and Müller (2003), ring-polymers

(Subramanian and Shanbhag, 2009), and cross-linking reactions

(Trautenberg et al., 1995). Crucially, as the dynamics are

fully stochastic and discrete, they can be addressed using

previously developed kinetic Monte Carlo (kMC) schemes

(Lukkien et al., 1998).

In the following, we will present a simple sticker-and-

spacer model for the dimerisation and (linear) oligomerisation

of unfolded Aβ , where the cooperativity of growth is determined

both by the chain conformation (i.e., intrinsic disorder) and

by the binding energies for dimerisation/nucleation, εn, and

elongation, εe, and where hydrophobic interactions are modeled

using a short-ranged interaction energy, εH. Subsequently, we

will present the bond-fluctuation model (BFM) using which we

simulate the aggregation of the Aβ . In our analysis, we first

investigate how the hydrophobic interactions affect the partial

collapse of the molecule, and how it may lead to LLPS. We then

show that these interactions facilitate dimerisation, as well as

the further cooperative growth into longer oligomers. Finally,

we demonstrate that increasing Aβ1−42 relative to Aβ1−40

promotes aggregation.

2. Theory and method

2.1. Introduction: Equilibrium statistics of
self-assembly

The irreversible formation of Aβ aggregates is nucleated

by oligomers, which themselves are reversible and on most

occasions re-dissolve into Aβ monomers (Michaels et al., 2020).

The formation of oligomers can on a coarse-grained scale, be

described by chemical-reaction equations of the form A1 ⇋

An, where n > 1 is the order of the reaction. This reaction

order gives a measure for the size of the oligomers but does not

provide any structural information [e.g., whether the oligomers

are amorphous clusters, rings, or linear chains, and if there are

parallel or anti-parallel assemblies of poly-peptide sequences

(Miller et al., 2010)]. While this structural information is

typically studied at the level of single amino acids and atoms,

the observations on the intrinsic disorder in Aβ through its

random-coil conformations through both circular dichroism

(Danielsson et al., 2005) and nuclear magnetic resonance

spectroscopy (Wälti et al., 2015; Roche et al., 2016), begs

the question of to what extent concepts from coarse-grained

polymer physics can be used to understand the difference in self-

assembly behavior of Aβ1−40 and Aβ1−42. The key idea that

we explore is that the specific binding between substrands of the

chain leads to interactions between the intrinsically disordered

parts of the protein. These include both repulsive excluded-

volume interactions and attractive hydrophobic interactions,

(Figure 1); their contributions grow non-linearly with the size

of the oligomer.

To investigate these ideas, we will describe both species as a

randomly coiled polymer that is composed of hydrophilic and

hydrophobic beads, as well as one ‘sticker’ bead. This sticker

bead forms reversible intermolecular bonds and leads to the

formation of an oligomer. In general, any two oligomers of size

m ≥ 1 and n ≥ 1 may reversibly assemble into an aggregate of

size m + n through the chemical equilibrium equation (Martin,

1996; van der Schoot, 2005; de Greef et al., 2009).

Am + An⇋Am+n. (1)

The equilibrium constants of the reactions are non-universal

and may be different for each oligomerisation step due to the

formation of rings (Cates and Candau, 1990) or due to detailed

phenomena, such as the parallel and anti-parallel assembly of

poly-peptides. These different mechanisms may be summarised

into generic schemes of (anti-)cooperative growth, where in

the anti-cooperative case the nucleus is stable and only grows

into larger species at high chemical potentials, whereas in the

cooperative case, the nucleus is unstable and, once formed,

either re-dissolves or rapidly grows into larger (stable) species.

As the exact nature of the Aβ species is still under debate, we

here represent these overall ideas by a simple ‘dimerisation-and-

elongation’ model (de Greef et al., 2009; Kulkarni et al., 2017),

where we have a precise in silico control over the cooperativity

of growth. We discuss this binding mechanism of the stickers in

detail in Section 2.5. First, we will discuss the parametrisation

of the protein as a randomly colloid polymer, discuss the

Bond-Fluctuation model by which we simulate its equilibrium

statistics, and the simple hydrophobicity model.
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FIGURE 1

We model the growth of an oligomer through reversible bonds between bivalent stickers (red bead). The cooperativity is controlled by a

di�erence in the binding energy for dimerisation/nucleation (εn) and elongation (εe). The total binding energy is further a�ected by repulsive

excluded volume interactions between beads, as well as attractive hydrophobic interactions (εH) between beads within a short interaction range.

The excluded volume interactions and hydrophobic interactions depend on the overlap (indicated by the dashed circles) of the intrinsically

disordered sequences; the amount of overlap non-linearly increases with the length of the chains. In this study, we study how the added

hydrophobic interactions and increased chain length of Aβ1−42 compared to Aβ1−40 a�ects the self-assembly into oligomers.

FIGURE 2

(A) The amino acid sequence of Aβ1−42. Amino acids labeled red are hydrophilic, black are neutral, and blue are hydrophobic. (B) Our beads on a

string model for both Aβ1−40 and Aβ1−42 with the N-terminus to the C-terminus going from left to right. Each bead represents 2 amino acids.

Gray beads are inert, representing the N-terminus (1–16) and the turn region (24–27). Blue beads are hydrophobic, representing the central

hydrophobic core (17–21), the second hydrophobic region (29–35) and the hydrophobic C-terminus (36–40/42). Red beads are capable of

dimerising with other red beads.

2.2. Parametrisation of unfolded Aβ

Random walk statistics of polymers typically emerge when

the contour length is more than 10 times its persistence length

and can be modeled using the ‘Bond-Fluctuation Model’ (refer

to next Section). The smallest length scale of this model is the

persistence length which for polypeptides is one or a few amino

acids. Using these considerations, we have chosen to use 20

beads to model Aβ1−40 and 21 beads to model Aβ1−42. Within

our model, a bead may either be hydrophilic, hydrophobic, or

may be a sticker. We have parameterised this model using the

sequence of amino acids in Aβ1−42, (Figure 2A), which displays

the hydrophilic residues in red, the neutral ones in black, and

the hydrophobic ones in blue. Our model for Aβ (Figure 2B)

was based on the structure of Aβ1−42 in Zhu et al. (2012).

The first eight gray beads represent the first 16 amino acids

corresponding to the hydrophilic N-terminal region. The central

hydrophobic core is modeled as two blue (hydrophobic) beads

representing amino acids 17-21. A red ‘sticky’ bead which is

capable of dimerising with other red beads was added into the

turn region to recapitulate the intra- and inter-chain salt bridges

that can occur in this region. The remaining hydrophobic beads
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represent the C-terminal region with Aβ1−42 containing one

extra bead to account for the addition of two hydrophobic amino

acids. In principle, the properties of the beads may be informed

fromMD simulations or structural information. However, at this

high level of coarse graining the exact sequence is not expected

to qualitatively alter the conclusions of our study, in which we

have only observed the formation of linear oligomers (i.e., the

stickers bind into supramolecular chains) and droplets, but in

which no higher-order self-assembled structures such asmicelles

ormembranes were formed (see Results). Thesemay be expected

if the hydrophobic/hydrophilic beads would have been arranged

into a co-block configuration, and/or if the stickers would have

been placed at the chain ends.

2.3. Method: Bond-fluctuation model

We model the chain conformations by placing the polymer

segments on the sites of a discrete lattice, following the so-

called Bond-Fluctuation Model (BFM) (Carmesin and Kremer,

1988, 1990). This approach originates from the success of

lattice models to predict phenomena such as LLPS, including

in conditions near the critical point where the correlation-

length diverges and mean-field models break down (Hohenberg

and Halperin, 1977; Schaefer, 2018; Schaefer et al., 2019).

Similarly, the lattice models have provided computationally

efficient means to sample the configuration space of polymers.

Early lattice models for polymers place polymer segments

on a single lattice site (Binder, 1987) but underestimated

the Rouse dynamics of the chains due to kinetically trapped

states. This was remedied in the BFM by letting a segment

occupy 8 sites on a 3D cubic lattice (4 sites on a 2D square

lattice) and where the bond lengths can fluctuate from 2

to
√
10 in lattice units (Carmesin and Kremer, 1988, 1990).

This approach was proven competitive with off-lattice models

both in terms of computational convenience and in physical

accuracy in (and beyond) the examples mentioned in the

Introduction (Trautenberg et al., 1995; Reister et al., 2001; Bates,

2002; Reister and Müller, 2003; Subramanian and Shanbhag,

2009; Choi et al., 2019).

Within the BFM, the polymer conformations and/or

dynamics are modeled using kinetic Monte Carlo (kMC) time

steps in which a monomer may move in 6 directions on the

lattice if this does not (1) overstretch or understretch the

bond between two monomers within the chain or (2) lead to

double-occupied lattice sites. This leads to a list of Nenabled ≤
6Nmonomers possible processes that may occur during the time

step, of which only one (or none) may take place.Which process,

i, may take place is selected using the rate,

νi =







ν0, if1Ei ≤ 0

ν0 exp(−1Ei/kT), if1Ei > 0,
(2)

where ν0 is an elementary rate (typically of the order 1 −
100µs−1) and where 1Ei is the change in energy. In the

algorithm that we use, a process is randomly selected out of the

Nenabled list of processes. The process is then executed if the

system energy is unchanged or decreases 1Ei ≤ 0. However,

if the energy would increase, the process is only executed with

a probability p = exp(−1Ei/kT) and rejected otherwise; this

decision is carried out using random numbers drawn using a

SIMD-oriented Fast Mersenne Twister (Saito and Matsumoto,

2008). Regardless, if the process is accepted or rejected, the time

is increased with 1t = 1/(Nenabledν0). The computational

efficiency of the method relies on the fact that following a

Monte Carlo step during which monomer moves, only the

rates of monomers in the vicinity of this monomer need to be

recalculated (Lukkien et al., 1998).

2.4. Parametrisation: Hydrophobicity of
spacers

To model the attraction between two hydrophobic

monomers we follow the approach by Reister et al., and use a

square-well potential (Reister et al., 2001).

U(r) =







−εH, for r ≤
√
10,

0, otherwise,
(3)

where r is the distance (in units of the lattice spacing) between

the two monomers, and where εH describes non-specific (e.g.,

hydrophobic) interactions (Reister et al., 2001). This interaction

energy enables the parametrisation of intrinsically disordered

poly-peptides through the radius of gyration, and may in

principle depend on conditions such the temperature and the

ionic strength (Müller-Späth et al., 2010; Wuttke et al., 2014).

This parametrisation is done using the Flory exponent υ, which

describes the swelling of a polymer through the radius of

gyration as Rg = lNυ/
√
6, with l the step length between

segments. In good solvent conditions, the chain is swollen

due to intramolecular self-excluded volume interactions and

υ = 0.588. Completely insoluble chains, described with a large

value of εH, collapse to a compact sphere with υ = 1/3.

At θ conditions, the hydrophobic interactions exactly cancel

the excluded-volume interactions and the chain obeys random-

walk statistics, which are characterized by υ = 1/2. To find

the θ-condition, we measure the radius of gyration for chains

with various chain length, N, as a function of εH (Paul et al.,

2005; Steinhauser, 2005). As R2g/N is independent of the chain

length at the theta condition, the εH value at which all curves

intersect represents the θ condition. From Figure 3, we find that

this occurs at εH/kBT ≈ 0.27 for (homopolymer) chains with

identical subunits.

As discussed in the previous section, our model for

Aβ describes the protein as a copolymer with both hydrophilic
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FIGURE 3

Polymer size, R2
g/(N− 1), (Rg is the radius of gyration in units of

the lattice spacing) as a function of the hydrophobic interaction

energy εH/kBT for a various number of beads per chain, N. The

Aβ model has a total of N = 20 beads, of which 7 are

hydrophobic.

and hydrophobic units. The solid circles in Figure 3 show

that the radius of gyration, Rg = lNυ/
√
6 of this

model polypeptide is relatively insensitive to the hydrophobic

interaction parameter. To estimate the overlap concentration

above which the intramolecular excluded-volume interactions

are screened, we use the end-to-end distance, given by Re =
lNυ ≈ 3.3 nm, where Aβ has N = 40 amino acids, and where

l = 0.36 nm is the typical step length of amino acids (Müller-

Späth et al., 2010; Wuttke et al., 2014). Using the molecular

volume Vm = (4/3)πR3e , we find an overlap concentration

of c∗ = Mw/(NAVm) ≈ 100 mg/ml = 0.025 M, where we

used Mw = 4.5 kg/mol. In typical experiments, aggregation

is observed well below the overlap concentration (e.g., Aβ1−40

aggregates below 1mg/ml Hortschansky et al., 2005 and Aβ1−42

aggregates at concentrations as low as 90 nM Novo et al., 2018).

While those experimental conditions may suggest dilute

conditions in which excluded-volume interactions are

unimportant, inside LLPS condensates the concentration

is signicantly higher, and may in fact exceed the overlap

concentration. To identify LLPS in our simulations, we focus

on structural coarsening phenomena such as Ostwald or

Lifshitz-Slyozov-Wagner (LSW) ripening and/or Brownian

coalescence (Bray, 2002). The dynamics of coarsening are

typically associated with a characteristic length scale (e.g., the

radius of a droplet) that grows with the one-third power of time

as R∗ − R0 ∝ t1/3 with R0 the initial length scale, which may

emerge through nucleation or spinodal decomposition. In our

simulations, we determine R∗ using the following recipe (Singh

et al., 2012; Schaefer, 2018; Schaefer et al., 2019): For a given

time, t, we calculate the order-parameter field ψ(ri), with ri the

spatial coordinate of a lattice site with i the index of a lattice

site. The value of ψ(ri) is set to 1 if the site is occupied by a

hydrophobic monomer, and to−1 otherwise. We then calculate

the 3D Fourier transform ψ̂(q) and obtain the structure factor

S(q) = 〈|ψ̂(q)|2〉, where 〈.〉 is the spherical/angular average.

Next, we obtain the spatial correlation function C(R) as the

inverse Fourier transform of S(q). As discussed previously

(Singh et al., 2012; Schaefer, 2018; Schaefer et al., 2019),

numerically robust measures for the characteristic length scale

R∗ are the first root (i.e., given by C(R∗) = 0) and the first

minimum for which C(R∗) < 0 and C′(R∗) = 0. In our analysis,

we will use both measures to assess if structural coarsening

occurs in our simulations.

2.5. Parametrisation: Binding of stickers

As motivated in Section 2.1, we will model oligomerisation

through the reversible binding of divalent stickers through a

‘dimerisation-and-elongation’ mechanism, where each sticker

can either form a single bond or two bonds with other stickers.

The dimerisation reaction is

2A1
Kn
⇋ A2, (4)

where

Kn = 1

υ
exp

(

−1Hn/kBT +1Sn/kB
)

, (5)

is the equilibrium constant for nucleation, with υ the

characteristic volume, 1H < 0 is the binding enthalpy

and with 1Sn > 0 the entropic penalty of dimerisation.

In this equation, 1Hn is controlled by the binding energy

εn > 0 and the hydrophobic interaction strength εH. In the

absence of hydrophobic interactions, 1Hn = −εn is exact.

The entropic penalty essentially originates from an excluded-

volume interaction due to a limitation of the internal degrees

of freedom (DOF) of two chains that undergo dimerisation

(refer to Section 3.1). In that section, we will show that these

internal DOF are affected by the hydrophobicity (an increased

hydrophobicity partially collapses the chain and limits the

DOF prior to dimerisation), and by the concentration (above

the overlap concentration the free chains have fewer DOF

prior to dimerisation), such that an increasing hydrophobicity

and concentration reduce the entropic penalty and enhance

dimerisation.

For subsequent oligomerisation steps, i.e., for n > 1, we

describe the equilibrium statistics using

A1 + An
Ke
⇋ An+1 (6)

with

Ke =
1

υ
exp

(

−1He/kBT +1Se/kB
)

, (7)

in which1He/kBT = −εn+Uhydrophobic+U(θ) is composed of

an oligomeration/elongation energy, εn > 0, and hydrophobic
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interactions as before. The free energy of binding is modeled as

completely entropic using a square-well bending potential (BFM

simulations with smoother potentials were previously discussed

in the literature, refer to Weber et al., 1999; Bates, 2002; Paul

et al., 2005).

U(θ) =







∞, for |θ − π | ≤ θmax,

0, otherwise,
(8)

for the angle, θ , between the intermolecular bonds between

stickers. Here, θ = π represents fully extended bonds. Hence,

for small values of θmax, the persistence length increases and

the chain of stickers approaches a rigid rod. In our simulations,

we set θmax = π/18 (equivalent to 10 degrees), which ensures

sufficient rigidity to avoid ring formation but sufficient flexibility

to avoid lattice artifacts.

One of the key predictions of our simulations will be

the dependence of the fraction of aggregated material on

the concentration and hydrophobicity. We will interpret

these findings using analytical predictions in the limit where

hydrophobic interactions are absent and where the entropic

penalties are constant. In this limit, there exist some known

analytical predictions (van der Schoot, 2005). The starting point

to obtain these is by writing the equilibrium constants as Kn =
[A2]/[A1]

2 and as Ke = [An+1]/[An][A1], which are constant

for all n ≥ 2, so that the concentration of any aggregate [An]

with n ≥ 2, can be expressed in terms of the concentration of

unbound Aβ , [A1], as

Ke[An] = σ (Ke[A1])
n, (9)

with σ ≡ Kn/Ke the so-called cooperativity factor.

The concentrations of unbound Aβ is obtained from the

mass balance,

ρ =
∞
∑

n=1

n[An] ⇒ Keρ = Ke[A1]+ σ
∑

n=2

n(Ke[A1])
n

= σ
Ke[A1]

(1− Ke[A1])2
, (10)

where ρ is the (experimentally-controlled) overall concentration

of Aβ . Using the standard sum
∑∞

n=1 nx
n = x/(1 − x)2 for

|x| < 1 and the fraction of aggregatedmolecules, f ≡ 1−[A1]/ρ,

this mass balance can be written as Martin (1996) and de Greef

et al. (2009).

0 = −f + σ Keρ[1− f ]2(2− Keρ[1− f ])

(1− Keρ[1− f ])2
, (11)

which provides an implicit dependence of f on ρ.

This equation has three asymptotic limits of interest, namely

the strongly anti-cooperative case where dimers do not grow

into larger aggregates, Ke → 0 (resulting in σ → ∞) leads to

Martin (1996).

f = 1− −1+√
1+ 8Knρ

4Knρ
. (12)

In the non-cooperative case, or “isodesmic” case (Smulders

et al., 2010), K ≡ Ke = Kn (Martin, 1996),

f = 1− 1+ 2Kρ −
√

1+ 4Kρ)

2(Kρ)2
, (13)

and in the strongly cooperative case, σ → 0 (van der Schoot,

2005; Smulders et al., 2010), we have f = 0 for Keρ < 0 and

f = 1− 1

Keρ
, (14)

for Keρ ≥ 0. These equations show that from the anti-

cooperative to the cooperative case, the transition from unbound

to aggregated material becomes increasingly sharp. In the

following, we will discuss the influence of hydrophobic and

excluded-volume interactions on self-assembly in terms of the

elongation constant Ke and the cooperativity factor, σ .

3. Results and discussion

3.1. Dimerisation and LLPS

To investigate how hydrophobic and steric interactions

affect dimerisation, we have compared the self-assembly of

chains with such interactions to the completely hydrophilic

counterpart with εH = 0, and disabled oligomerisation

(i.e., εe = 0). We have then simulated the molecular

self-assembly of 100 chains in a periodic simulation

box with sizes ranging from 50 × 50 × 50 to 1,000 ×
1,000 × 1,000, with dimerisation energies ranging from

εn = 2 to 10kBT. The resulting fraction of dimerised

chains, f , against the number density ρ (in the number

of molecules per box size), is represented by the symbols

in Figure 4A.

We have curve fitted each data set with fixed dimerisation

energy, εe, using the dimerisation model of Equation (12) (solid

curves) with the equilibrium constant Kn = Kn,0 exp(εn).

While Kn,0 is explicitly independent of εn, the curve fits

yielded the apparent dependence lnKn,0 ≈ 3.0 − 1.1εn

(Table 1). This is caused by the fact that the dimerization

concentration (characterized by the inflection point of the self-

assembly curve) shifts to higher concentrations (above the

overlap concentration of ρ ≈ 10−4, see Section 2.4) for

decreasing interaction strengths. Following Flory’s approach

to self-avoiding walk statistics, we modify the entropy for

excluded-volume interactions using a mean-field description,

1Sn = 1Sn,0 + (∂1Sn/∂ρ)ρ, and write Kn = Kn,00 exp(εn +
(∂[1Sn/kB]/∂ρ)ρ. Using this modification, we have been able to

capture all dimerisation curves in Figure 4A with fixed K00 =
6.85 and excluded-volume correction (∂[1Sn/kB]/∂ρ) =
1.3 · 103 (dashed curves). As expected, this correction

is insignificant below the overlap concentration, ρ <

10−4, but significantly affects the self-assembly curves at

higher concentrations.
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FIGURE 4

Fraction of dimerised Aβ, f, plotted against the number density, ρ (in units of the lattice spacing). Well below the overlap concentration of

ρ = 10−4 (corresponds roughly to 100 mg/ml, refer to main text) the solution can be considered dilute, while at higher concentrations excluded

volume interactions become important. (A) The dimerisation energy εn is varied from 2 to 10kBT without hydrophobic interactions (εH = 0). The

solid curves are individual fits using Equation (12) with a dimerisation constant Kn = Kn,0 exp(εn) with a non-constant Kn,0 (Table 1), while the

dashed curves represent a simultaneous fit of all data using Kn,0 = Kn,00 exp[(∂[1Sn/kB]/∂ρ)ρ] with constant K00 = 6.85 and an entropic

excluded-volume correction (∂[1Sn/kB]/∂ρ) = 1.3 · 103. (B) The dimerisation energy is fixed εn = 3kBT, while the hydrophobicity is increased

from 0 up to εH = 0.8. The dashed and dotted curve are calculated using Kn = 6.85 exp(3+ 1300ρ) and Kn = 6.85 exp(3.6+ 1300ρ), respectively.

The data for εH = 0.7 and 0.8 are underestimates, as ongoing LLPS enables the slow increase of aggregate sizes.

TABLE 1 Values for the equilibrium constant Kn,0 determined by

curve-fitting Equation 12 to the simulated data for various values of

the dimerisation energy εn.

εn/kBT Kn,0

2 16.63± 0.73

3 15.10± 0.71

4 13.48± 0.82

6 10.61± 0.77

8 9.12± 0.45

10 6.85± 0.37

The curve-fits are shown as solid lines in Figure 4. A lin-log regression yields an apparent

relationship lnKn,0 ≈ 3.0− 1.1εn/kBT (refer to main text).

We now focus our attention on the dimerisation curve

with εn = 3kBT, which has a very low fraction of dimers

below the overlap concentration but a finite fraction of

dimers at higher concentrations, and increase the hydrophobic-

interaction parameter, εH, from 0 to 0.8kBT (Figure 4B).

We find that up to a value of 0.6kBT, the hydrophobicity

appears to only modestly modify the equilibrium constant as

Kn ≈ 6.85 exp(εn + εH + 1300ρ); we speculate that only the

central hydrophobic beads contribute to the enhancement of

dimerisation. For stronger hydrophobic interactions, however,

the shape of the self-assembly curve can no longer be described

using the simple dimerisation model.

In fact, the datapoint for εH ≥ 0.7 in Figure 4B is not fully

converged, and the fraction of dimers increases in a slow process,

as indicated in Figure 5A. This figure shows that the fraction of

dimers, f , reaches a plateau at f ≈ 0.2 for times t > 100 up

to t ≈ 3, 000, but then slowly increases up to f ≈ 0.4 at t =
105 without any sign of convergence to a higher plateau value.

This process is a consequence of the slow formation of large

structures, as indicated by the typical length scales in the system

Figure 5B, which increase as R∗−R0 ∝ t1/3, which is a hallmark

of LLPS, refer to Section 2.4. Here, we determined R∗ using the

structure factor S(q, t) (top right), and its corresponding spatial

correlation function, C(R, t), (bottom right). We quantified R∗

using the first root (C(R∗, t) = 0, R0 = 8) and the first minimum

(C(R∗, t) < 0 and ∂C/∂R = 0, R0 = 12).

These findings indicate that sufficiently strong hydrophobic

interactions may lead to the formation of droplets through

LLPS, which inside the droplets increases the concentration

of dimerising units beyond the overlap concentration (which

screens the excluded-volume interactions), and provides the

mass action needed to induce dimerisation.

3.2. Oligomerisation

Now that we have investigated the dimerisation of Aβ , we

will investigate the growth of larger oligomers. For that purpose,

we again first focus on the case without any hydrophobic

interactions, as this enables us to isolate the impact of excluded-

volume interactions on the (anti-)cooperativity of self-assembly.

This also enables us to select nucleation and elongation energies
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FIGURE 5

Fraction of dimerised material, f, (A) and characteristic length scale, R* − R0 (B) against time. The characteristic length scale, R* is determined by

i) calculating the dynamic structure factor, S(q) (C), ii) taking the inverse Fourier transform to obtain the radial correlation function, C(R, t) (D),

and iii) determining its first root C = 0 (here, we use the initial o�set R0 = 8) and first minimum for which C < 0 (here, R0 = 12). The arrows

indicate the time dependence of the dominant wavenumber q (C) and the two measures for R* (D).

of interest in the subsequent simulations, in which we do switch

on hydrophobic interactions. Akin to the dimerisation case, we

have simulated the self-assembly of 100 Aβ1−40 chains in box

sizes ranging from 36 × 36 × 36 to 500 × 500 × 500. In these

simulations, we have switched off the non-specific/hydrophobic

interactions εH = 0 and varied the nucleation energies in the

range εn = 1 − 9kBT and the elongation energies in the range

εe = 8− 14kBT.

The simulations yielded the fraction of aggregated material,

f , as a function of the concentration, to which we have curve

fitted the theoretical model of Equation (11). From the curve-

fits, we have extracted the cooperativity factor σ and the

equilibrium constant Ke,0 as a function of the dimerisation

energy. Here, Ke,0 is defined by

Ke = υ−1 exp(−1He +1Se/kB) ≡ Ke,0 exp(εe/kBT). (15)

The results are tabulated in Table 2 and plotted in

Figures 6B,C (discussed below).

A representative self-assembly curve, obtained for fixed εe =
9kBT, is shown in Figure 6A. This panel shows the fraction

of aggregated material, f , increases with an increasing number

density, ρ. The sigmoidal curve becomes increasingly sharp with

decreasing dimerisation energy, which, as expected (refer to

Section 2.5), indicates increasing cooperativity of self-assembly.

Indeed, Figure 6B shows that the logarithm of the cooperativity

factor increases linearly with increasing dimerisation energy,

as expected. On the other hand, the elongation constant Ke,0

is in principle expected to be independent of the dimerisation

energy; however, Figure 6C shows it apparently decreases with

increasing dimerisation energy. We attribute this apparent

dependence to the excluded-volume interactions becoming

more present at higher concentrations, as we found above in the

dimerisation curves of Figure 4.

To investigate the effect of non-specific hydrophobic

interaction on oligomerisation, we have used the parameters

εn = 3kBT and εe = 9kBT of a hydrophilic chain that

cooperatively self-assembles at reasonably high concentrations.

This ensured that low-concentration structuring due to

hydrophobic interactions would not necessitate larger (and

computationally expensive) box sizes. We have then used

the sequences for the Aβ1−40 and Aβ1−42 chains and

varied the hydrophobic interaction energy εH from 0.4

to 0.7kBT. We have again simulated 100 chains in box

sizes ranging from 36 × 36 × 36 to 500 × 500 × 500

lattice sites.

We have presented the results in Figures 7A,B, displaying the

fraction of aggregated material f against the number density ρ

for Aβ1−40 (Figure 7A) and Aβ1−42 (Figure 7B). In line with

our results on dimerisation, we find that increasing hydrophobic

interaction energy shifts the aggregation concentration to a

lower concentration and that the transition to the aggregates

state becomes sharp. For these higher hydrophobicities, we

again find a slow ongoing increase of the fraction of aggregated

material due to Ostwald ripening and/or rare events of fusion of

condensates. After close inspection of Figures 7A,B, we observe

that the transition occurs for Aβ1−42 at lower concentrations

than for Aβ1−40, which we attribute to a larger number of

hydrophobic interactions for the longer chain. Indeed, Figure 7C

shows that the mean aggregate size at ρ = 2 · 10−4 sharply

increases at εH = 0.6 for the longer chain and at εH = 0.65

for the shorter chain. The mean values of the aggregate size are

biased by the presence of small oligomers; Figure 7D reveals the

presence of aggregates with 8 or more chains.
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TABLE 2 Shown are the results from varying εn for multiple di�erent

values of εe, in the absence of hydrophobic interactions i.e., εH = 0kBT .

εn/kBT εe/kBT σ Kn,0

1 8 2.15× 10−3 ± 2.31× 10−3 2.24× 10−4 ± 1.08× 10−5

3 8 5.41× 10−2 ± 1.24× 10−2 1.82× 10−4 ± 8.96× 10−6

5 8 3.91× 10−1 ± 3.73× 10−2 1.26× 10−4 ± 5.83× 10−6

7 8 1.90± 1.65× 10−1 7.29× 10−5 ± 4.43× 10−6

9 8 8.15± 2.10 3.87× 10−5 ± 8.80× 10−6

1 9 1.33× 10−4 ± 4.68× 10−4 3.87× 10−4 ± 1.89× 10−5

3 9 2.10× 10−2 ± 9.29× 10−3 3.25× 10−4 ± 1.72× 10−5

5 9 2.34× 10−1 ± 3.38× 10−2 2.38× 10−4 ± 1.31× 10−5

7 9 1.50± 1.54× 10−1 1.61× 10−4 ± 1.11× 10−5

9 9 5.55± 1.54 7.92× 10−5 ± 1.86× 10−5

1 10 1.00× 10−5 ± 1.54× 10−4 6.89× 10−4 ± 3.19× 10−5

3 10 5.34× 10−3 ± 3.74× 10−3 5.83× 10−4 ± 2.60× 10−5

5 10 1.53× 10−1 ± 3.04× 10−2 4.49× 10−4 ± 2.87× 10−5

7 10 1.08± 1.36× 10−1 3.26× 10−4 ± 2.55× 10−5

9 10 6.02± 1.43 2.10× 10−4 ± 4.26× 10−5

1 11 1.00× 10−5 ± 7.55× 10−5 1.15× 10−3 ± 3.72× 10−5

3 11 9.06× 10−3 ± 5.57× 10−3 1.05× 10−3 ± 5.99× 10−5

5 11 8.19× 10−2 ± 2.17× 10−2 7.98× 10−4 ± 5.03× 10−5

7 11 8.85× 10−1 ± 1.15× 10−1 6.62× 10−4 ± 5.07× 10−5

9 11 4.60± 1.18 4.64× 10−4 ± 9.82× 10−5

1 12 4.58× 10−5 ± 1.79× 10−4 2.23× 10−3 ± 7.59× 10−5

3 12 3.77× 10−3 ± 3.18× 10−3 1.83× 10−3 ± 8.20× 10−5

5 12 8.19× 10−2 ± 1.61× 10−2 1.51× 10−3 ± 6.71× 10−5

7 12 5.94× 10−1 ± 9.53× 10−2 1.19× 10−3 ± 9.93× 10−5

9 12 2.88± 5.63× 10−1 7.77× 10−4 ± 1.15× 10−4

1 14 5.95× 10−3 ± 5.23× 10−3 8.12× 10−3 ± 5.12× 10−4

3 14 1.65× 10−2 ± 1.14× 10−2 7.99× 10−3 ± 6.79× 10−4

5 14 7.83× 10−2 ± 2.53× 10−2 4.97× 10−3 ± 4.04× 10−4

7 14 3.26× 10−1 ± 6.66× 10−2 3.43× 10−3 ± 3.03× 10−4

9 14 7.21× 10−1 ± 1.36× 10−1 2.00× 10−3 ± 2.07× 10−4

Each simulation used 100 Aβ1−40 chains in box sizes ranging from 36 x 36 x 36 to 500

x 500 x 500. Each value of σ and Kn,0 represents the mean and standard error from 3

separate simulations.

3.3. Aggregation of mixed Aβ1−40 and
Aβ1−42

The difference in the critical concentration for condensation

of Aβ1−40 and Aβ1−42, begs the question of to what extent our

simple model can capture the reported observation of Aβ1−42-

enhanced aggregation in mixtures of Aβ1−40 and Aβ1−42

(Kumar-Singh et al., 2006; Zetterberg, 2019). To investigate this,

we have carried out in silicomixing experiments for two different

values of hydrophobicity. First, we have chosen εH = 0.4kBT as

it previously appeared to not have led to different aggregation

dynamics of Aβ1−42 and Aβ1−40. Second, we have chosen εH

= 0.6kBT, as this value showed the largest difference in the

aggregation propensity of the two chains (refer to Figure 7).

In Figure 8, we plot the fraction of aggregated material

(Figure 8A) and the mean aggregate size (Figure 8B) against

the fraction of Aβ1−42 in a mixture of Aβ1−42 and Aβ1−40.

Having in mind that for strong hydrophobicity, structural

coarsening renders the system out-of-equilibrium even at long

time scales, and thermal equilibrium may never be reached

(refer to Figure 5), we have plotted the results after time 4 ·
106ν−1

0 and after 4·107ν−1
0 . As expected, for low hydrophobicity

(εH = 0.4kBT), almost no aggregation takes place and the

fraction of aggregated materials is ≈ 0.1, independently of the

fraction of long chains. However, for higher hydrophobicity

(εH = 0.6kBT) aggregation occurs rapidly for mixtures with

20% Aβ1−42 (solid lines), while at long timescale mixtures with

10% Aβ1−42 start to aggregate (dotted lines). In qualitative

agreement with the experimental observations by Kuperstein

et al. (2010), the critical point is strongly biased to a low fraction

of Aβ1−42 in the mixture (< 10% in our simulations). The

slow dynamics are expected, as it is typical for first-order phase

separation near the critical point (Hohenberg and Halperin,

1977). However, we observe another slow process beyond the

critical point, namely the increase of the aggregate size at high

concentrations of Aβ1−42 (panel B). We attribute these to rare

events of aggregate fusion.

4. Discussion and conclusion

Our study has contributed a molecular modeling approach

to address (1) the observation of Aβ1−42-enhanced toxic

plaques associated with Alzheimer’s disease, despite being

the less concentrated species of Aβ , and (2) the hypothesis

of condensate-precursors for fibrillation. Here, we sought a

molecular explanation for the different self-assembly behavior

of Aβ1−40 and Aβ1−42 using sticker-and-spacer models that

capture the intrinsic disorder and the effect of hydrophobicity.

while the two extra amino acids in Aβ1−42 elongate the chain

length, they also add hydrophobicity.

The model predicts a rich range of phenomena due to the

interplay between the nucleation and elongation of aggregates

with the LLPS of condensates, driven by hydrophobic or

other non-specific interactions, which we have summarised

in Figure 9. The high concentration inside the condensates

enhances the rate of nucleation through the formation of dimers.

Furthermore, at these high concentrations the excluded-volume

interactions, which in dilute conditions would hamper the

growth of aggregates, are screened, such that the cooperativity

of oligomerisation is enhanced. Consequently, we find a sharp

transition from the unbound to the aggregated state. However,

the dynamics by which aggregates may form are slow close

to the critical conditions for LLPS. At concentrations above

the critical concentration, the growth of aggregates is slow due
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FIGURE 6

Self-assembly of a hydrophilic chain (εH = 0) for a fixed elongation energy εe = 9kBT and varying dimerisation energy εn. (A) The fraction of

aggregated material is plotted against the concentration. For each value of εn, the data was curve-fitted using Equation (11) with cooperativity

factor σ (B) and the equilibrium constant Ke = Ke,0 exp(εe) (C) as fitting parameters. For (B,C), each point represents the mean and standard error

of 5 simulations.

to the relatively slow dynamics of Ostwald ripening and/or

fusion events.

A similar secondary-nucleation mechanism was discussed

previously by Cohen et al. (2013) and Michaels et al. (2020),

and it was found that the rate constants for primary nucleation,

elongation, and secondary nucleation are 100-, 10-, and 3-

fold greater, respectively, for Aβ1−42 compared to Aβ1−40

(Meisl et al., 2014). This provides evidence that the addition of

two c-terminal hydrophobic amino acids promotes aggregation

propensity, in particular, the rate of primary nucleation. This

is in agreement with Roche et al. (2016) who propose that the

primary nucleation of Aβ is driven by non-specific hydrophobic

interactions which explain the difference in the aggregation rates

of Aβ1−40 and Aβ1−42.

Despite its simplicity, the model also predicts that a small

fraction (< 10%) of Aβ1−42 in a mixture of Aβ1−42 and

Aβ1−40 shifts the critical concentration for the LLPS of

condensates to lower values, which in turn leads to the nucleated

self-assembly of fibrillar oligomers at reduced concentrations.

This finding is qualitatively consistent with Kuperstein et al.

(2010) who found that even a small change from a 1:9 to a

3:7 ratio of Aβ1−42:Aβ1−40 caused a dramatic change in the

aggregation kinetics and toxicity of the two mixtures in vitro

and in vivo. This 3:7 ratio is of particular importance as it

reflects the ratio of Aβ1−42:Aβ1−40 observed in familial AD

patients (Scheuner et al., 1996) suggesting that maintaining a

physiological ratio of Aβ1−42:Aβ1−40 is of great importance

and may be an effective therapeutic target.

Whether Aβ1−40 and Aβ1−42 can co-fibrilise is still

under debate, Cukalevski et al. (2015) found that mixing

Aβ1−40 and Aβ1−42 leads to the generation of separate

homomolecular fibrils. In contrast, studies have shown that

mixing Aβ1−40 and Aβ1−42 leads to the formation of

mixed oligomers and fibrils (Cerofolini et al., 2020; Gu

and Guo, 2021). However, it is accepted that Aβ1−40 and

Aβ1−42 interact at the molecular level with increased levels

of Aβ1−40 inhibiting fibril formation and increased levels

of Aβ1−42 promoting aggregation (Hasegawa et al., 1999;

Yan and Wang, 2007; Jan et al., 2008; Pauwels et al., 2012).

Despite studies disagreeing on co-fibrilisation, they agree

that prefibrillar intermediates consisting of both Aβ1−40 and

Aβ1−42 exist. Our findings suggest that Aβ1−42 interacts

with Aβ1−40, facilitating its aggregation. When only Aβ1−40

chains are present and εH = 0.6kBT, approximately 10%

of the chains are aggregated. However, with 4 · 106 ν−1
0 ,

when Aβ1−40 and Aβ1−42 are mixed at a 60:40 ratio, f

increases to approximately 60%. If only Aβ1−42 chains are

capable of aggregation, f = 40% at maximum. As this is

not the case, it demonstrates that the addition of Aβ1−42

is sufficient to promote the aggregation of Aβ1−40 under

these conditions. One explanation may be that when the

more aggregation prone Aβ1−42 is present, it forms the

primary nuclei overcoming the initial energy barrier that then

enables Aβ1−40 to aggregate. This theory is supported by

Cukalevski et al. (2015) who showed that upon mixing Aβ1−42

and Aβ1−40 it is Aβ1−42 that aggregates first, followed by

Aβ1−40.

In conclusion, we have presented a simple sticker-

and-spacer lattice model that captures a wide range of

molecular phenomena of relevance to the literature on

Aβ aggregation, which enables us to interpret those phenomena

in terms of the simple concepts of nucleation-elongation
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FIGURE 7

Aβ aggregation with dimerisation (nucleation) energy εn = 3kBT and elongation energy εe = 9kBT. Each point represents the mean and standard

deviation of 3 simulations. The fraction of aggregated material, f, is plotted against the number density, ρ (in units of the lattice spacing), for

varying values of εH using either (A) Aβ1−40 and (B) Aβ1−42. (C) Displays the change in mean cluster size, 〈N〉, against varying hydrophobic

interaction energy, εH, at a concentration of ρ = 2 · 10−4. (D) A size distribution plot with the fraction of material, f, plotted against the cluster

size, N, with a fixed hydrophobicity of εH = 0.6kBT at a concentration of ρ = 2 · 10−4. (E) Shown are snapshots taken from the end point of the

simulation for Aβ1−40 and Aβ1−42 at low (εH = 0.4kBT) and high (εH = 0.6kBT) hydrophobicity.
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FIGURE 8

Shown are the fraction of aggregated material, f, (A) and the mean cluster size, 〈N〉, (B) using di�erent ratios of Aβ1−40 and Aβ1−42 chains for two

di�erent values of εH. 100 total chains were used in each simulation. A consistent box size of 80× 80× 80 (approximately 200 uM) was used in

all simulations, with εe = 9kBT and εn = 3kBT. For typical simulation times (4 · 106 in units of ν−1
0 ; reached in 5 · 1010 timesteps), each point

represents the mean and standard error of 3 simulations. For longer simulation times (4 · 107 ν−1
0 ), each data point represents the result from a

single simulation.

FIGURE 9

Schematic representation of the phase diagram that we have

studied in the present study. The critical concentration for

oligomerisation is roughly given by ln ρcrit ∝ εe/kBT with εe the

elongation energy. This critical concentration is a�ected by

excluded volume e�ects near the overlap concentration and

leads to an apparent dependence on the nucleation energy εn
(refer to Section 3.1). For a su�ciently high hydrophobic

interaction energy εH, condensates form. The concentration is

high within these condensates and promotes oligomer

formation. The shape of this region is a qualitative estimate that

acknowledges that phase separation takes place within a limited

concentration range.

models and hydrophobicity and polymeric excluded-

volume effects at the level of coarse-grained sticky-polymer

models. We hope this approach will lead to further

(quantitative) refinements to the understanding of typical

experimental time and length scales of Aβ aggregation in

few-component in vitro and complex multi-component in

vivo studies.
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