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Unique advantages of zebrafish
larvae as a model for spinal cord
regeneration

Samuel R. Alper and Richard I. Dorsky*

Department of Neurobiology, University of Utah, Salt Lake City, UT, United States

The regenerative capacity of the spinal cord in mammals ends at birth. In

contrast, teleost fish and amphibians retain this capacity throughout life,

leading to the use of the powerful zebrafish model system to identify novel

mechanisms that promote spinal cord regeneration. While adult zebrafish

o�er an e�ective comparison with non-regenerating mammals, they lack

the complete array of experimental approaches that have made this animal

model so successful. In contrast, the optical transparency, simple anatomy and

complex behavior of zebrafish larvae, combined with the known conservation

of pro-regenerative signals and cell types between larval and adult stages,

suggest that they may hold even more promise as a system for investigating

spinal cord regeneration. In this review, we highlight characteristics and

advantages of the larval model that underlie its potential to provide future

therapeutic approaches for treating human spinal cord injury.
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Introduction

Spinal cord injury (SCI) in humans leads to debilitating consequences with little

significant functional recovery. As in other regions of the central nervous system (CNS),

barriers to spinal cord regeneration identified using mammalian experimental models

include the lack of resident progenitor cells capable of replacing lost neurons, intrinsic

factors that limit axon regrowth in surviving neurons, and the deposition of extrinsic

factors that inhibit axon regrowth across the injury site (Alunni and Bally-Cuif, 2016;

Varadarajan et al., 2022). However, the ability to overcome these barriers and to develop

therapies for SCI recovery also requires the identification of mechanisms that actively

promote regeneration. This has led to the development of SCI models in teleost fish and

urodele amphibians, which display a remarkable capacity for spinal cord regeneration

throughout their lifespan (Becker et al., 1997; Zukor et al., 2011). This regenerative

capacity, combined with the benefits of an extensive set of experimental tools and

approaches, has positioned the zebrafish (Danio rerio) as an attractive model organism

for discovering the mechanisms that promote regeneration after SCI. Recent work using

the zebrafish model has shown that regeneration and functional recovery after SCI

depends on the lifelong maintenance of multipotent stem and progenitor cells, and on

pro-regenerative signals from other cells within and outside the spinal cord (Briona et al.,

2015; Goldshmit et al., 2018; Cavone et al., 2021; Becker and Becker, 2022).
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While adult zebrafish have been used as a comparison with

non-regenerative postnatal mammals, their recovery period of

around 6 weeks after SCI (Becker et al., 2004), lack of optical

transparency, and complicated surgical procedures (Fang et al.,

2012), preclude the use of many tools and approaches that

have made the species so successful as an experimental system.

Here we summarize evidence that zebrafish larvae, which

retain these benefits in addition to their simple anatomy and

complex locomotor behavior, represent an effective and reliable

animal model with unique advantages for studying spinal cord

regeneration. First, we describe how the injury response in

zebrafish larvae is distinct from the process of development in

the embryo. Next, we highlight regenerative mechanisms that

are conserved between zebrafish larvae and adults, and finally we

explain the specific experimental advantages of the larval system.

In conclusion, we propose that these features endow the larval

zebrafish model with a unique potential to expedite discovery of

translationally applicable treatments for SCI.

Spinal cord regeneration in zebrafish
larvae is distinct from development

Tissue and organ regeneration often involves the

recapitulation of developmental processes, and several

developmental signaling pathways are indeed reactivated during

spinal cord regeneration in adult zebrafish (Cardozo et al.,

2017). However, the use of zebrafish larvae as an SCI model

has raised the question of whether the injury response at this

stage represents true regeneration, as opposed to an extension

of embryonic spinal cord development. In fact, experimental

evidence shows that due to the particularly rapid pace of

zebrafish embryogenesis, most fundamental milestones of spinal

cord development have already been reached before the larval

stage begins at 3 days post fertilization (dpf), and functional

locomotor circuits are present after only one additional day.

The patterning of the zebrafish spinal cord into progenitor

domains arranged along the dorsoventral axis (Lewis and

Eisen, 2003) occurs through signaling morphogen gradients

that are established before 1 dpf (Bonner et al., 2008; Danesin

et al., 2021), and shortly thereafter drive expression of the

homeodomain transcription factors that define these domains

(Gribble et al., 2007; Bonner et al., 2008; Lien et al., 2016).

The identity and position of differentiated neuronal subtypes

is largely established by 3 dpf (Seredick et al., 2012; Reimer

et al., 2013; Lien et al., 2016; Ohnmacht et al., 2016; Andrzejczuk

et al., 2018; England et al., 2020), and by 4 dpf these neurons

are assembled into functional circuits required for the transition

to a mature swimming pattern, increased locomotion, and the

emergence of foraging behavior (Buss and Drapeau, 2001; Borla

et al., 2002; Kokel et al., 2010;Menelaou andMcLean, 2012; Kroll

et al., 2021; Pallucchi et al., 2022). Ependymal radial glia (ERG),

the resident neural progenitor cells of the zebrafish spinal cord

(Briona and Dorsky, 2014a; Hui et al., 2015), begin to establish

characteristic marker expression and morphology at 2 dpf (Kim

et al., 2008; Briona and Dorsky, 2014a; Matsuoka et al., 2016),

and subpopulations of ERG have become fate-restricted by 3 dpf

(Ali et al., 2021). Oligodendrocytes, one of the latest born spinal

cord cell types, are generated and begin myelinating axon tracts

by 2.5 dpf (Park et al., 2002; Kirby et al., 2006; Ali et al., 2021).

Together, these studies show that the vast majority of neuronal

and glial cell types in the zebrafish spinal cord appear within the

first 3 days of life, and terminally differentiated neurons form

functional spinal circuitry by the beginning of larval stages.

In addition to its developmental maturity, the larval

zebrafish spinal cord also exhibits injury-dependent responses

that are specific to regeneration. For example, signals derived

from infiltrating innate immune cells do not participate in

embryonic spinal cord patterning and differentiation, but have

been demonstrated to be necessary and sufficient for both

axon regrowth and regenerative neurogenesis in injured larvae

(Ohnmacht et al., 2016; Tsarouchas et al., 2018; Nelson et al.,

2019; Gollmann-Tepeköylü et al., 2020; Cavone et al., 2021;

Vandestadt et al., 2021). Another striking regenerative response

that takes place within the larval spinal cord is the formation

of a glial bridge across the injury site, over which growing

axons can traverse to reinnervate targets (Goldshmit et al.,

2012; Klatt Shaw et al., 2021). After SCI, bridge-forming ERG

extend processes longitudinally, in contrast to their exclusively

radial orientation in the absence of injury (Matsuoka et al.,

2016). Interestingly, regeneration-specific responses can even

occur in direct opposition to developmental events, such as the

production of motor neurons by olig2+ progenitors (Ohnmacht

et al., 2016) that have already become restricted to producing

oligodendrocytes before injury (Reimer et al., 2013). These

results parallel data from the regenerating zebrafish retina, in

which Müller radial glia dedifferentiate and replace neuronal

cell types normally produced by early fate-restricted retinal

progenitors (Ng Chi Kei et al., 2017).

Together these data show that larval spinal cord

regeneration is not a continuation or even merely a

recapitulation of developmental programs, but rather a

series of injury-specific responses capable of dynamic changes

to local anatomy and circuitry. These studies also demonstrate

that larval zebrafish can be used to identify novel molecular and

cellular components of the regenerative process.

Conservation of pro-regenerative
mechanisms in the larval and adult
zebrafish spinal cord

Comparing studies of spinal cord regeneration in larval

and adult zebrafish can be difficult due to differences in injury

paradigms, experimental perturbations, and assay techniques.

However, where direct comparison is possible from the similar

Frontiers inMolecularNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnmol.2022.983336
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Alper and Dorsky 10.3389/fnmol.2022.983336

use of both models, broad conservation of pro-regenerative

signaling pathways and cell types has been observed.

The Wnt signaling pathway promotes regeneration of

several zebrafish tissues including the fin, brain, and spinal

cord (Wehner et al., 2014, 2017, 2018; Cardozo et al., 2017;

Shimizu et al., 2018). After spinal cord injury, Wnt signaling

is active at the injury site in both larvae and adults (Briona

et al., 2015; Strand et al., 2016), and Wnt pathway inhibition

in both larvae and adults results in decreased axon regrowth

and locomotor recovery following SCI (Briona et al., 2015;

Strand et al., 2016; Wehner et al., 2017, 2018). In larvae, Wnt

signaling promotes ERG proliferation and neurogenesis after

injury (Briona et al., 2015), and in adults Wnt inhibition leads

to increased expression of GFAP at the lesion site; a marker

that is normally downregulated as ERG undergo regenerative

neurogenesis (Strand et al., 2016). Finally, Wnt signaling has

been shown to promote the deposition of pro-regenerative

extracellular matrix (ECM) components such as Collagen XII in

larvae (Wehner et al., 2017).While the specificWnt-dependence

of ECM deposition has not been tested in adult fish, recent

studies demonstrate that vascular pericytes upregulate pro-

regenerative ECM components including Collagen XII, and

downregulate inhibitory ECM components, after SCI (Mokalled

et al., 2016; Tsata et al., 2021).

Other pathways such as Fibroblast growth factor (Fgf)

signaling have also been shown to be required for both larval and

adult zebrafish spinal cord regeneration. In larvae, motoneuron

ablation triggers axon regrowth that is dependent upon Fgf

binding protein 3 (FGFbp3), an extracellular chaperone for

Fgf ligands (Xu et al., 2022). After SCI in adult zebrafish,

Fgf signaling is active in ERG and neurons and drives both

axon regrowth and neurogenesis (Goldshmit et al., 2012,

2018). Hedgehog pathway activity, which promotes regenerative

neurogenesis throughout life (Kuscha et al., 2012; Reimer et al.,

2013; Ribeiro et al., 2017), and drives the switch of olig2+

ERG back to neurogenesis after injury in both larval and adult

fish (Reimer et al., 2013; Ohnmacht et al., 2016), also amplifies

motoneuron regeneration after SCI in both zebrafish larvae

and adults through dopamine signaling (Reimer et al., 2013;

Ohnmacht et al., 2016). Several other pro-regenerative pathways

identified in adult zebrafish including Notch, Retinoic acid,

and Bone morphogenetic protein signaling (Reimer et al., 2008,

2009; Hui et al., 2014) will require future studies to assess

whether their functions are conserved in larvae.

Similar cellular responses to SCI have also been identified

in larval and adult zebrafish. These include the rapid infiltration

and gene upregulation by innate immune cells (Hui et al., 2010,

2014), as well as the required role of this immune response in

functional recovery (Nelson et al., 2019; Cavone et al., 2021). The

detailed process of glial bridging also appears to be conserved

between larvae and adults (Goldshmit et al., 2012; Wehner

et al., 2017; Klatt Shaw et al., 2021), although the experimental

approaches used in these studies raise the possibility that bridge

formation may be correlated with, but not absolutely required

for, axon regrowth.

Taken together, there is considerable evidence that both the

activation of specific molecular and cellular mechanisms and

their functions in promoting spinal cord regeneration after SCI

are widely conserved between larval and adult stages. This high

level of mechanistic continuity throughout the zebrafish lifespan

supports the potential applicability of discoveries obtained

from the larval model to the regenerative process in all post-

embryonic vertebrates, including mammals.

Advantages of the larval zebrafish
model

In addition to the well-established genetic and molecular

resources that make zebrafish a popular system for studying

basic developmental mechanisms and modeling human disease,

the larval model allows the use of experimental techniques

that are difficult or even impossible to implement in adults,

including in vivo imaging and high-throughput screening. Both

of these powerful approaches rely on the combination of optical

transparency, anatomical simplicity, and behavioral complexity

of larval zebrafish compared to alternative vertebrate models.

The advantages of working with zebrafish larvae are

perhaps most evident when considering the use of in vivo

microscopic techniques such as live cell tracking, cellular

ablations, and optogenetic recording, stimulation, and silencing

of neuronal activity. These techniques all provide the ability

to monitor and experimentally manipulate the process of

spinal cord regeneration in real time at the single-cell level.

The transparency of zebrafish larvae has been exploited using

fluorescent transgenes to define the movements, morphological

changes, lineage, and function of ERG and neurons after SCI

(Goldshmit et al., 2018; Anguita-Salinas et al., 2019; Vasudevan

et al., 2021). The required role of ERG in regeneration has

been demonstrated using live photoablation (Matsuoka et al.,

2016), an approach that provides the spatial precision necessary

to target single cells while maintaining the overall structural

integrity of the spinal cord. Optical accessibility has also allowed

the use of chemically modified light-activated substrates to

demonstrate the extrasynaptic function of neurotransmitters in

spinal cord regeneration (Chang et al., 2021).

The use of large-scale screens to identify genes, proteins,

and drugs with novel roles in spinal cord regeneration requires

the ability to test hundreds or thousands of animals rapidly

and with robust and reproducible anatomical and behavioral

assays, and thus aligns almost perfectly with the larval zebrafish

model. CRISPR/Cas9-mediated gene knockout in individual

F0 larvae has been demonstrated to cause reproducible

effects on stereotyped behaviors such as escape response and

circadian locomotion (Kroll et al., 2021), and recently developed

techniques such as MIC-Drop (Parvez et al., 2021) allow
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injection and subsequent detection of single-gene targeting

reagents. These methods have increased screening efficiency

to the point that several hundred genes can be functionally

tested by a single researcher in a matter of weeks. The optical

accessibility and lack of skeletal tissues in larval zebrafish also

allow the use of a range of rapid injury paradigms from simple

physical transections to semi-automated laser injuries and cell-

specific photoablation (Briona and Dorsky, 2014b; Hecker et al.,

2020; El-Daher et al., 2021). Further, a diverse catalog of

quantifiable locomotor behaviors including swim kinematics,

swim endurance, and escape response, facilitates simple and

robust assessment of subsequent functional recovery (Mokalled

et al., 2016; Hecker et al., 2020; Vasudevan et al., 2021).

Smaller-scale screens using similar approaches have already

shown success in identifying pro-regenerative genes and drugs

(Chapela et al., 2019; Keatinge et al., 2021), and while the true

power of large-scale screening has yet to be fully realized in a

zebrafish larval SCI model, its future promise is exciting.

Despite the many experimental advantages of larval

zebrafish, several observations support the continued need for

an adult SCI model. While the rate of neurogenesis in the

uninjured larval spinal cord is much lower than in the embryo

(Briona and Dorsky, 2014a) it is still higher than in adults

(Park et al., 2007), suggesting that additional barriers to the

activation of quiescent neural progenitors may exist after adult

injury. In addition, spinal cord-associated meningeal, skeletal,

and vascular tissues not present during larval stages may provide

additional pro-regenerative signals (Lin et al., 2012), as may

adaptive immune cells (Gupta et al., 2021), which do not appear

in zebrafish until 4–6 weeks post fertilization (Sullivan et al.,

2017). It may be necessary to determine the identity and function

of these signals in adult fish, because zebrafish larvae, like

Xenopus tadpoles (Lin et al., 2012), can recover normal function

in their absence.

Discussion

The suitability of the larval zebrafish as an SCI model may be

best understood in the context of fish CNS neurogenesis, which

unlike in mammals is initially rapid but also never-ending.

Thus, while only a few neurogenic niches remain in the adult

mammalian CNS, adult zebrafish retain many larval niches and

widespread neurogenesis (Goldshmit et al., 2012; Becker and

Becker, 2022; Varadarajan et al., 2022). Further illustrating this

continuity, the adult zebrafish spinal cord maintains expression

of progenitor domain-defining homeodomain transcription

factors through adulthood (Reimer et al., 2009). Thus, the ability

of the spinal cord to respond to injury, as well as its cellular

composition and functional capacity, is much more similar in

larval and adult zebrafish than in postnatal and adult mammals.

An additional consideration supporting the use of the

larval zebrafish model arises from the recent finding that

there is a substantial reorganization of spinal motor circuits

between larval and adult stages (Pallucchi et al., 2022). Because

our understanding of zebrafish spinal circuitry primarily

comes from studies using larvae, and due to the emerging

importance of synaptic and modulatory neurotransmitters as

pro-regenerative signals (Chang et al., 2021; Huang et al.,

2021), our ability to accurately characterize the sources and

targets underlying functional recovery after SCI may depend

on performing future investigations at a stage before this

reorganization occurs.

In conclusion, use of larval zebrafish has the potential to

expedite the discovery of new roles for genes, molecules, and

cell types involved in spinal cord regeneration. The combination

of their numerous practical and technical advantages indicates

that the larval SCI model is uniquely positioned to make

significant contributions to our understanding of the basic

science of spinal cord regeneration and to future clinical efforts

to ameliorate the most debilitating consequences of human

spinal cord injuries.
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