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Irreversible injury to inner ear hair cells induced by aminoglycoside antibiotics

contributes to the formation of sensorineural hearing loss. Pitavastatin

(PTV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has

been reported to exert neuroprotective effects. However, its role in

aminoglycoside-induced hearing loss remains unknown. The objectives of

this study were to investigate the beneficial effects, as well as the mechanism

of action of PTV against neomycin-induced ototoxicity. We found that

PTV remarkably reduced hair cell loss in mouse cochlear explants and

promoted auditory HEI-OC1 cells survival after neomycin stimulation. We also

observed that the auditory brainstem response threshold that was increased

by neomycin was significantly reduced by pretreatment with PTV in mice.

Furthermore, neomycin-induced endoplasmic reticulum stress in hair cells

was attenuated by PTV treatment through inhibition of PERK/eIF2α/ATF4
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signaling. Additionally, we found that PTV suppressed the RhoA/ROCK/JNK

signal pathway, which was activated by neomycin stimulation in HEI-OC1

cells. Collectively, our results showed that PTV might serve as a promising

therapeutic agent against aminoglycoside-induced ototoxicity.
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Introduction

Aminoglycosides are extensively used for serious infections
in clinical therapeutics, but the side effect of permanent hearing
impairment limits their application. It has been reported that
sensory hair cells in the inner ear are the main targets of
aminoglycosides (Zhanel et al., 2012). Aminoglycosides enter
inner ear compartments which are filled with endolymph by
passing through the blood–labyrinth barrier, and they enter
hair cells via interacting with several cation channels, resulting
in the reactive oxygen species accumulation and cell apoptosis
(Alharazneh et al., 2011; Stepanyan et al., 2011; Kros and
Steyger, 2019). Although in-depth studies have been performed
to elucidate the mechanisms responsible for aminoglycoside-
induced ototoxicity, most therapeutic strategies to improve
outcomes have been frustrated up to now.

The endoplasmic reticulum (ER), which is an intracellular
vesicle-like structure that participates in the process of protein
folding, plays a critical role in maintaining normal cellular
function and homeostasis (Wang and Kaufman, 2016). ER
stress occurs when unfolded or misfolded proteins accumulate,
leading to an impairment of ER function and perturbation
of ER homeostasis (Fernández et al., 2015; Oakes and Papa,
2015; So, 2018). Prolonged ER stress responses can trigger
cellular apoptosis and thus play a pivotal role in the pathological
process of numerous diseases, including cardiovascular diseases,
neurodegenerative diseases, cancer, and metabolic diseases
(Urra et al., 2016; Brown et al., 2020; Ghemrawi and Khair,
2020; Radwan et al., 2020). The relationship between ER stress
and hearing loss has been investigated for several decades,
and aminoglycoside antibiotics have been demonstrated for
the induction of hair cell apoptosis accompanied by ER
stress. Also, ER stress inhibition exhibits attenuation for
aminoglycoside-induced cochlear hair cell death (Jia et al.,
2018), thus highlighting the need for further investigation
on the relationship between ER stress and aminoglycoside-
induced ototoxicity.

Statins that act as antilipemic agents by preventing
cholesterol biosynthesis are the inhibitors of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase. Statins
are not only applied for the therapeutics of cardiovascular
diseases, but also for the treatment of neurological disorders

(Oesterle et al., 2017; Sanz-Cuesta and Saver, 2021), and lots
of studies have suggested that statins have potential protective
effects against sensorineural hearing loss (Brand et al., 2011;
Park et al., 2012; Fernandez et al., 2020; Whitlon, 2022).
Pitavastatin (PTV) is a new-generation lipophilic statin that
has been reported to exert anti-oxidative, anti-inflammatory,
anti-neoplastic, and neuroprotective effects (Kaneyuki et al.,
2007; Gbelcová et al., 2017; Cui et al., 2018; Li and Liu, 2022),
but the role of PTV in aminoglycoside-induced ototoxicity
remains unknown.

In the current research, we studied the protective properties
and potential mechanisms of PTV on neomycin-triggered
hearing loss by constructing in vivo and in vitro models. The
ultimate goal was to assist in the discovery and development
of therapeutic drugs for preventing aminoglycoside-triggered
sensorineural hearing loss.

Materials and methods

Cell viability assay

HEI-OC1 cells were inoculated into 96-well plates (2 × 105

cells/ml) overnight. Then, the cells were incubated with PTV
at different concentrations (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5
µm) for 24 h and challenged with neomycin for the next 24 h.
Then, CCK-8 solution (1:10 dilution in DMEM) was given to the
cells for 30-min incubation at 37◦C. The absorbance value was
measured by a Thermo Scientific microplate reader at 450 nm.

In vivo experiments

SPF C57BL/6 mice were purchased from Gempharmatech
Co., Ltd. (Nanjing, China). After being allowed to acclimate for
3 days, mice of P28 were intraperitoneal injected PTV (Aladdin,
P129617) with a dose of 3 mg/kg. After 2 h, neomycin (Sigma,
N6386) at 100 mg/kg was injected intraperitoneally, and then
after 30 min, mice were given a single dose of furosemide
(Sigma, BP547) at 200 mg/kg by intraperitoneal injection.
The measurement of auditory brainstem response (ABR) and
counting of cochlear hair cells were performed 2 days later.
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Whole-organ explants culture

The cochleae of P3 wild-type mice were dissected from
the inner ear and immersed in bioclean HBSS (Multicell,
311512011) using a stereo microscope. The spiral ganglion,
spiral ligament, and stria vascularis of cochleae were removed,
and the cochlear basilar membranes were put in dishes that
were smeared with Corning R© Cell-TakTM and then cultured
with DMEM-F12 medium added with ampicillin (Beyotime,
ST008), N2 Supplement (Stemcell, 07152), and SM1 neuronal
supplement (Stemcell, 05711) for 12 h in an incubator at 37◦C,
5% CO2. About 0.01 µm PTV was given to the samples for
12 h, and then, 0.5 mm neomycin with 0.01 µm PTV was given
together to the cochleae for another 12 h.

Auditory brainstem response
audiometry

Hearing thresholds of mice were assessed by ABR. ABR
experiment was carried out in an acoustic space, and the
variation in brain electrical activity in mice in answer to different
sounds was recorded by electrodes. After being anesthetized,
the mice were kept on a preheating pad (37◦C), and the
ABR responses were recorded at different frequencies on a
Tucker-Davis Technology System III system (Tucker Davies
Technologies, Gainesville, FL, United States).

Immunofluorescence

The tissue or cell samples fixed with 4% paraformaldehyde
were permeabilized with 1% Triton X-100. After blocking
with QuickBlockTM buffer (Beyotime, P0260) for 1 h, and
the primary antibodies against myosin 7a (Abcam, ab150386,
1:200 dilution), cleaved caspase-3 (Abcam, ab32042, 1:150
dilution), GRP78 (Proteintech, 11587-1-AP, 1:200 dilution), and
CHOP (Proteintech, 15204-1-AP, 1:200 dilution) were added
to the samples at 4◦C overnight. Next day after washing three
times with phosphate-buffered saline (PBS), the samples were
incubated with corresponding secondary antibodies for 1 h
at room temperature then washed three times with PBS and
incubated with ECL solution and imaged using confocal laser
scanning microscope (Zeiss, Germany).

Flow cytometry

The effect of PTV on neomycin-triggered apoptosis of HEI-
OC1 cells was evaluated by an Annexin-V/PI kit (BD, 556419).
Briefly, cells were harvested by digestion and centrifugation.
Precooling PBS was used to wash the cells three times, and
after being suspended by the binding buffer, cells were incubated
with 5 µl Annexin V-FITC and 5 µl PI for 20 min at room

temperature. The apoptosis was subsequently assayed by flow
cytometry (MACSQuant, Germany).

Terminal deoxynucleotidyl transferase
dUTP nick end labeling staining

A terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) BrightGreen apoptosis detection kit (Vazyme,
A112-01) was used to determine the apoptosis of HEI-OC1
cells and cochlear explants. Briefly, the samples were fixed and
permeabilized, then equilibrated with 1 × Equilibration Buffer
for 30 min at room temperature. After incubating with the label
solution at 37◦C for 1 h, the samples were washed by PBS for 2
times and imaged by a confocal laser scanning microscope.

Western blot

The total protein of cell samples was extracted
using RIPA lysis buffer (Beyotime, P0013C) containing
phenylmethanesulfonyl fluoride (1 mm). After quantification
by a BCA kit (Beyotime, P0012S), the sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) sample
loading buffer (Beyotime, P0015) was added to the total
protein lysate, and the mixed buffer was boiled at 100◦C
for 5 min. Total proteins (40 µg) of each group were added
to the gels and separated through electrophoresis and then
transferred to polyvinylidene fluoride (PVDF) membranes.
After being blocked in 5% BSA-PBST for 2 h, the immunoblots
were immersed in 5% BSA-PBST, which contained primary
antibodies overnight at 4◦C. Next day, the bands were washed
three times with 0.05% tween-PBS (PBST) and then combined
with the corresponding HRP conjugated secondary antibodies
and detected by an ECL kit (Vazyme, E411-04) and analyzed
by ImageJ software.

Statistical analysis

All data are analyzed by GraphPad Prism 9 software and
are presented as the mean ± standard deviation (SD). Statistical
significance was calculated with one-way analysis of variance
(ANOVA) followed by Dunnett’s test when comparing more
than two groups. A p-value < 0.05 indicated a statistically
significant difference.

Results

Pitavastatin protects against
neomycin-induced hair cell damage

To confirm whether PTV has a beneficial effect on
neomycin-triggered hair cell injury, auditory HEI-OC1 cells
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were administrated with different doses of PTV (0.001, 0.005,
0.01, 0.05, 0.1, and 0.5 µm) prior to neomycin (2 mm) treatment.
PTV showed significant attenuation of cell injury triggered
by neomycin at doses of 0.01–0.5 µm, and PTV at 0.01 µm
exhibited the best protective effect, so premedication of 0.01 µm
PTV for 24 h was chosen as the best administration scheme
(Figure 1A). We also measured the influence of PTV on whole-
organ cochlear explant cultures from P3 mice after neomycin
treatment. Immunostaining results indicated that neomycin
treatment resulted in an obvious missing of hair cells in cochleae
in the middle and basal turns and that PTV pretreatment
distinctly prevented neomycin-stimulated inner ear hair cell
loss (Figures 1B–E). The above results disclose that PTV has
effective protection against neomycin-triggered hair cell injury.

Pitavastatin alleviates
neomycin-triggered hearing loss
in vivo

Next, we investigated the protective property of PTV
on neomycin-triggered hearing loss by establishing an
acute neomycin-induced ototoxicity model according to the

previous study (He et al., 2020). C57BL/6 mice (P28) were
intraperitoneally injected with 3 mg/kg PTV, and after 2 h, mice
were given an intraperitoneal injection of 100 mg/kg neomycin
in conjunction with 200 mg/kg furosemide (Figure 2A). ABR
measurements were employed to determine the auditory
function of mice, and the results suggested that neomycin
treatment led to an obvious elevation of ABR thresholds,
whereas PTV administration strongly attenuated this effect
(Figure 2B). By counting cochlear hair cells, we found a massive
loss of cochlear hair cells in the neomycin plus furosemide
group, whereas PTV had an apparent promotion for hair cell
survival (Figures 2C,D). Collectively, the data reveal that PTV
attenuates neomycin-triggered hearing loss in vivo.

Pitavastatin attenuates
neomycin-triggered apoptosis in
HEI-OC1 cells

To explore the protective effects of PTV against neomycin-
induced HEI-OC1 cell damage, TUNEL and cleaved caspase-3
(cleaved CASP-3) dying were conducted to detect apoptosis.
We observed that neomycin stimulation for 24 h dramatically

FIGURE 1

PTV attenuates neomycin-induced HEI-OC1 cell damage and missing of hair cells in cochlear explants in vitro. (A) The CCK8 method was used
to determine the protective effect of PTV (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 µm) on neomycin-induced HEI-OC1 cell injury (n = 6).
(B) Immunostaining of hair cells in cochlear explants in the apical, middle, and basal turns with anti-myosin 7a antibody. Scale bars = 20 µm.
(C–E) Counting of the amount of hair cells per 200 µm in inner ear in the apical, middle and basal turns (n = 3). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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FIGURE 2

PTV promotes auditory function recovery and prevents neomycin-triggered hair cell loss in vivo. (A) Procedure of the experiments in vivo.
(B) Auditory function of mice was detected using ABR method (n = 6). (C) Immunofluorescence of mouse cochlear hair cells stained with
myosin 7a and phalloidin in the apical, middle, and basal turns. Scale bars = 20 µm. (D) Counting of the amount of cochlear hair cells per 200
µm in mice (n = 3). #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. NC group; *p < 0.05, **p < 0.01, ****p < 0.0001 vs. Neo group.

FIGURE 3

Effects of PTV on neomycin-triggered HEI-OC1 cell apoptosis. (A,C) TUNEL staining and cleaved CASP-3 immunostaining of HEI-OC1 cells.
Scale bars = 20 µm. (B,D) Statistics of the proportions of TUNEL or cleaved CASP-3 highlighted HEI-OC1 cells in (A,C) (n = 3). (E) Annexin-V/PI
staining in PTV and neomycin treatment HEI-OC1 cells. Scale bars = 200 µm. (F) Apoptosis detection of HEI-OC1 cells by flow cytometry.
(G) Statistics of the proportions of apoptotic HEI-OC1 cells in different groups (n = 3). ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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increased the count of TUNEL and cleaved CASP-3-positive
cells, whereas PTV group exhibited an effective improvement
(Figures 3A–D). Annexin V-FITC/PI kit was employed to
further confirm the benefit of PTV on the apoptosis triggered
by neomycin, and immunostaining and flow-cytometric assays
exhibited that neomycin significantly induced cell apoptosis,
whereas PTV administration showed a notable attenuation
in the apoptosis of HEI-OC1 cells (Figures 3E–G). Our
results indicate that PTV attenuates HEI-OC1 cell apoptosis
induced by neomycin.

Pitavastatin reduces apoptosis of
cochlear hair cells after neomycin
treatment

We further explored the impact of PTV on neomycin-
triggered apoptosis of hair cells in cochlear explant cultures.
After being dissected from P3 mice, the cochlear explants were
cultured at 37◦C and 5% CO2 for 12 h and then pretreated

with 0.01 µm PTV for 12 h followed by neomycin (0.5 mm)
treatment together with PTV for another 12 h. Using TUNEL
and cleaved CASP-3 staining, we found that the amount of
TUNEL-positive hair cells that were marked by myosin 7a and
the amount of cleaved CASP-3 staining hair cells in model
group were prominently higher than the control group, whereas
PTV administration clearly decreased the amount of apoptotic
hair cells, which is in accordance with the results discussed
above in HEI-OC1 cells (Figures 4A–D). Collectively, the data
demonstrate that PTV suppresses the apoptotic cascade under
aminoglycosides stimulation.

Pitavastatin inhibits neomycin-induced
endoplasmic reticulum stress in
cochlear hair cells

It has been reported that ER stress plays a pivotal role in
aminoglycoside-induced hair cell apoptosis (Jia et al., 2018), so
we next determined the expression of ER stress-relevant proteins

FIGURE 4

Effects of PTV on apoptosis of cochlear hair cell in whole-organ explants induced by neomycin. (A) Immunostaining with TUNEL and myosin 7a
labeling in the middle turns in cochlear explants. Scale bars = 20 µm. (B) Statistics of the proportions of TUNEL highlighted hair cells in (A).
(C) Immunostaining with cleaved CASP-3 and myosin 7a in the middle turns in cochlear explants. Scale bars = 20 µm. (D) Statistics of the
proportions of cleaved CASP-3 highlighted hair cells in (C). ∗∗∗∗p < 0.0001.
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GRP78 and CHOP after neomycin stimulation. We discovered
that the level of GRP78 together with CHOP was remarkably
higher than the control group after neomycin treatment. PTV
administration could inhibit ER stress by suppressing the
elevated expression of GRP78 and CHOP induced by neomycin
(Figures 5A–D), and this further indicates that PTV can
ameliorate neomycin-induced ER stress.

Pitavastatin suppresses
neomycin-induced endoplasmic
reticulum stress by inhibiting
PERK/eIF2α/ATF4 signaling in HEI-OC1
cells

To explore the molecular mechanism by which PTV
inhibits neomycin-triggered ER stress, we examined the three
classical signal pathways (PERK signaling, IRE1α signaling,
and ATF6 signaling) that are involved in ER stress. First, by
immunostaining, we confirmed that PTV could prevent the

high expression of GRP78 and CHOP induced by neomycin
in HEI-OC1 cells (Figures 6A–D). Next, western blot analysis
revealed that the expression levels of p-PERK, p-eIF2α, ATF4,
GRP78, and CHOP were markedly increased after neomycin
stimulation in cells, which was strongly inhibited by PTV
treatment (Figures 6E–J). Also, there was no obvious change in
IRE1α or ATF6 expression after PTV and neomycin treatment
(Figures 6K,L). Together, the results above suggest that PTV
attenuates neomycin-induced ER stress mainly by restricting
PERK/eIF2α/ATF4 signaling in HEI-OC1 cells.

Pitavastatin significantly inhibits the
RhoA/ROCK signaling pathway
activated by neomycin

Previous research has shown that PTV exerts its
neuroprotective effects mainly through the inhibition of
Rho/ROCK signaling pathway (Hamano et al., 2012). PTV is a
competitive inhibitor of the HMG-CoA reductases that activate

FIGURE 5

Impacts of PTV on neomycin-triggered ER stress in cochlear hair cells. (A) Immunostaining with myosin 7a and GRP78 in middle turns in
cochlear explants. Scale bars = 20 µm. (B) Statistics of the proportions of GRP78 highlighted hair cells in (A). (C) Immunostaining with myosin 7a
and CHOP in middle turns in cochlear explants. Scale bars = 20 µm. (D) Statistics of the proportions of CHOP highlighted hair cells in (C).
∗∗∗∗p < 0.0001.
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FIGURE 6

PTV alleviates neomycin-induced ER stress by inhibiting PERK/eIF2α/ATF4 signaling. (A,C) Immunofluorescence of HEI-OC1 cells with
anti-GRP78 and anti-CHOP antibodies. Scale bars = 20 µm. (B,D) Statistics of the mean intensity of GRP78 and CHOP in HEI-OC1 cells in (A,C).
(E) Western blot analysis of GRP78, CHOP, p-PERK, PERK, p-eIF2α, eIF2α, ATF4, ATF6, IRE1α, and GAPDH in HEI-OC1 cells with PTV pretreatment
followed by neomycin exposure. (F–L) Quantification of the protein expression in (E) with ImageJ (n = 3). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

the Rho/ROCK signaling pathway, but whether PTV protects
against neomycin-induced ototoxicity through the inhibition
of the Rho/ROCK signaling pathway remains unclear. In this
study, we also tested the change of Rho/ROCK signaling after
PTV administration and neomycin treatment in HEI-OC1 cells.
Western blot results showed that the expression levels of the
key factors in Rho signaling, including RhoA, ROCK, and JNK,
were prominently upregulated after neomycin stimulation,
whereas PTV pretreatment strongly downregulated the elevated
expression of RhoA, ROCK, and JNK induced by neomycin
(Figures 7A–D). These data suggest that PTV protects against
neomycin-induced ototoxicity by inhibiting the Rho/ROCK
signaling pathway.

Discussion

Aminoglycoside antibiotics are used to treat gram-negative
bacterial infections, but their application is restricted by
the severe side effects of ototoxicity and vestibular toxicity.

Aminoglycosides can accumulate in cochlear hair cells and
are hard to metabolize, which may lead to irreversible
damage of cochlear hair cells and result in permanent hearing
loss. In the present study, we show that the HMG-CoA
reductase inhibitor PTV could efficiently attenuate neomycin-
triggered ototoxicity. By in vitro and in vivo studies, we
demonstrated that PTV protected against neomycin-induced
apoptosis of cochlear hair cells, and the protective effect
might be in connection with the inhibition of ER stress. We
further confirmed that PTV exerted anti-apoptotic effects and
suppressed PERK/eIF2α/ATF4 signaling-mediated ER stress by
inhibiting Rho/ROCK signaling.

PTV is a novel synthetic lipophilic statin with greater
safety, tolerability, and fewer adverse effects compared with
conventional statins and is commonly used for the treatment
of hypercholesteremia (Hoy, 2017; Chan et al., 2019; Adams
et al., 2020). Previous research showed that PTV exhibited
efficient neuroprotective effects independent of its antilipemic
effect (Kozuki et al., 2011; Kurata et al., 2011a,b). However,
there is no investigation in regard to the beneficial effect of
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FIGURE 7

PTV inhibits neomycin-triggered activation of the Rho/ROCK
signaling pathway. (A) Western blot analysis of RhoA, ROCK,
JNK, and GAPDH in HEI-OC1 cells with PTV pretreatment
followed by neomycin exposure. (B–D) Quantification of the
protein expression in (A) with ImageJ (n = 3). ∗p < 0.05,
∗∗p < 0.01.

PTV on aminoglycoside-triggered hearing loss. In this study,
by establishing an acute neomycin-induced ototoxicity model,
we observed that PTV could effectively mitigate neomycin-
triggered hearing loss in vivo (Figure 2). We also found that
PTV protected against auditory HEI-OC1 cell and cochlear
explant injury triggered by neomycin in vitro (Figure 1). These
results suggested that PTV might be a promising agent for the
prevention of aminoglycoside-triggered ototoxicity.

Apoptosis of hair cells leading to hearing loss is the
key factor in the “ototoxicity” of aminoglycosides (Wu
et al., 2021). Using TUNEL staining, we found that the
proportions of TUNEL/myosin 7a double-positive cells in
cochlear explants were remarkably increased after neomycin
treatment, confirming that neomycin may cause cochlear hair
cell death through apoptosis. In addition, there was very less
TUNEL staining observed in the PTV pretreatment group
(Figures 4A,B). Cleaved CASP-3 is considered a universal
marker of apoptosis due to its critical role in the pathogenesis
of cell apoptosis (Wang et al., 2021). In our study, we
also found that PTV could significantly reduce the increased
numbers and proportions of apoptotic hair cells induced
by neomycin (Figures 4C,D), which is consistent with our
in vitro results in HEI-OC1 cells (Figure 3). Collectively,
these results demonstrate that PTV exerts its beneficial effect
on neomycin-triggered hair cell injury by inhibiting the
occurrence of apoptosis.

It is well documented that ER stress is triggered by the
disruption of homeostasis in the ER and results in the activation
of the unfolded protein response (UPR) (Lu et al., 2014; Fu

et al., 2021). When the unfolded or misfolded proteins in the
ER accumulate and exceed a tolerable threshold, the function
of ER may be lost and be difficult to restore leading to cellular
dysfunction and apoptosis (Gorman et al., 2012; Verfaillie et al.,
2013; Hu et al., 2019). There are three classical signal pathways
involved in UPR, including PERK signaling, IRE1 signaling, and
transcription factor ATF6 signaling (Walter and Ron, 2011).
GRP78, which is a type of peptide-binding protein that prevents
the aggravation of protein folding, has been reported to be a
key regulator of ER stress and UPR activation (Adams et al.,
2019). Changes in the microenvironment due to physiological
processes or to pathological conditions, such as hypoxia, viral,
or bacterial infections and drugs, can induce ER stress, thus
causing GRP78 to separate from the sensors (PERK, IRE1, and
ATF6) and further activate downstream signaling (Hollien and
Weissman, 2006; Díaz-Bulnes et al., 2020; Kapadia et al., 2021;
Mazel-Sanchez et al., 2021). It was observed that neomycin
treatment significantly increased the expression levels of GRP78
and CHOP in cochlear hair cells, which indicated that neomycin
could activate ER stress (Figure 5). We also found that PTV
pretreatment effectively alleviated neomycin-induced ER stress
through inhibition of the PERK/eIF2α/ATF4 signaling pathway
(Figure 6). These results manifest that PTV is able to suppress
neomycin-induced hair cell apoptosis by inhibiting ER stress via
mediation of the PERK/eIF2α/ATF4 signaling pathway.

As an HMG-CoA reductase inhibitor, PTV has been
reported to exert its neuroprotective effect via the inhibition
of Rho/ROCK signaling (Hamano et al., 2012, 2020). It has
also been reported that ROCK inhibitor has neuroprotective
and regenerative effects on synaptic pathways by promoting
synapse formation in cochlear hair cells (Koizumi et al.,
2020). By western blot assays, we confirmed that PTV could
decrease the elevated expression of RhoA, ROCK, and JNK
induced by neomycin (Figure 7). Thus, PTV appears to
attenuate neomycin-induced ototoxicity by inactivation of
Rho/ROCK signaling.

Conclusion

In summary, we show that PTV can ameliorate neomycin-
triggered cochlear hair cell injury and hearing loss by inhibiting
RhoA/ROCK signaling and can suppress ER stress by blocking
the PERK/eIF2α/ATF4 pathway. The findings indicate that
PTV may serve as a promising agent for the prevention of
aminoglycoside-induced ototoxicity.
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