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Background: Cognitive subtypes of schizophrenia may exhibit di�erent

neurobiological characteristics. This study aimed to reveal the underlying

neurobiological features between cognitive subtypes in the early course of

schizophrenia (ECS). According to prior studies, we hypothesized to identify

2–4 distinct cognitive subtypes. We further hypothesized that the subtype with

relatively poorer cognitive functionmight have lower brain spontaneous neural

activity than the subtype with relatively better cognitive function.

Method: Cognitive function was assessed by the MATRICS Consensus

Cognitive Battery (MCCB). Resting-state functional magnetic resonance

imaging scanning was conducted for each individual. There were 155 ECS

individuals and 97 healthy controls (HCs) included in the subsequent analysis.

Latent profile analysis (LPA) was used to identify the cognitive subtypes in ECS

individuals, and amplitude of low-frequency fluctuations (ALFFs) was used to

measure brain spontaneous neural activity in ECS individuals and HCs.

Results: LPA identified two cognitive subtypes in ECS individuals, containing

a severely impaired subtype (SI, n = 63) and a moderately impaired subtype

(MI, n = 92). Compared to HCs, ECS individuals exhibited significantly

increased ALFF in the left caudate and bilateral thalamus and decreased

ALFF in the bilateral medial prefrontal cortex and bilateral posterior

cingulate cortex/precuneus (PCC/PCu). In ECS cognitive subtypes, SI showed

significantly higher ALFF in the left precentral gyrus (PreCG) and lower ALFF

in the left PCC/PCu than MI. Furthermore, ALFFs of left PreCG were negatively

correlated with several MCCB cognitive domains in ECS individuals, while ALFF

of left PCC/PCu presented opposite correlations.

Conclusion: Our findings suggest that di�erences in the brain spontaneous

neural activity of PreCG and PCC/PCu might be the potential neurobiological

features of the cognitive subtypes in ECS, which may deepen our
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understanding of the role of PreCG and PCC/PCu in the pathogenesis of

cognitive impairment in schizophrenia.
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Introduction

Cognitive impairment is a core component of schizophrenia,

which exists not only in the acute phase but also in the ultra-

high risk stage of psychosis and persists during the clinical

remission of psychiatric symptoms (Keefe et al., 2006; Bora

and Murray, 2014). In schizophrenia, cognitive impairment is

manifested in multiple domains, including verbal and visual

learning, working memory, processing speed, problem solving,

attention, and executive function (Nuechterlein et al., 2004;

Sheffield et al., 2018), which could contribute to poor functional

outcomes (Green, 2016). Although there is a generalized

cognitive deficit in schizophrenia, not all individuals exhibit the

same pattern of cognitive deficits, i.e., degrees of impairment

in different cognitive dimensions from different sample groups

are manifested differently (Carruthers et al., 2019). These

heterogeneous patterns of cognitive impairment make it difficult

to understand the pathophysiology of schizophrenia.

Accumulating evidence has successfully classified

individuals with psychiatric disorders with similar cognitive

characteristics and compared differences between distinct

cognitive features. Participants could be classified according

to their current cognitive function scores based on artificial

classification (Ammari et al., 2010; Ortiz-Gil et al., 2011),

or could be classified by data-driven approaches (Lim et al.,

2020; Smucny et al., 2020). Instead of appearing to be limited

to dividing participants into relatively intact or cognitively

impaired subtypes by prior defined classification criteria, the

data-driven approach could provide valuable insight into

multiple cognitive subtypes that exist in psychiatric disorders

(Carruthers et al., 2019).

Abnormal cognitive function also has relevant neuroimaging

features. Growing attention has been paid to identifying the

neurobiological changes of cognitive subtypes in schizophrenia

through neuroimaging (Van Rheenen et al., 2018; Lewandowski

et al., 2019). Several studies using data-driven methods have

illustrated the different patterns of brain structure or resting-

state functional connectivity among cognitive subtypes in

individuals with schizophrenia. For brain structure, near-

normal cognitive groups and impaired cognitive groups of

individuals with schizophrenia or schizoaffective disorders were

found at varying levels of cortex thickness (Cobia et al.,

2011), or different gray and white matter volumes (Wexler

et al., 2009; Van Rheenen et al., 2018). For brain function

connectivity networks, three cognitive subtypes classified

by k-means clustering method from 67 individuals with

schizophrenia spectrum disorders showed unique hyper- or

hypo-connectivity in specific functional networks (Rodriguez

et al., 2019). However, previous neuroimaging studies have

used structural measurements and functional connectivity

approaches to investigate the neurobiological features between

cognitive subtypes in schizophrenia; to the best of our

knowledge, there was no study investigating differences in

brain spontaneous neural activity between cognitive subtypes of

ECS yet.

The amplitude of low-frequency fluctuations (ALFFs)

is often used to characterize brain spontaneous neural

activity (Zang et al., 2007). Several studies have investigated

the association between ALFF and cognitive function in

schizophrenia (Zhou et al., 2014; Wang et al., 2019). Therefore,

the purpose of this study was to determine the differences in

brain spontaneous neuronal activity measured by ALFF between

cognitive subtypes of individuals with ECS. We compared the

cognitive subtypes derived from latent profile analysis (LPA)

with healthy controls (HCs) to assess the condition of cognitive

impairment (Miettunen et al., 2016). Based on two recent

systematic reviews on cognitive subtypes in schizophrenia, we

expected to find 2–4 distinct cognitive subtypes: a severely

impaired subgroup, 1–2 moderately impaired subgroups, and

a relatively intact cognitive subgroup (Carruthers et al., 2019,

2021). We further hypothesized that cognitive subtypes might

exhibit different brain spontaneous neuronal activities, and the

brain spontaneous neuronal activity may be lower in the subtype

with poorer cognitive function than in the subtype with better

cognitive function.

Methods

Participants

We recruited ECS individuals and HCs from three clinical

medical centers, the Second Xiangya Hospital of Central South

University (Center 1), the Affiliated Nanjing Brain Hospital of

Nanjing Medical University (Center 2), and the First Affiliated

Hospital of Zhengzhou University (Center 3). All recruited ECS

individuals met the criteria of the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV) based

on a Structured Clinical Interview for DSM-IV Axis-I Disorder
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(First et al., 1997), which were assessed by two well-trained

psychiatrists in each center.

For ECS individuals, the further inclusion criteria were as

follows: (1) aged 16–60; (2) experienced the first episode of

psychiatric symptoms or illness duration within 3 years but in

the acute phase currently; (3) Positive and Negative Syndrome

Scale (PANSS) total score >60. The exclusion criteria were: (1)

comorbidity of physical diseases, or other psychiatric disorders

that met the DSM-IV criteria; (2) comorbidity of substance

abuse or addiction; (3) unable to complete cognitive function

tests and magnetic resonance imaging (MRI) examinations; (4)

pregnant or lactating women. In addition, HCs with first-degree

relatives that had any psychiatric disorders were also excluded.

Written informed consents were obtained from all

participants or first-degree relatives of ECS individuals before

participating in the study. This study was approved by the

Ethics Committee of the Second Xiangya Hospital of Central

South University, the Ethics Committee of the Affiliated

Nanjing Brain Hospital of Nanjing Medical University, and

the Ethics Committee of the First Affiliated Hospital of

Zhengzhou University.

Our study totally enrolled 181 ECS individuals and 107

HCs. After neuroimaging preprocessing, 155 ECS individuals

and 97 HCs were included in the subsequent analysis (subjects

with head motion exceeding 2mm or head rotation exceeding

2◦ were excluded). Among 155 ECS individuals, 119 (76.8%)

individuals received risperidone, 16 (10.3%) olanzapine, 11

(7.1%) amisulpride, seven (4.5%) aripiprazole, and two (1.3%)

paliperidone. The doses of antipsychotic drugs were equivalent

to chlorpromazine dose by the defined daily doses (DDDs)

method (Leucht et al., 2016). The remaining subjects of each

center were as follows: 34 ECS individuals and 18 HCs (Center

1); 38 ECS individuals and 36 HCs (Center 2); 83 ECS

individuals and 43 HCs (Center 3). Demographic and clinical

data of ECS individuals and HCs from three centers are shown

in Supplementary Table 1.

Cognitive assessment

We used Measurement and Treatment Research to Improve

Cognition in Schizophrenia Consensus Cognitive Battery

(MCCB) to evaluate cognitive function (Kern et al., 2008;

Nuechterlein et al., 2008). The MCCB was widely used

and translated into Chinese version (Shi et al., 2015). It

includes nine tasks across seven cognitive domains: (1)

speed of processing (Trail Making Test, part A; Brief

Assessment of Cognition in Schizophrenia, Symbol Coding;

Category Fluency Test, Animal); (2) attention and vigilance

(Continuous Performance Test-Identical Pairs); (3) working

memory (Wechsler Memory Scale, spatial span); (4) verbal

learning (Hopkins Verbal Learning Test-Revised); (5) visual

learning (Brief Visuospatial Memory Test); (6) reasoning

and problem solving (Neuropsychological Assessment Battery,

mazes test); (7) social cognition (Mayer–Salovey–Caruso

Emotional Intelligence Test, managing emotions test). It takes

1–1.5 h for each subject to finish MCCB. Raw scores were

converted to scale scores, then to Chinese-normalized T scores.

T scores of seven cognitive domains and composite scores (the

average T score of nine tasks) were calculated. In this study, all

ECS individuals and HCs completed the MCCB.

Neuroimaging data acquisition

The thorough description of this section is described in the

Supplementary material.

Neuroimaging data preprocessing

Image preprocessing was performed by the Data Processing

& Analysis of Brain Imaging toolbox (DPABI, V4.2, http://rfmri.

org/dpabi) running on MATLAB software (The MathWorks,

Inc., Natick, MA, USA; Yan et al., 2016). We removed the

first 10 scanning volumes in order to stabilize the magnetic

resonance signal and reduce the impact of subjects not adapting

to the scanning environment. Slice timing and head motion

were corrected for each subject, and those whose head motion

exceeded 2mm or head rotation exceeded 2◦ were excluded.

Afterward, images were spatially normalized to the standard

Montreal Neurological Institute template by using warping

parameters estimated from T1 images with a resampling

standard voxel size of 3mm × 3mm × 3mm. We used a

6mm full-width at half-maximum Gaussian kernel to spatially

smooth images and performed linear detrending. Then the

nuisance signals were regressed out, including head motion

effects (Friston 24-parameter model; Friston et al., 1996), white

matter, and cerebrospinal fluid. Finally, band-pass filtering

(0.01–0.08Hz) was applied for the time series of each voxel

to remove the effects of very-low-frequency drifts and high-

frequency noise (Zang et al., 2007). After that, the time series of

each voxel for each subject was transformed into the frequency

domain under a fast Fourier transformation way in order to get

the power spectrum. To standardize the ALFF values, the ALFF

of each voxel would be converted intoZ scores by subtracting the

global mean and then dividing the global standard deviation.

Multi-site e�ect harmonization

Before statistical analysis, we used the ComBat

Harmonization method (http://github.com/Jfortin1/

ComBatHarmonization) for preprocessed data to eliminate the

inter-site effects (Fortin et al., 2017). This widely used method

could effectively remove unwanted variation introduced by the
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site, and increase statistical power (Fortin et al., 2018; Radua

et al., 2020). In addition, group, age, sex, and education level

were protected during the removal of inter-site effects.

Latent profile analysis

Latent profile analysis is used to classify individuals into

heterogeneous subtypes based on latent variable models. It

could explain the associations between the observed continuous

indicator variables by regressing the continuous indicator

variables onto a set of one or more latent class variables

(Miettunen et al., 2016). LPA is a model-based approach, and

thus has fewer prerequisites for application, more reasonable

clustering criteria and result testing, and less arbitrariness than

traditional clusteringmethods (e.g., k-means; Brusco et al., 2017;

Schreiber, 2017). The flexibility of LPA makes it adaptable to the

heterogeneous study of complex psychiatric and psychological

phenomena with effective classification of cognitive subtypes

(Lim et al., 2020; Smucny et al., 2020; De Meo et al., 2021).

Latent profile analysis was conducted by Mplus version 7.11

to identify potential homogenous subtypes of ECS individuals

based on cognitive performance in seven MCCB cognitive

domains (Muthén and Muthén, 2015). The number of classes

was determined from an examination of models fit statistics

rather than hypothesized. These model fit indices included

log-likelihood ratio (LLR; Woolf, 1957), Akaike’s information

criteria (AIC; Akaike, 1987), Bayesian information criteria

(BIC; Schwarz, 1978), sample-size adjusted BIC (ABIC; Sclove,

1987), and entropy (Celeux and Soromenho, 1996). Lo-Mendell-

Rubin (LMR) tests and bootstrapped likelihood ratio tests

(BLRTs) were also conducted to evaluate the significance of

model improvement between n and n – 1 number of classes

(McLachlan, 1978; Lo et al., 2001). A total of five models were

estimated specifying from 1 to 5 latent classes.

Statistical analysis

Once the potential subtypes were identified, group

differences in demographic data, clinical data, PANSS scores,

and MCCB scores were analyzed by SPSS version 22.0 (IBM,

Armonk, NY, USA) by using one-way analysis of variance

(ANOVA), two-sample t-test, or chi-squared test. Furthermore,

eta-squared (η2) was used to calculate the effect size of

comparisons of each MCCB cognitive domain (Cohen,

1988). Post-hoc comparisons were carried out by Bonferroni

correction if ANOVA showed significant differences between

subtypes. Generally, p-values of <0.05 were accepted as

statistically significant.

ALFF analysis was conducted in the Statistical Parametric

Mapping 12 toolbox (SPM12, https://www.fil.ion.ucl.ac.uk/spm/

software/spm12). Two-sample t-test was designed for the

comparison of ALFF maps between ECS individuals and HCs,

and in ECS cognitive subtypes, with age, sex, education, and

mean frame-wise displacement Jenkinson as covariates. In

addition, PANSS total score was also controlled for subtypes

comparison to investigate whether the result was consistent

after subtracting out the effect of symptom severity. Multiple

comparisons were corrected using the cluster-wise family-wise

error (FWE) rates correction (cluster-wise FWE p < 0.05)

with a combined individual voxel threshold of p < 0.001.

Significant brain regions with discrepant ALFF between ECS

cognitive subtypes were regarded as regions of interest (ROI)

to extract ALFF values for subsequent correlation analysis

in SPSS. To further explore the specific associations between

ALFF in ROIs and MCCB scores, their correlations coefficient

between ALFF values in ROIs and MCCB scores in ECS and

HCs were calculated, respectively. Pearson’s r was used to

calculate the effect size of correlations between ALFF in ROIs

and MCCB cognitive scores (Cohen, 1988). The significant

level of correlations was corrected by the false discovery rate

(FDR) at q < 0.05.

Results

LPA results based on MCCB cognitive
domains

According to the results of model estimation, the 2-

class solution presented a better fit than the 1-class solution.

Though the other solutions suggested better fits than the 2-

class solution based on AIC, BIC, and ABIC, there was no

significant improvement over the 2-class solution according

to the p-value of LMR and the p-value of BLRT (Table 1,

Supplementary Figure 1). The 2-class solution classified 40.6%

of the ECS individuals into the severely impaired subtype (SI,

n = 63) and 59.4% into the moderately impaired subtype

(MI, n= 92), respectively.

Demographic and clinical characteristics

Demographic and clinical characteristics of two ECS

cognitive subtypes and HCs are shown in Table 2. The sex

composition of SI significantly differed from MI. Besides,

education levels were similar in both subtypes but significantly

lower than the HCs. For symptom severity, PANSS scores

of SI were significantly higher than MI except for positive

score. Significant pairwise differences in MCCB domains

were exhibited among the three groups, while differences in

the working memory domain and reasoning/problem-solving

domain between MI and HCs were not significant (Table 2).

In addition, the MCCB performance of HC were taken as the
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TABLE 1 Model estimations of latent profile analysis based on MCCB cognitive domains.

Classes LLR AIC BIC ABIC Entropy p-value of LMR p-value of BLRT

1 −4208.287 8444.573 8487.181 8442.868 – – –

2 −4093.591 8231.181 8298.137 8228.502 0.822 <0.001 <0.001

3 −4065.038 8190.077 8281.379 8186.422 0.808 0.498 <0.001

4 −4047.426 8170.852 8286.502 8166.223 0.798 0.132 <0.001

5 −4032.352 8156.704 8296.701 8151.101 0.781 0.759 <0.001

LLR, log-likelihood ratio; AIC, Akaike’s information criteria; BIC, Bayesian information criteria; ABIC, sample-size adjusted Bayesian information criteria; LMR, Lo-Mendell-Rubin test;

BLRT, bootstrap likelihood ratio test.

TABLE 2 Demographic and clinical data of ECS cognitive subtypes and HCs.

SI

(n = 63)

MI

(n = 92)

HC

(n = 97)

F/χ2/t p Effect size (η2) Post hoca

Age, years 23.84 (7.06) 25.38 (8.37) 25.03 (5.42) 0.944 0.391 – –

Sex, female/male 26/37 59/33 54/43 7.918 0.019 – SI 6= MI, SI=HC, MI=HC

Education, years 11.24 (2.56) 11.32 (2.97) 13.49 (3.27) 16.255 <0.001 – SI, MI < HC

Duration, months 8.10 (10.09) 10.09 (10.23) – −1.197 0.233 – –

CPZ-DDD, mg 254.92 (61.80) 278.15 (123.24) – –1.546 0.124 – –

PANSS

Positive symptoms 23.38 (5.41) 21.90 (6.27) – 1.523 0.130 – –

Negative symptoms 27.06 (6.14) 22.25 (5.91) – 4.903 <0.001 – –

General psychopathology 46.60 (6.82) 43.90 (6.31) – 2.531 0.012 – –

Total score 97.05 (13.19) 88.26 (12.54) – 4.195 <0.001 – –

MCCB

Speed of processing 20.61 (7.74) 37.86 (7.17) 46.59 (7.38) 236.768 <0.001 0.655 SI < MI < HC

Attention/vigilance 25.51 (11.09) 40.15 (10.81) 48.55 (9.25) 95.440 <0.001 0.434 SI < MI < HC

Working memory 32.16 (9.82) 41.07 (9.41) 41.27 (12.40) 16.586 <0.001 0.118 SI < MI, HC

Verbal learning 27.57 (8.31) 41.73 (8.60) 44.25 (9.23) 75.085 <0.001 0.376 SI < MI < HC

Visual learning 28.38 (13.39) 44.33 (10.29) 48.77 (11.01) 63.938 <0.001 0.339 SI < MI < HC

Reasoning/problem solving 28.87 (7.49) 39.86 (11.64) 41.37 (10.63) 31.027 <0.001 0.199 SI < MI, HC

Social cognition 30.54 (9.60) 39.67 (10.85) 46.45 (9.98) 46.427 <0.001 0.272 SI < MI < HC

Composite score 26.10 (4.89) 40.04 (4.88) 45.60 (5.63) 274.783 <0.001 0.688 SI < MI < HC

Values are presented as mean (SD). SI and MI represent the two cognitive subtypes in ECS.
aPost-hoc comparisons were conducted using Bonferroni correction.

ECS, early course schizophrenia; SI, severely impaired subtype; MI, moderately impaired subtype; HC, healthy control; CPZ-DDD, chlorpromazine-defined daily dose; MCCB, MATRICS

Consensus Cognitive Battery; PANSS, Positive and Negative Syndrome Scale; SD, standard deviation.

norm to standardize the cognitive score of ECS into Z scores

(see Figure 1 and Supplementary Table 2).

ALFF di�erences between groups

Results of the independent two-sample t-test (cluster-wise

FWE p < 0.05) and cluster information are shown in Table 3

and Figure 2. Compared with HCs, ECS exhibited higher ALFF

in the left caudate and bilateral thalamus, while lower ALFF

was observed in the bilateral medial prefrontal cortex (MPFC)

and bilateral posterior cingulate cortex/precuneus (PCC/PCu).

For the subtypes comparison, ALFF of the left precentral gyrus

(PreCG) was significantly higher in SI. On the contrary, the

ALFF of left PCC/PCu in SI was significantly lower than MI.

To control for the effect of PANSS and medication effects

(chlorpromazine dose equivalence), we conducted the additional

analysis with PANSS total score and medication effects as

covariates. This result was similar to the previous result without

controlling for the two covariates (see Supplementary material).

Correlations between ALFF of ROIs and
cognition

For ECS individuals, there were significantly positive

correlations between ALFF values of left PCC/PCu with

MCCB speed of processing, attention/vigilance, verbal
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FIGURE 1

MCCB cognitive scores in ECS cognitive subtypes (SI and MI) and HCs. Z scores of ECS cognitive subtypes are standardized against means and

SDs of HC (mean = 0, SD = 1). Abbreviations: ECS, early course schizophrenia; SI, severely impaired subtype; MI, moderately impaired subtype;

HC, healthy control; MCCB, MATRICS Consensus Cognitive Battery; SD, standard deviation.

TABLE 3 Brain regions with ALFF di�erences in ECS and HCs and in ECS cognitive subtypes.

Brain regions Cluster size Peak coordinate (mm)a Peak t-value

x y z

ECS > HC Caudate L 98 −9 9 0 5.0849

Thalamus B 54 −9 −6 9 4.7638

ECS < HC MPFC B 49 3 48 −24 −4.4362

PCC/PCu B 100 3 −54 21 −4.5327

SI > MI PreCG L 47 −56 5 19 4.9245

SI < MI PCC/PCu L 142 −6 −57 26 −5.488

SI and MI represent the two cognitive subtypes in ECS.
aPeak coordinate refers to the peak voxel location of the significant cluster in the Montreal Neurological Institute space.

ALFF, amplitude of low-frequency fluctuations; ECS, early course schizophrenia; SI, severely impaired subtype; MI, moderately impaired subtype; HC, healthy control; MPFC, medial

prefrontal cortex; PCC/PCu, posterior cingulate cortex/precuneus; PreCG, precentral gyrus; L, left; B, bilateral.

learning, reasoning/problem solving, and composite

score (Figure 3). The effect sizes of the correlations were

small to moderate. Moreover, ALFF in left PreCG was

significantly negatively correlated with MCCB seven cognitive

domains and composite score (Figure 3). Importantly,

some correlations of ALFF in left PreCG had moderate to

large effect sizes. No significant correlations were found

in HCs.
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FIGURE 2

ALFF di�erences in ECS, HCs, and ECS cognitive subtypes (SI and MI). (A) Abnormal ALFF in ECS relative to HCs. (B) Increased ALFF in left PreCG

and decreased ALFF in left PCC/PCu in SI relative to MI. Results were cluster-wise FWE corrected. Abbreviations: ALFF, amplitude of

low-frequency fluctuations; ECS, early course schizophrenia; SI, severely impaired subtype; MI, moderately impaired subtype; HC, healthy

control; MPFC, medial prefrontal cortex; PCC/PCu, posterior cingulate cortex/precuneus; PreCG, precentral gyrus; L, left; B, bilateral; FWE,

family-wise error.
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FIGURE 3

Correlations between ALFF values of two ROIs and MCCB cognitive scores in ECS. q, p-values corrected by FDR correction. Abbreviations: ALFF,

amplitude of low-frequency fluctuations; ECS, early course schizophrenia; MCCB, MATRICS Consensus Cognitive Battery; PCC/PCu, posterior

cingulate cortex/precuneus; PreCG, precentral gyrus; ROI, region of interest; FDR, false discovery rate; L, left.

Discussion

The present study revealed the relationship between

cognitive impairment and neurobiology in ECS individuals

grouped according to their different patterns of cognitive deficit

using a data-driven approach. We reported two patterns of

cognitive impairment in ECS individuals. Compared to HCs,

ECS individuals showed significantly increased ALFF in the left

caudate and bilateral thalamus and decreased ALFF in bilateral

MPFC and bilateral PCC/PCu. Interestingly, we first found

that ALFF of left PreCG and left PCC/PCu were different in

the two identified impaired cognitive subtypes. In addition,

ALFF of left PreCG and left PCC/PCu exhibited significant

correlations with MCCB cognitive domains in ECS individuals.

These findings suggest that the different spontaneous neural

activities of PreCG and PCC/PCu at resting-state may be

the potential neurobiological features of cognitive impairment

subtypes in ECS.

Consistent with the grouping results of previous

studies (Morar et al., 2011; Green et al., 2013), our LPA

recognized two different patterns of cognitive impairment

in ECS individuals. SI exhibited the worst performance

in all MCCB cognitive scores, which manifested wide

deficits in whole cognitive domains, ranging from 0.7

to 3.5 standard deviations below HCs (Figure 1 and

Supplementary Table 2). MI showed an intermediate

deficient speed of processing, attention/vigilance, verbal

learning, visual learning, and social cognition, but maintained

intact working memory and reasoning/problem solving,

within ∼1.2 standard deviations of HCs (Figure 1 and

Supplementary Table 2).

In line with previous studies, a common phenomenon in

both subtypes is that the speed of processing was the most

severely impaired cognitive domain (η2 = 0.655, Table 2) except

for the composite score. Speed of processing appears to be a core

feature of cognition, it underlies other cognitive impairments

such as executive functioning and working memory (Dickinson

et al., 2007). Our study further supported that impaired speed of

processing plays a key role in the cognitive impairment of ECS

(Sheffield et al., 2018; Lim et al., 2020). Despite ECS individuals

having a lower level of education, there was no difference in the

educational years between the two impaired cognitive subtypes.

Moreover, severely impaired individuals showed higher negative

symptoms than moderately impaired individuals but with no

differences in positive symptoms, which is consistent with

the clinical observation that negative symptoms and cognitive

impairment might share common pathophysiological substrates

(Bowins, 2011; Lincoln et al., 2017).

Working memory is described as the ability to temporarily

reserve and manipulate information for further cognitive

processing (Baddeley, 1992). High-level cognitive processes

require the support of working memory, such as reasoning,

learning, and comprehension (Baddeley, 2003). The deficit

in reasoning/problem-solving domain indicates executive

dysfunction (Lis et al., 2005). Impaired executive function

is found to predict poor functional outcomes, failure of

interventions, and restricted recovery (Green et al., 2000). By

using the LPA method, we identified a subtype with intact

Frontiers inMolecularNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnmol.2022.983995
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Shao et al. 10.3389/fnmol.2022.983995

working memory and reasoning/problem solving from 155 ECS

individuals, suggesting that executive function in the subtype

with mild to moderate cognitive deficits is, indeed, comparable

to the healthy population. In contrast to our study hypothesis,

our results found only two cognitive subtypes. A possible reason

is that due to our sample size limitation, it was not possible to

cluster a subtype with a small proportion of ECS individuals.

Another possible reason may be that our ECS individuals had

a shorter duration and more severe psychiatric symptoms

compared to other studies (Carruthers et al., 2019, 2021; Lim

et al., 2020).

Before analyzing brain regions with ALFF differences in the

two cognitive subtypes, we first examined regions with abnormal

ALFF in ECS individuals. Resting-state functional MRI analyses

showed four brain regions with abnormal neural activity in ECS,

including two brain regions with increased ALFF (left caudate

and bilateral thalamus) and two with decreased ALFF (bilateral

MPFC and bilateral PCC/PCu).

Caudate is a part of the subcortical structure, which

is responsible for several neurobiological processes such as

planning the behavioral execution (Grahn et al., 2008). It

has been found that there was hyperactivity in caudate

during working memory tasks in individuals at clinical high

risk for psychosis (Thermenos et al., 2016). Individuals with

schizophrenia also exhibited higher ALFF in the left caudate

than HCs (Zhang et al., 2021). Thalamus is also a subcortical

region, which is involved in transmitting sensory information

to the cerebral cortex and regulating emotion and cognitive

attention control (Sherman, 2016; Wolff and Vann, 2019).

Individuals with schizophrenia exhibited reduced thalamic gray

matter volume (Alemán-Gómez et al., 2020), and abnormal

activation during task-related functional MRI (Byne et al., 2009).

As two parts of the cortico-striatal-thalamic-cortical (CSTC)

sub-circuit in the salience network (SN), abnormal functional

connectivity of caudate and thalamus has been reported in

previous studies (Peters et al., 2016; Huang et al., 2020). Our

findings showed that increased spontaneous neural activity

appeared in the CSTC sub-circuit of the SN in the early course of

schizophrenia, which may suggest a compensatory mechanism

tomaintain normal functioning performance (Gong et al., 2020).

In addition, the long-term examination should be performed

to investigate whether the changes in these two brain regions

still exist.

Another important finding in our study is that ECS

individuals showed decreased ALFF in bilateral MPFC and

bilateral PCC/PCu compared with HCs. Both MPFC and

PCC/PCu are core regions of the default mode network

(DMN), a crucial brain network that associates with many

neurophysiological functions (Raichle, 2015). The function of

MPFC and PCC/PCu was involved in introspective processes

that were attenuated when attention was turned to external

events (Gusnard et al., 2001). There is increasing evidence

that ECS individuals exhibited decreased ALFF in MPFC and

PCC/PCu compared with HCs (Ren et al., 2013; Gong et al.,

2020), which is in line with our results. Taken together, our

findings further support that SN and DMN play a critical role

in the pathogenesis of ECS.

Although we found ALFF abnormalities in several brain

regions in ECS, not all the abnormalities could reflect the

neuropathological changes in cognitive impairment. We found

two regions with different ALFF values between SI and MI.

Compared with MI, SI presented higher ALFF values in the

left precentral gyrus (PreCG) and lower ALFF values in the

left PCC/PCu. After controlling the PANSS total score and

medication effects, these results remained significant. Moreover,

ALFF of left PCC/PCu was positively correlated with MCCB

cognitive scores in ECS, while ALFF of left PreCG showed

negative correlations.

Several studies focused on PCC/PCu and cognitive function

have been reported. A cortical morphometric study revealed

that the structural volume of PCC/PCu was associated with

cognitive impairment in first-episode schizophrenia (Wang

et al., 2021). Furthermore, PCC/PCu showed significant

activation during the episodic memory search task (Sestieri

et al., 2011). In schizophrenia individuals, the activation in

PCC/PCu was not significantly enhanced during the virtual

maze task, while HCs exhibited significantly enhanced activation

in the same region (Siemerkus et al., 2012). PreCG, also

known as the primary motor cortex, is participated in motor

information processing and emotional perception (Mesulam,

1998; Watanuki et al., 2016). Abnormal regional homogeneity

and voxel-mirrored homotopic connectivity of PreCG have

been found in first-episode schizophrenia (Liu et al., 2018a,b).

Recent evidence confirmed that the excessive activity of PreCG

could result in the impairment of emotional processing in

schizophrenia (Watanuki et al., 2016). Additionally, another

study indicated that PreCG might be involved in some

cognitive processes, such as word recognition and phonological

processing (Xu et al., 2019). Based on the available evidence,

our results suggest that higher spontaneous neural activity

in PCC/PCu is beneficial for the preservation of cognitive

function in schizophrenia individuals, whereas higher activity

in PreCG plays an opposite role. In conclusion, abnormal

ALFF in caudate, thalamus, MPFC, and PCC/PCu reflected the

pathophysiology of ECS, with abnormal ALFF in the PCC/PCu

also indicating the pathophysiology of cognitive impairment in

ECS. Furthermore, the abnormal spontaneous neural activity in

the PCC/PCu in schizophrenia and between cognitive subtypes

provides compelling evidence for the vital effect of DMN on

schizophrenia and cognitive function.

Several limitations should be considered in our study.

MRI data of subjects in our study were restricted by the fact

that images were collected from different acquisition centers

and scanners (Jovicich et al., 2006). We used the ComBat

Harmonization method to minimize the site-specific confounds

and enhanced statistical power (Fortin et al., 2017). However,
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the ComBAt Harmonization method cannot exclude the non-

linear site and scanner effects, which is one of its drawbacks.

For now, this method is still the best way to minimize linear

site and scanner effects (Sun et al., 2022). Second, our sample

size is relatively small, we propose to expand the sample size

and make validation in the independent sample population in

future. Third, our study is a cross-sectional study, and further

follow-up study should be conducted to validate subtype stability

and outcomes. Moreover, our study did not collect full-scale IQ

from schizophrenia individuals and HCs, we will collect full-

scale IQ in future studies, use the subtype classification based

onMCCB to compare to the subtype classification based on full-

scale IQ, and investigate the differences in full-scale IQ across

cognitive subtypes.

In general, our results showed that cognitive impairment

in ECS might be described as two subtypes: a severely

impaired group with compromised cognition across all cognitive

domains and a moderately impaired group with preserved

cognition in working memory and reasoning/problem solving.

Furthermore, our study identified four neurobiological features

of ECS and two neurobiological features of cognitive subtypes

in ECS. These brain regions associated with schizophrenia

and cognitive function could be potential targets for the

treatment of schizophrenia and its cognitive impairment.

Meanwhile, differentiating individuals into subtypes based on

cognitive function could help clinicians better understand the

prognosis and recovery of social function, as well as carry out

individualized interventions by combining the neuroimaging

features derived from the subtypes. Our findings contribute to

understanding the pathophysiology of cognitive impairment in

ECS from the perspective of brain spontaneous neural activity.
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