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The ability to learn from experience and consequently adapt our behavior

is one of the most fundamental capacities enabled by complex and plastic

nervous systems. Next to cellular and systems-level changes, learning and

memory formation crucially depends on molecular signaling mechanisms.

In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically

studied in the context of tumor growth and proliferation, has been shown

to affect synaptic transmission, regulation of neuronal gene expression and

protein synthesis leading to structural synaptic changes. However, to what

extent the effects of ERK are specifically related to memory formation and

stabilization, or merely the result of general neuronal activation, remains

unknown. Here, we review the signals leading to ERK activation in the

nervous system, the subcellular ERK targets associated with learning-related

plasticity, and how neurons with activated ERK signaling may contribute to the

formation of the memory trace.

KEYWORDS

long term memory (LTM), consolidation, engram, subcellular localization, long term
potentiation (LTP), temporal integration, spacing effect, isoforms

Introduction

One of the major questions in neuroscience is how the brain integrates the different
external stimuli to generate an internal representation that can be evoked at a particular
time point. In other words, how are memories formed in the brain? A strong body
of work has described how different molecular signaling pathways shape learning-
associated synaptic plasticity mechanisms. More than two decades ago the extracellular-
signal regulated kinases 1 and 2 (ERK) subfamily of mitogen-activated protein kinases
(MAPKs) was proposed as a critical player in synaptic and neuronal plasticity (Martin
et al., 1997; Atkins et al., 1998). Its role in these processes has been shown in different
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species, brain areas, types of synapses and even synaptic
compartments. Moreover, dysregulation of ERK signaling has
been linked to learning disorders (Costa et al., 2002; Kyosseva,
2004; Sanderson et al., 2016) and addiction (Lu et al., 2006; Sun
et al., 2016).

Although increasing efforts have been made to elucidate the
molecular mechanisms underlying memory formation, it is still
unclear how the different elements contribute to the formation
of the memory trace. Here, we review relevant work that settles
ERK as an essential and integrative element into the complex
memory theoretical framework. Understanding the molecular
basis of memory formation may contribute to the development
of new therapies for brain disorders.

Extracellular-signal regulated
kinase/mitogen-activated protein
kinase pathway

Extracellular-signal regulated kinase/mitogen-activated
protein kinases are known to couple a wide range of
extracellular signals to major cellular programs such as
proliferation, differentiation and apoptosis in a variety of
species and tissues (Cobb et al., 1994; Robbins et al., 1994).
They were the first kinases among the big family of MAPKs to
be discovered (Boulton and Cobb, 1991) and consequently one
of the most studied regarding mechanisms of brain plasticity,
learning, and memory (for a review see Sweatt, 2004). Their
activation mechanisms and functions have been described
elsewhere (Davis, 1995; Thomas and Huganir, 2004; Yoon and
Seger, 2006; Casar and Crespo, 2016; Miningou and Blackwell,
2020), so we are not going to get into further detail. Briefly,
ERKs are Serine/Threonine (Ser/Thr) protein kinases from
the highly-conserved family of the MAPKs which become
activated by extracellular signals operating mainly, though not
exclusively, through receptor tyrosine kinases (RTKs). In the
nervous system, RTKs are typically activated by growth factors
or neurotrophins which activate Ras (a superfamily of small
G proteins) acting through the Grb2 adaptor protein and SOS
(a guanyl nucleotide exchange factor, GEF). Ras superfamily
depend on GTPase activating proteins (GAPs) to accelerate
GTP hydrolysis, and GEFs to switch from the inactive (GDP
bound) to the active (GTP bound) form. The active protein
subsequently triggers activation of a general cascade motif
of three sequential kinases: a MAPKKK from the Raf family
(mostly Raf-1 and B-Raf in the brain); a MAPKK also called
MEK (MAPK/ERK Kinase) and the MAPK effector, ERK
for the purpose of this review (Thomas and Huganir, 2004;
Figure 1). However, active members of the Ras superfamily
can trigger other pathways as well (Stornetta and Zhu, 2011;
Miningou and Blackwell, 2020). ERK becomes active upon
dual phosphorylation specifically at Thr and Tyrosine (Tyr),

inserted in a Thr-X-Tyr (TEY) motif, by MEK, although MEK-
independent activation has been seldom reported (Aksamitiene
et al., 2010; Simard et al., 2015). Dual phosphorylation is both
necessary and sufficient for ERK activation (Canagarajah et al.,
1997). On the contrary, dephosphorylation of either Thr, Tyr
or both residues by Tyr-phosphatases, Ser/Thr-phosphatases
or MAP kinase phosphatases (MKPs), a subgroup of dual-
specificity phosphatases (DUSPs), returns MAPKs to the
inactive state (Caunt and Keyse, 2013).

Extracellular-signal regulated kinase activation kinetics has
also shown to be plastic and to influence cellular fate.
While stimulation of Rat pheochromocytoma PC-12 cells
with epidermal growth factor (EGF) induced transient Ras-
dependent ERK activation leading to cell proliferation, nerve
growth factor (NGF) incubation led to sustained ERK activation
for hours, neurite outgrowth and cell differentiation into
neurons (Traverse et al., 1992). However, this output also
relied on cell-specific expression of ERK pathway-activating
components such as B-Raf (Vossler et al., 1997). Thus, although
the central motif in ERK activation pathway is conserved
among species and cellular subtypes (e.g. Raf becomes activated
and subsequently activates MEK, which then activates ERK),
differences have been described in terms of either ERK negative
feedback loops towards Raf or their upstream activation
pathways (Miningou and Blackwell, 2020), which can account
for different cellular outputs.

Another key to ERK-activation timing and substrate
specificity also relies on scaffolding components as well as
other molecular components recruitment such as kinases or
phosphatases (Vaudry et al., 2002). ERK scaffold proteins
include KSR1/2, IQGAP1 (IQ Motif Containing GTPase
Activating Protein 1), MP1, MORG1, arrestin 1/2, Sef, MEKK1,
and paxillin (Roskoski, 2012). However most of them have
not been associated with plasticity and memory mechanisms
yet. In the nervous system, ERK/MAPKs display a wide range
of activation mechanisms, including those acting either via
Ca2+ signaling (e.g. glutamate and nicotine) or else via GPCRs
coupled to PKA/PKC (e.g. dopamine, glutamate, opioids, and
cannabinoids) (Sweatt, 2004; Thomas and Huganir, 2004),
which may stand for the remarkable heterogeneity of cellular
responses involved in memory and plasticity (Figure 1).

Several single neurotransmitters are able to activate the
ERK pathway, some will be addressed in the following sections.
Interestingly, ERK phosphorylation can be enhanced by
activation of more than one neurotransmitter-receptor pathway
(Girault et al., 2007). This phenomena has been observed in
the hippocampus by the co-activation of β-adrenergic (β-AR)
and cholinergic receptors (Watabe et al., 2000) and by the
convergence of N-methyl-D-aspartate (NMDA) and dopamine
receptors (Kaphzan et al., 2006). This dopamine and glutamate
convergence was also observed in the striatum, linked
to the mechanisms underlying drugs of abuse (Valjent
et al., 2005; Voulalas, 2005). Taken together, this evidence
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TABLE 1 Summary of evidence linking ERK to different forms of LTP and LTD.

LTP

Area Species Pathway Stimulation
protocola

ERK activity
modulation

ERK activity
assessmentb

Effect on LTP ERK
involvement

Referencesc

Hippocampus Mice Schaffer
Collaterals →

CA1

TBS Pharmachological
inhibition, ERK1

KO, Ras-GRF KO,
TrkB shc/shc

↑ LTP impaired in
ERK1 KO. LTP

induction blocked
by pharmachological
inhibition, no effect

on mainteinance.

X/X For: Winder
et al., 1999;

Mazzucchelli
et al., 2002;

Selcher et al.,
2003; Opazo
et al., 2003;

Watabe et al.,
2000. Against:
Brambilla et al.,

1997;
Minichiello
et al., 2002

HFS Pharmachological
inhibition, ERK1

KO, dnMEK1
mutant

↑ Conserved STP,
impaired LTP in

dnMEK1 mutant.
Conserved LTP in

ERK1 KO. No effect
of pharmachological

inhibition or
induction blocked

by inhibitor, no
effect on

mainteinance.

X/X For: Impey
et al., 1998;

Kelleher et al.,
2004. Against:
Mazzucchelli
et al., 2002;

Selcher et al.,
2003; Opazo
et al., 2003;

Watabe et al.,
2000; Winder

et al., 1999

Rat TBS Pharmachological
inhibition

↑ LTP blocked by ERK
inhibitor.

X Giovannini
et al., 2001

HFS Pharmachological
inhibition

↑ LTP blocked by ERK
inhibitor. No effect
on mainteinance.

X Atkins et al.,
1998; McGahon

et al., 1999;
Kanterewicz
et al., 2000;
English and

Sweatt, 1997;
Selcher et al.,

2003

TEA-LTP Pharmachological
inhibition

– LTP blocked by ERK
inhibitor. No effect
on mainteinance.

X Kanterewicz
et al., 2000

Mossy Fibers →

CA3
HFS Pharmachological

inhibition
Not affected by ERK

inhibitor.
X

Associational/
Commissural
Collaterals →

CA3

HFS Pharmachological
inhibition

LTP blocked by ERK
inhibitor.

X

EC → DG HFS Pharmachological
inhibition

↑ LTP induction
blocked by ERK

inhibitor.
Mainteinance not

affected.

X Coogan et al.,
1999; Davis
et al., 2000

TEA-LTP Pharmachological
inhibition

– LTP induction
blocked by ERK

inhibitor.

X Coogan et al.,
1999; Davis
et al., 2000

Nucleus
Accumbens

Mice Neocortex
inputs →

Nucleus
Accumbens

HFS ERK1 KO ERK1 KO present
increased ERK2

signaling resulting in
enhanced LTP.

Pharmacological
inhibition of ERK1/2

prevents LTP
enhancement.

X Mazzucchelli
et al., 2002

(Continued)
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TABLE 1 (Continued)

LTP

Area Species Pathway Stimulation
protocola

ERK activity
modulation

ERK activity
assessmentb

Effect on LTP ERK
involvement

Referencesc

Perirhinal
Cortex

Layer II/III →

Layer II
TBS Ras-GRF1 KO and

ERK1 KO
Impaired LTP in

Ras-GRF1 KO mice.
Enhanced LTP in
ERK1 KO mice.

X Silingardi et al.,
2011

Striatum Cortico-striatal TBS Pharmachological
ERK inhibition

Blocked by ERK
inhibitor.

X Hawes et al.,
2013

HFS Ras-GRF1 KO Impaired LTP in
Ras-GRF1 KO mice.

Enhanced LTP in
ERK1 KO mice.

X Cerovic et al.,
2015

Amygdala Mice BLA → LA TBS ERK1 KO,
Ras-GRF1 KO

No difference
between WT and

ERK1 KO. Impaired
LTP in Ras-GRF1

KO mice.

X/X For: Brambilla
et al., 1997.

Against:
Mazzucchelli
et al., 2002;

Rat MGm/PIN →

LA
HFS Pharmachological

ERK inhibition
X LTP blocked by ERK

inhibitor.
X Apergis-Schoute

et al., 2005; Ping
and Schafe, 2010

External
Capsule → LA

– LTP blocked by ERK
inhibitor. STP not

affected.

X Huang et al.,
2000; Schafe

et al., 2000, 2008

Thalamic
afferent fiber →

LA

LTP blocked by ERK
inhibitor.

X

LTD

Area Species Pathway Stimulation
protocol

ERK activity
modulation

ERK activity
assessment

Effect on LTD ERK
involvement

References

Hippocampus Rat Schaffer
Collaterals →

CA1

Muscarinic
induced LTD

Pharmachological
inhibition

↑ LTD induction but
not expression

blocked by ERK
inhibitor.

X Volk et al., 2007;
Scheiderer et al.,

2008; Mans
et al., 2014

DHPG induced
LTD

↑ LTD induction but
not expression

blocked by ERK
inhibitor.

X Bolshakov et al.,
2000; Gallagher

et al., 2004;
Chévere-Torres

et al., 2012;
Potter et al.,

2013

PPS – LTD induction
blocked by ERK

inhibitor.

X

LFS – LTD not affected by
ERK inhibitor.

X

Rolipram
reinforced LTD

– LTD induction
blocked by ERK

inhibitor.

X Navakkode
et al., 2005

CA3 → CA1
commisural
projection

PPS Pharmachological
inhibition

↑ LTD blocked by
ERK inhibitor.

X Norman et al.,
2000; Thiels
et al., 2002

Prefrontal
Cortex

Layer I/II to
Layer V

Dopamine
facilitated
HFS-LTD

Pharmachological
inhibition

– LTD blocked by
ERK inhibitor.

X Otani et al., 1999

aWhile papers have been grouped on the basis of the induction protocols used (i.e. high frequency stimulation, low frequency stimulation), they may not be exactly identical between
different groups.
bERK activity was determined in most cases by western blots or immunohistochemistry against phosphorylated ERK. ↑ = Increased phospho-ERK after stimulation. – = ERK
activity not determined.
cWhen there is evidence for and against ERK involvement on LTP, a clear identification of the references is provided.
TBS, theta burst stimulation; HFS, high frequency stimulation; PPS, paired pulse stimulation; TEA-LTP, tetraethylammonium induced LTP; EC, entorhinal cortex; DG, dentate gyrus;
DHPG, dihydroxyphenylglycine; PPS, paired pulse stimulation. BLA, basolateral amygdala; LA, lateral amygdala; MGm/PIN, medial geniculate and posterior interlaminar nucleus.
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FIGURE 1

Schematic diagram of the activation pathways and targets of ERK. In the classical ERK cascade, activation of the receptor upon ligand binding
results in the recruitment of the Ras family protein activating Raf. This step initiates the sequential phosphorylation of MEK which in turn
activates ERK. Phosphorylated ERK targets cytosolic as well as nuclear substrates. Several other signaling pathways contribute to ERK activation.
G-protein coupled receptors prompt the intracellular production of cAMP and calcium, while calcium can also increase intracellularly through
ionotropic receptors. While cAMP contributes to ERK activation through PKA, calcium does it by molecules such as PKC and CaMKII. NMDA,
NMDA receptors; nACh, nicotinic acetylcholine receptor; mACh, muscarinic acetylcholine receptor; 5-HT, serotonin receptor; β-AR, beta
adrenergic receptor; BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin receptor kinase B, also known as tyrosine receptor kinase B;
D1, type 1 dopamine receptor; TF, transcription factors such as CREB and Elk1; HAT, histone acetyltransferase. Continuous lines indicate direct
action while dash lines indicate indirect action.
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suggests that ERK could be acting as a coincidence detector
(Adams and Sweatt, 2002), although it still remains unknown if
this mechanism is necessary for memory formation.

Upon extracellular-signal
regulated kinase activation

Once ERK is phosphorylated in the cytosol, it can
translocate into the nucleus and interact with nuclear substrates
to induce specific programs of gene expression (Davis, 1995;
Klein et al., 2013). Although MAPKs were shown to exert their
function at cytoplasmic as well as nuclear cellular compartments
(Figure 1), the latter is probably the most widely studied
and several functions have been described including regulation
of transcription, DNA replication, chromatin remodeling, and
miRNA synthesis. Regulatory components, such as scaffold
proteins and dimerization were shown to take part in this
pathway’s complex regulation by defining frequency, amplitude
and intensity of the signal allowing for a wide range of
biological outcomes (Herrero and Crespo, 2021). Several reports
suggest that ERK nuclear localization depends, among others,
on ERK expression levels such that overexpression increases
nuclear translocation probability by passive diffusion (Fukuda
et al., 1997), and phosphorylation by casein kinase 2 (CK2)
that enhances ERK interaction with a nuclear import protein
(importin 7) (Chuderland et al., 2008). In contrast, cytoplasmic
localization depends on anchors expression levels (e.g. MEK;
Fukuda et al., 1997), MAP kinase phosphatase 3 (MKP-3),
which can dephosphorylate and consequently inactivate ERK
(Brunet et al., 1999) or scaffolds such as the actin cytoskeleton-
interacting protein IQGAP1, which mediates ERK binding to
actin filaments (Vetterkind et al., 2013); as well as NR2A-
induced ERK activation regulating dendritic spine density in key
brain areas involved in cognition (Gao et al., 2011).

N-methyl-D-aspartate receptor (NMDAR) subunit
composition is another contributing factor in the regulation
of ERK activation and localization. Subunit-specific
antagonization has shown differential responses in terms of
nuclear propagation of ERK signals, leading to upregulation of
the downstream nuclear targets pMSK1 and the immediate early
gene product c-Fos, or membrane retention of phosphorylated
ERK resulting in a lack of activation of these targets, which
might underlie their specific roles in the formation of contextual
and trace fear memory (Gao et al., 2010). It has been suggested
that preferential coupling of NR2B to SynGAP could explain
the subtype-specific function of NR2B-NMDARs in inhibition
of Ras-ERK, removal of synaptic AMPA receptors (AMPARs),
and weakening of synaptic transmission (Kim et al., 2005).
Noteworthily, postsynaptic scaffolding protein PSD-95 was
shown to regulate postsynaptic Ras activation, probably
involving its interaction with the GTPase activating protein
synGAP (Komiyama et al., 2002). NR2B-induced coupling

NMDARs to ERK activation was shown to be mediated in the
hippocampus by RasGRF1, a Ca2+/calmodulin-dependent Ras-
guanine-nucleotide-releasing factor (Krapivinsky et al., 2003),
which impaired specifically long-term amygdala- (Brambilla
et al., 1997) and hippocampus-related memory (Giese et al.,
2001).

Interestingly, in addition to their synaptic location,
NMDARs can also be found in the extrasynaptic membrane
space (Tovar and Westbrook, 2002; Petralia et al., 2010) and are
capable of bidirectional ERK signaling modulation depending
on membrane structure localization. Thus, stimulation of
synaptic NMDARs was shown to lead to ERK phosphorylation
(Ivanov et al., 2006), whereas extrasynaptic NMDARs
activation, which contributes to excitotoxicity, promotes
dephosphorylation or no activation of ERK (Ivanov et al., 2006;
Léveillé et al., 2008).

Among the myriad of ERK nuclear substrates, the
transcription factor cAMP response element-binding protein
(CREB) is selectively activated in neurons that are recruited into
the memory trace (Han et al., 2007). In addition, the ternary
complex factor Elk-1 is a key transcriptional regulator of serum
response element (SRE)-driven gene expression which regulates
immediate early gene (IEG) promoters such as junB and zif268
(also called early growth response gene-1, egr-1). Long-term
potentiation (LTP) induction in the rat hippocampus triggers
hyperphosphorylation of CREB and Elk-1 by ERK, leading to
Zif268 expression (Roberson et al., 1999; Davis et al., 2000).
Likewise, Elk-1 is phosphorylated in the insular cortex during
the formation of aversive conditioning (Berman et al., 1998).
Similarly, electrical NMDA-dependent long-term depression
(LTD) induction in the hippocampal CA1 area induced a robust
increase in nuclear ERK and Elk-1 phosphorylation which was
completely blocked by the MEK inhibitor SL327 (Thiels et al.,
2002). In addition, Elk-1 can promote the recruitment of the
Srb mediator and coactivators, including CREB binding protein
(CBP) and p300, a CBP-related protein (Besnard et al., 2011).
Both, CBP and p300 have intrinsic histone acetyltransferase
(HAT) activity and can associate with HATs that acetylate
core histones, relieving repression of transcription through
chromatin decompaction. Histone acetylation has been shown
to be a hallmark of memory strength (Federman et al., 2012)
and persistence (Federman et al., 2013), and has been proposed
as an evolutionary conserved feature of memories (Federman
et al., 2014).

Numerous regulatory functions of ERK have been described
in the cytosol (Figure 1), such as synaptic vesicle trafficking
(Earnest et al., 1996), increased probability of vesicle fusion
via synapsin I (Vara et al., 2009; Giachello et al., 2010), local
translation initiation (Gong and Tang, 2006; Leal et al., 2013),
modulation of potassium currents through Kv4.2 channels
(Yuan et al., 2002; Schrader et al., 2006) and the activation
of other cell signaling pathways such as NF-kappaB (Jiang
et al., 2004) which have been shown to be relevant for
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memory processes (Romano et al., 2006; Salles et al., 2014;
de la Fuente et al., 2015). In addition, arrestins facilitate
ERK activation by G protein-coupled receptor, but inhibit
ERK-dependent transcription by retaining phosphorylated ERK
(pERK) in the cytosol (Tohgo et al., 2002). Furthermore,
extra-nuclear activation of ERK has been pointed out as a
relevant part of learning and memory encoding in crabs and
mice, two phylogenetically distant animal models (Feld et al.,
2005; Krawczyk et al., 2015, 2016). It has been proposed that
after phosphorylation, the dimerization of this kinase would
be critical for the activation of cytosolic targets, allowing
their union (Casar et al., 2008). These signaling pathways
through post-translational modifications involved in plasticity
and memory could be regulating signaling processes in different
subcellular compartments such as dendrites.

Extracellular-signal regulated
kinase in plasticity, learning, and
memory

In 1921, the term “engram” was coined by Dr. Semon to
refer to the physical substrate of memory (Semon, 1921). Since
then, many efforts have been focused on understanding how
the engram is assembled (for reviews see Josselyn et al., 2015;
Josselyn and Tonegawa, 2020). Likewise, synaptic plasticity
mechanisms have been associated with engram formation
(Josselyn and Tonegawa, 2020). While it has been a matter of
thorough debate since the initial reports by Bliss and Lømo
(Lømo, 1966; Bliss and Lømo, 1973), today it is generally
accepted that LTP is the most likely candidate for a synaptic
mechanism underlying learning and memory (reviewed in
Malenka, 1994; Stevens, 1998; Lynch, 2004; Dringenberg, 2020).
Within this framework, the characterization of mechanisms
underlying both LTP and memory will help disentangle the
link between both phenomena. In this sense, ERK provides a
compelling case study, as there has been extensive research on
its role in both LTP and different memory paradigms.

Extracellular-signal regulated kinase in
synaptic plasticity

A large body of work had proposed ERK activation as
a key element for LTP and LTD (see Table 1; reviewed
in Sweatt, 2004; Thomas and Huganir, 2004; Peng et al.,
2010). The first reports of ERK involvement in LTP came
from English and Sweatt (1997). The authors showed that
using a High Frequency Stimulation (HFS) protocol in the
Schaffer Collaterals inputs to CA1 area in rats induced ERK2
phosphorylation and blocking ERK phosphorylation prevented
LTP induction. Interestingly, pharmacological blockade had no

effect either on the expression of established LTP or short term
potentiation (Winder et al., 1999; Mazzucchelli et al., 2002).
While these results have been replicated and expanded in rats
(English and Sweatt, 1997; Atkins et al., 1998; Selcher et al.,
2003), the role of ERK activation in HFS-induced LTP in mice
CA1 area is less clear. On one hand, early reports indicated
that this kind of LTP was impaired in dominant negative MEK1
(dnMEK1) mice (Kelleher et al., 2004) and was blocked by
ERK pharmacological inhibition (Impey et al., 1998). On the
other hand, there is also evidence against a role of ERK activity
in this process. Winder et al. (1999) first reported an ERK
independent form of HFS-induced LTP using a single train of
HFS stimulation, and similar results were found using two trains
of HFS stimulation (Opazo et al., 2003; Selcher et al., 2003).
This stimulation protocol induces a transient form of early LTP,
suggesting that ERK is preferentially involved in longer lasting
forms of LTP (Huang et al., 2000). In addition, while it was
reported that HFS-induced LTP is conserved in ERK1 KO mice
(Mazzucchelli et al., 2002) it is important to consider that these
mice show enhanced ERK2 signaling, which may rescue the LTP
deficient phenotype. These results indicate that when using HFS
protocols, ERK involvement may depend on the species and
pathways studied, and/or the specific stimulation protocol and
experimental conditions used.

Besides HFS, Theta Burst Stimulation (TBS) has been widely
used as LTP inducing stimulus. This kind of stimulation is
thought to be more representative of the spontaneous neuronal
firing of the hippocampus during behavior (Larson and Lynch,
1986; Larson et al., 1986), and as such, a better model of
learning-induced plasticity. Most of the evidence using this kind
of stimulation points to the requirement of ERK activity to
sustain CA1 LTP in both mice and rats (Table 1). While it has
been largely described that LTP is mediated by NMDARs, there
is also evidence for the requirement of the BDNF-TrkB pathway
activation (Zakharenko et al., 2003; Leal et al., 2014; Panja
and Bramham, 2014). However, there is conflicting evidence
regarding the requirement of ERK during LTP-induced via TrkB
receptors dependent on BDNF. Some studies reported it to be
ERK-independent (Minichiello et al., 2002; Zakharenko et al.,
2003; Minichiello, 2009), whereas there is also evidence of ERK
requirement (Ying et al., 2002). Brambilla et al. (1997) also
reported that Ras-GRF KO mice have conserved TBS-induced
LTP, but as these mice are constitutive GRF knock out, there
may be compensatory mechanisms in play that masked the LTP
deficient phenotype.

In addition to LTP in the hippocampus, ERK has also been
implicated in thalamo-amygdala plasticity. This pathway is of
special interest as the thalamus broadcasts auditory information
to the amygdala, making it the primary anatomical link between
the CS and US in cued fear conditioning (Rogan and LeDoux,
1995; McKernan and Shinnick-Gallagher, 1997; Rogan et al.,
1997; Maren, 1999, 2005). It was shown that thalamo-amygdala
LTP can be induced in vivo in rats via stimulation of the
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MGm/PIN. Moreover, LTP-inducing stimulation increases ERK
phosphorylation in the amygdala and thalamus, and both fear
conditioning memory and LTP are blocked by infusion of an
ERK inhibitor (Apergis-Schoute et al., 2005; Schafe et al., 2008;
Ping and Schafe, 2010).

Moreover, ERK has been linked to activity-dependent
remodeling of dendritic spines (also known as structural
plasticity). ERK activity increases in stimulated spines (Tang and
Yasuda, 2017) during structural long-term potentiation and is
required for the formation of new dendritic spines following
depolarization as well as for AMPAR insertion into synapses
from cultured neurons (Wu et al., 2001; Zhu et al., 2002; Goldin
and Segal, 2003). Furthermore, increased dendritic spine density
upon BDNF treatment in hippocampal pyramidal neurons has
shown to be dependent on ERK activation (Alonso et al., 2004)
and removal of endogenous BDNF resulted in decreased spine
density (Kellner et al., 2014). It has also been shown that BDNF
is capable of prolonging the duration of a short lasting LTM
from two days to at least seven days, exerting its effect through
hippocampal ERK activation (Bekinschtein et al., 2008). This
data supports a three-player scheme, encompassing the effects
of BDNF on spine morphogenesis, LTM persistence and ERK-
dependency.

Evidence regarding ERK scaffold proteins linked to learning
and memory is still scarce. Nonetheless, it was described
that KSR1-/- mice show deficits in contextual and cued fear
conditioning, Morris water maze and passive avoidance as well
as theta burst stimulation-induced LTP without altering general
behavior (Shalin et al., 2006).

It is not surprising that given the wide variety of
experimental protocols and brain areas studied, there is
opposing evidence regarding the role of ERK in LTP. It is of
particular interest that when using LTP induction protocols that
are more closely related to physiological occurring patterns of
neuronal activity (Buzsáki, 1989; Hernandez et al., 2005; Larson
and Munkácsy, 2015), the majority of the evidence seems to
point to a relevant role of ERK. Not only these results suggest
that ERK is involved in the establishment of LTP, but also that
it plays a role supporting the structural changes that underlie
LTP. However, more data addressing this last point is missing
and more research is still needed.

Extracellular-signal regulated kinase in
learning and memory

Activation of the ERK pathway has been described in
several memory tasks involving different brain regions and
animal species (Table 2). ERK activation requirement has been
pharmacologically demonstrated in the dorsal hippocampus for
Morris water maze (Blum et al., 1999) and in the prefrontal
cortex (PFC) for recognition memory (Kelly et al., 2003). The
latter was also shown to be partially mediated by dopamine

D1 receptors (Nagai et al., 2007). However, ERK activation
has also been linked to memory disruption. Adult mice
overexpressing the tyrosine phosphatase SHP2 in hippocampus,
a model of Noonan syndrome (NS), results in increased baseline
excitatory synaptic function and deficits in LTP as well as
spatial learning. These deficits can be reversed by a MEK
inhibitor, demonstrating that increased basal ERK activity is
responsible for the LTP impairments and, consequently, the
learning deficits in the mouse model of NS (Lee et al., 2014).
Likewise, there is evidence of age-dependent LTM impairment
accompanied by overactivation of ERK1 in the medial prefrontal
cortex of the triple transgenic mice (3xTg), an animal model
of Alzheimer disease (AD) expressing PS1M146V, APPSwe, and
tauP301L transgenes (Oddo et al., 2003), in which local ERK
inhibition rescues recognition memory deficits (Feld et al.,
2014). Thus, in both models excessive increase of ERK activity
explains cognitive deficit, and inhibition of overactivation was
enough to restore normal LTM, supporting the need for fine-
tuning of this pathway in mnesic processes.

The activation of ERK by drugs of abuse in brain regions
related to reward (Table 2) is necessary for the induction
of immediate early genes and depends on dopamine D1
and glutamate receptors. Blocking ERK prevents changes in
behavior including acquisition of a conditioned locomotor
response triggered by a cocaine- or D-amphetamine-paired
context and conditioned place preference (Girault et al., 2007).
In addition, nicotine administration enhances contextual fear
conditioning acquisition by ERK activation (Raybuck and
Gould, 2007). Moreover, pharmacological activation of βARs
in the LA resulted in increased freezing after a weak cued-fear
conditioning training protocol in rats in which ERK activation
was essential for consolidating the learned association (Schiff
et al., 2017). Furthermore, sertraline, a selective serotonin
reuptake inhibitor (SSRI) that stimulates synaptic plasticity and
neurogenesis, significantly improved spatial memory learning
in both young and old mice. The most likely mechanism
underlying this effect is by the activation of serotonin (5-HT)
receptors that induce ERK activation, up-regulation of brain
BDNF and Bcl-2 (Taler et al., 2013).

In addition, ERK phosphorylation is also necessary for
memory in invertebrates (Table 2). Examples include LTM in
Aplysia 5-HT-mediated sensitization of the siphon retraction
reflex (Martin et al., 1997; Philips et al., 2013), in Drosophila
olfactory conditioning (Pagani et al., 2009; Miyashita et al.,
2018), in Lymnaea food-reward conditioning (Ribeiro et al.,
2005); in Hermissenda classical conditioning of foot retraction
(Crow et al., 1998) and in associative fear learning in Neohelice
(Feld et al., 2005; Ojea Ramos et al., 2021).

The group of Josselyn has proposed that neurons
overexpressing CREB are preferentially allocated to the fear
memory trace due to its increasing excitability function
(Yiu et al., 2014), in part by decreasing voltage-gated
potassium channels in the amygdala and the hippocampus
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TABLE 2 Outline of research associating ERK activity to different forms of learning and memory.

Species Behavioral task Expeimental
manipulation

Effect on ERK
activity

Behavioral outcome References

Aplysia Long Term
Facilitation

Pharmachological
inhibition

↑ LTF blocked by MAPK
inhibition. No effect on STF.

Martin et al., 1997; Purcell
et al., 2003

Hermissenda Classical
Conditioning (Foot
length retraction)

– ↑ – Crow et al., 1998

Lymnaea Food reward
conditioning

Pharmachological
inhibition

↑ MAPK inhibition blocks
memory formation.

Ribeiro et al., 2005

Drosophila Olfactory Aversive
Conditioning

Pharmachological
inhibition

↑ Pharmachological inhibition
blocks LTM. ERK determines

effective trial spacing for
LTM induction.

Pagani et al., 2009; Li et al.,
2016; Miyashita et al., 2018;

Zhang et al., 2018; Awata
et al., 2019

Neohelice Context-Signal
Learning

Pharmachological
inhibition

↑ Pharmachological inhibition
blocks memory formation.

Feld et al., 2005

Classical
Conditioning

Ojea Ramos et al., 2021

Mice/Rat Fear Conditioning Pharmachological
inhibition, ERK2

KO, dnMEK,
RasGRF2 KO

↑ ERK inhibition in the
hippocampus blocks LTM

consolidation. ERK
inhibition in the Amygdala
blocks FC extinction and

Reconsolidation. ERK2 KO,
dnMEK and RasGRF2 KO
mice have impired LTM.

Atkins et al., 1998; Selcher
et al., 1999; Kelleher et al.,
2004; Duvarci et al., 2005;
Herry et al., 2006; Trifilieff

et al., 2006, 2007; Satoh et al.,
2007; Guedea et al., 2011;
Besnard et al., 2013, 2014;

Zamorano et al., 2018

Morris Water Maze Pharmachological
inhibition, ERK2

KO, dnMEK

↑ ERK inhibition in the
hippocampus or EC block

LTM. ERK2 KO and dnMEK
mice have impaired LTM.

Blum et al., 1999; Selcher
et al., 1999; Hebert and Dash,

2002; Kelleher et al., 2004;
Satoh et al., 2007

Cocaine/Morphine
Induced

Conditioned Place
Preference

Pharmachological
inhibition

↑ ERK inhibition impaired
reconsolidation and LTM.

Miller and Marshall, 2005;
Valjent et al., 2000, 2006; Lin

et al., 2010; Li et al., 2011;
Papale et al., 2016

Inhibitory
Avoidance

Pharmachological
inhibition

↑ EKR inhibition impaired
LTM, retrieval an memory

reconsolidation.

Walz et al., 1999; Cammarota
et al., 2000; Kim et al., 2012;

Krawczyk et al., 2015;
Fukushima et al., 2021

Object Recognition Pharmachological
inhibition, ERK2 KO

↑ ERK inhibition impaired
memory consolidation and

reconsolidation.

Kelly et al., 2003; Fernandez
et al., 2008; Vithayathil et al.,

2017

LTF, long term facilitation; STF, short term facilitation; LTM, long term memory; FC, fear conditioning; EC, entorhinal cortex.

(Viosca et al., 2009). However, since in these experiments CREB
is overexpressed by viral injection, there is no information about
the time course of the endogenous CREB expression. Likewise,
ERK may also contribute to increasing neuronal excitability and
thus neuronal recruitment to the engram, not only by mediating
CREB activation via MSK and RSK2 (Hauge and Frödin, 2006;
Sindreu et al., 2007), but also by direct phosphorylation of
Kv4.2 channels decreasing potassium current in hippocampal
CA1 neurons (Adams et al., 2000; Schrader et al., 2006) and in
dendrites by PKA and PKC pathways converging on ERK (Yuan
et al., 2002). However, since no studies have directly addressed
this question, it is still unknown whether ERK activation may
lead to neuronal allocation to the engram.

It has been established that ERK is also relevant for
memory processes taking place after the initial consolidation
has occurred. The presentation of a long continuous or several
discrete unreinforced reminders leads to extinction, a process
that entails the consolidation of a new memory and inhibition
of the original one (Pavlov, 1927; Bouton, 2004; Hermans
et al., 2006). In contrast, the presentation of few unreinforced
reminders lead to memory reconsolidation, triggering an initial
destabilization and posterior re-stabilization of the memory
trace, thus allowing for modifications such as strengthening,
update or even erasure (Nader et al., 2000; Sara, 2000; Pedreira
et al., 2004). Both reconsolidation and extinction require
activation of ERK (Duvarci et al., 2005; Herry et al., 2006),
although in some cases, it has also been observed that the
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avoidance memory reactivation process induces a negative
regulation of ERK in the amygdala, prefrontal cortex (involved
in emotional evocation) (Botreau and Gisquet-Verrier, 2006)
and hippocampus (Krawczyk et al., 2015, 2016). Many efforts
are focused on understanding the role of ERK into these
processes. Interestingly, since whether the triggered process is
reconsolidation or extinction only depends on the accumulation
of time spent under non-reinforced reminder presentation, the
study of ERK may help to elucidate the mechanisms underlying
the transition between these two processes (Merlo et al., 2018;
Fukushima et al., 2021). However, we will not delve on this topic
since it exceeds the scope of this review (for the role of ERK in
reconsolidation and extinction see Cestari et al., 2014; Medina
and Viola, 2018; Krawczyk et al., 2019).

Taken together, this evidence shows that ERK inhibition
impairs memory formation in multiple tasks in different species,
and that overactivation leads to memory deficits which can
be prevented by ERK downregulation, strongly suggesting
that ERK activation levels critically contribute to memory
trace formation.

Differential role of ERK1 and ERK2 in
memory formation?

The emergence of ERK1 and ERK2 isoforms has been
explained as a consequence of a whole genome duplication
event early in the evolution of the vertebrate phylum (Buscà
et al., 2015). Their primary structures are 84% identical across
mammals (Eblen, 2018) although ERK1 protein is larger than
ERK2 mainly due to a larger N-terminus, and ERK2 is expressed
at higher levels than ERK1 in most mammalian tissues.

A thorough review of published studies on the role of
ERK1 vs. ERK2 has largely favored the functional redundancy
hypothesis against isoform specificity (Buscà et al., 2015).
However, while ERK1 null mice are viable and fertile (Selcher
et al., 2001; Mazzucchelli et al., 2002), ERK2 constitutive
knockouts are embryonic lethal (Lefloch et al., 2008; Satoh
et al., 2011). Results investigating LTM in ERK1 KO mice are
controversial. Findings showed no effect on acquisition or long-
term retention of either contextual/cue fear conditioning or
passive avoidance memory and hippocampal high frequency
stimulation (HFS) induced CA1 LTP (Selcher et al., 2001),
whereas others found improvement in active and passive
avoidance memory and theta burst induced LTP (Mazzucchelli
et al., 2002; Table 1). Differential ERK1/ERK2 regional
distribution in rat brain (Ortiz et al., 1995) also suggests
a possible regulation of isoform function. Moreover, several
reports have shown unexpected interplay between isoforms
pointing to specific roles for ERK1 and ERK2 at least in plasticity
and memory.

Moreover, mice lacking ERK1 presented a dramatic
enhancement of striatum-dependent long-term memory,

correlating with a facilitation of long-term potentiation in
the nucleus accumbens and stimulus-dependent increased
ERK2 signaling, suggesting a regulatory action of one isoform
onto the other (Mazzucchelli et al., 2002). Interestingly, later
studies also showed that ERK1 KO mice had increased ERK2
activity, as well as enhanced LTP and LTD in perirhinal cortex
(PRHC), a brain area known to play an essential role in
familiarity-based object recognition memory. These animals
exhibited better long-lasting recognition memory compared to
wild-type mice (Silingardi et al., 2011). Although these findings
might seem puzzling, attention must be paid to the fact that
not only this pathway is being considered in the context of
plasticity, learning and memory, but it has also a profound
effect on nervous system development and consequently, it
is not possible to conclude independently of the temporal
point of the manipulations performed (Vithayathil et al.,
2017). Finally, functional differences between both isoforms,
have been attributed to the fact that ERK cytoplasmic-nuclear
trafficking depends on their N-terminus, accounting for the
reduced nuclear shuttling rate of ERK1 compared to ERK2, and
consequently ERK1 reduced capability to carry proliferative
signals to the nucleus (Marchi et al., 2008).

In spite of this evidence, it is still a matter of debate
whether ERK1 and ERK2 are equally relevant for learning and
memory processes.

Temporal integration of
extracellular-signal regulated kinase
during memory formation

Spacing effect is a major phenomenon occurring during
learning which has been characterized in different experimental
memory models, in both invertebrates (Philips et al., 2007;
Pagani et al., 2009; Ojea Ramos et al., 2021), and vertebrates
(Bello-Medina et al., 2013; Aziz et al., 2014; Pandey et al., 2015),
including humans (Ebbinghaus, 1885; Vlach et al., 2008). It
refers to the greater effectiveness of training protocols where
trials are spaced in time, compared to those in which trials are
presented in a continuous fashion (without or with brief inter-
trial intervals, ITI). However, this general rule is difficult to
interpret when comparing learning tasks used in vertebrates and
invertebrates. One hypothesis to explain this effect assumes that
there is a refractory period in learning during which the second
of two stimuli is ineffective to improve the outcome of the first.
Therefore, including a prolonged ITI during training, would
allow for this refractory period to be overcome. Alternatively,
the first trial of a spaced training would have a “priming”
effect on the synapses, so that the molecular processes that
occur toward the end of training are reinforced enabling
LTM formation (Smolen et al., 2016). Moreover, it has been
posited that the net balance between CREB activators and
repressors increases after training, favoring activators and thus,
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shifting the outcome toward maximal LTM formation at longer
ITIs (Yin et al., 1995). Nevertheless, these hypotheses are not
mutually exclusive.

One example is the well-known sensitization learning of the
Aplysia mollusk siphon retraction reflex. While four training
trials presented without an ITI are not capable of generating
a LTM, it is enough if they are separated by a 15 min ITI
(Philips et al., 2007). Moreover, presenting only the first and
last trials (two-trial, 45 min-ITI training), which maintains the
total duration of the session, also induced LTM (Philips et al.,
2013). The success of this protocol was shown to be due to
a delayed protein synthesis-dependent nuclear MAPK activity
that established a unique molecular context. Similar results were
obtained using the semi-terrestrial crab Neohelice granulata. In
this species, a standard visual stimulation protocol (15 trials,
3 min-ITI) induces a delayed peak of ERK activity (1 h) after
training (Feld et al., 2005), while the two-trial protocol (45 min-
ITI) reduces the activation time to 5 min (Ojea Ramos et al.,
2021). In both species, inter-trial ERK inhibition impaired LTM,
highlighting the relevance of either the total duration of the
stimulation protocol or the length of the ITI in order to induce
effective ERK activation.

Experiments in the fruit fly Drosophila melanogaster
demonstrated that protein tyrosine phosphatase SHP2
(corkscrew) altered Ras/ERK pathway activation waves
and shortened ITIs required for LTM formation (Pagani et al.,
2009). In this work, ERK phosphorylation took place during
ITI and trial presentation canceled this activation, thus longer
ITI allowed for prolonged ERK kinetics. Similar findings,
although measured at different time points, were reported by
Miyashita et al. (2018). In this study, the authors showed that
ERK activity increases during ITI in spaced training, inducing
ERK/CREB/c-Fos cycling, which defines potential engram
cells. Furthermore, disruption of Drosophila D1 dopamine
receptors, and Ca2+/calmodulin regulated adenylyl cyclase
(AC), prevented increases in pERK and subsequent c-Fos/CREB
cycling (Miyashita et al., 2018). Supporting previous findings,
Awata and coworkers also found that distinct parallel circuits
in the mushroom bodies subserves, through pERK expression,
spacing effect sparse coding information via dopamine signaling
and memory consolidation (Awata et al., 2019). Interestingly,
the authors also observed differential threshold activation in
neuronal subtypes, suggesting that neuronal activity per se is not
sufficient to induce activation of the pathway. Noteworthy, PP1
or CaNB2 loss of function in these flies is sufficient to bypass the
requirements for ITI during training but pERK still needs to be
activated for a sufficient amount of time to allow c-Fos/CREB
cycling to occur (Miyashita et al., 2018). Likewise, it has been
largely demonstrated in Aplysia that the MEK/ERK pathway
contributes to 5-HT-induced phosphorylation of CREB1 via
RSK or PKA, as well as LTF (Sharma and Carew, 2004).
Recent studies combining experimental and computational
approaches propose positive feedforward and negative feedback

loops leading to different ERK activation kinetics, revealing
the importance of signaling pathways’ fine-tuning (Liu et al.,
2020; Zhang et al., 2021). Although, to our knowledge there
is no data supporting direct phosphorylation of CREB2 by
ERK, this potential interaction may relieve the repression
exerted by the repressor, inducing gene expression (Abel et al.,
1998; Fioravante et al., 2006). Taken together, these results in
invertebrate memory studies highlight a central role of ERK
activation and inhibition periods during this process.

Both vertebrates and invertebrates seem to be capable
of memory enhancement after spaced training although a
reduced number of trials are delivered. Rats under massed fear
conditioning training show no or weak LTM compared with rats
given the same amount of light–shock pairings presented in a
spaced manner (Josselyn et al., 2001). In addition, two sessions
of weak spatial object recognition (SOR) task, each of which
does not induce LTM independently, elicited 24h retention
when delivered in a spaced fashion. Memory enhancement
by spaced training was dependent on ERK activation in the
dorsal hippocampus and open field exploration rescued SOR
memory impairment induced by ERK inhibition (Tintorelli
et al., 2020). According to the authors, these observations could
be interpreted under the behavioral tagging (BT) hypothesis
that explains how a weak event that induces transient changes
in the brain can establish long-lasting phenomena through a
tagging and capture process achieving synaptic specificity and
persistence of experience-induced plastic changes (Viola et al.,
2014).

Temporally spaced synaptic stimulation in slices and
behavioral training improved synaptic potentiation and long-
term memory for contextual fear conditioning in mice,
respectively (Scharf et al., 2002). Moreover, stimulation of
the hippocampal CA1 with successive bouts of theta bursts,
which are considered a more physiological frequency, enhanced
previously saturated LTP only when spaced by long intervals
(e.g. 1h or longer). This enhancement may be due to recruitment
of synapses that were “missed” by the first stimulation bout
(Kramár et al., 2012). In cultured hippocampal neurons, spaced
but not massed depolarizations evoke persistent activation of
ERK, critical for protrusion of new dendritic filopodia that also
remained stable for hours (Wu et al., 2001). In addition, ERK
activity in the amygdala increased one hour after a first fear-
training session but not after a second one (Parsons and Davis,
2012) albeit activation at earlier times after the second trial
should not be discarded (Ojea Ramos et al., 2021). Furthermore,
dorsal hippocampal synaptic ERK activation induced after
spaced short trials of an object-location task was associated with
LTM formation in Fmr1 KO mice model of fragile X syndrome
(Seese et al., 2014).

Thus, spacing effect has been reported in a plethora
of studies involving different phenomena including different
forms of plasticity, learning and memory. However, whether
it mechanistically relies on the same targets in vertebrates and
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invertebrates has not been fully ascertained. LTM induction
after spaced training in flies was shown to depend on relative
amounts of CREB activators and repressors (Yin et al., 1995),
while in mice lacking the alpha and delta isoforms of CREB,
spaced training selectively rescues long-term memory (Kogan
et al., 1997).

Taken together, these findings demonstrate that the spacing
effect allows for enhanced LTM expression and for different
learned experiences to be temporally integrated in an ERK-
dependent fashion. ERK activation (and inhibition) kinetics
outlines the effectiveness of ITI duration for a successful LTM
formation. In this sense, the first trial triggers a loop of
kinases, transcription factors and immediate early genes (e.g.
ERK/CREB/c-Fos) with a certain time course that allows signal
integration with other molecular events. In this regard, while a
premature second trial presentation would impair this loop to
continue, preventing LTM formation, a prolonged ITI would
allow for this cycle to be fulfilled, inducing LTM formation. This
mechanism could be then integrated among different circuits
enabling memory formation across different areas and for longer
periods (e.g. systems consolidation).

Extracellular-signal regulated kinase
kinetics in aversive memories

A large body of work has drawn particular attention to
the role of ERK in aversive memories. The two most extended
tasks performed in these studies are inhibitory avoidance and
pavlovian fear conditioning.

In the inhibitory avoidance (IA) task animals learn to avoid
an aversive stimulus (e.g. a foot-shock) by inhibiting a response
of locomotion and exploration. Thus, to withhold stepping
through a hole into a dark compartment (“step through”
version), or stepping down from a platform (“step down”
version). For the purpose of this review, inhibitory avoidance
encompasses step-down and step-through versions. As a result
of acquisition, animals increase the latency to step into the
compartment where they received the shock.

In the Pavlovian cued fear conditioning (FC), a neutral
tone (conditioned stimulus, CS) is paired with an aversive
foot-shock (unconditioned stimulus, US) (paired conditioning).
Since in this case the context is also associated (context in
background) to the US, the tone test is performed in a different
environment. In another variant of the task, there is a lack
of contingency between the discrete CS (tone) and the US
(unpaired conditioning), which favors the association with
the context (context in foreground). In both cases, once the
association is formed, the presentation of the tone or the
context respectively, elicits freezing as the conditioned response.
Moreover, both types of conditioning induce fear to the context,
but they result in distinct contextual processing that depend
on the amygdala and hippocampus (Kim and Fanselow, 1992;

Phillips and LeDoux, 1994; Desmedt et al., 1998, 2003;
Calandreau et al., 2005).

Although IA and FC are very different paradigms, they
share interesting similarities regarding the activation kinetics
of ERK (Figure 2). Several studies have shown an increase
of ERK phosphorylation in both hippocampus and amygdala
(mainly LA) at early times (0–3 h) after acquisition of inhibitory
avoidance (Alonso et al., 2002; Cammarota et al., 2008) and both
FC protocols (Atkins et al., 1998; Schafe et al., 2000; Trifilieff
et al., 2006, 2007; Besnard et al., 2014). Interestingly, IA and
unpaired, but not paired, FC triggered a second wave of ERK
activation at later times (10–12 h) after training (Trifilieff et al.,
2006, 2007; Bekinschtein et al., 2008). As anticipated, CREB
activation also followed ERK kinetics in both FC protocols
(Trifilieff et al., 2006). Foundational work by Grecksch and
Matthies (Grecksch and Matthies, 1980) as well as others,
supported that two protein synthesis waves are necessary for
memory consolidation, positing the requirement of the first
wave in order to allow the second one to occur. In this sense, a
second wave was also observed for the IEG c-Fos (Katche et al.,
2010) and BDNF (Alonso et al., 2002, 2004; Bekinschtein et al.,
2008) mostly related to memory persistence.

Strikingly, although all three protocols induce the first wave
of activation of ERK at a similar time point, the second wave
was not dependent on the occurrence of the first one, at least
for unpaired FC (Trifilieff et al., 2006; Figure 2). Importantly,
ERK activation is required for consolidation of these tasks since
inhibition of any ERK wave resulted in memory impairment
(Atkins et al., 1998; Walz et al., 1999, 2000; Schafe et al., 2000;
Trifilieff et al., 2006).

One possible explanation may be that ERK functions as
a coincidence detector, where the afferents containing the
auditory or action (step-down/step-through) inputs followed by
the shock information (Nabavi et al., 2014; Tovote et al., 2015)
coincide in the amygdala and the hippocampus triggering the
first wave of ERK activation, although this could also be due to a
non-associative sensory activation (Alonso et al., 2002).

In contrast, the second wave of ERK activation was only
present in unpaired FC and strong IA. Since the saliency of
the context in these two protocols is greater than in paired
FC, it makes sense that they share the underlying molecular
principles. If the second wave of ERK activation is independent
of the first one, what triggers ERK activation in the absence of
stimuli? One hypothesis could come from hippocampal place
cells, neurons that fire preferentially at specific locations within
a spatial environment (O’Keefe and Dostrovsky, 1971). On the
one hand, there is more remapping during unpaired FC than
during paired FC (Moita et al., 2004), which would explain the
difference in the ERK kinetics between both FC protocols. On
the other hand, place cells are able to replay the hippocampal
representation of the environment in the absence of stimuli,
supporting their role in memory consolidation (Wilson and
McNaughton, 1994; Jackson et al., 2006; Carr et al., 2011), which
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FIGURE 2

Schematic representation of temporal dynamics of ERK activation in the hippocampus (top) and amygdala (bottom) by three different fear
behavioral tasks.

happens during sharp-wave/ripple (SPWs) events (Buzsaki et al.,
1992). Moreover, there is evidence of replay of IA occurring
during the inhibitory action at retrieval and without exploring
the actual feared zone (Wu et al., 2017). Furthermore, SPWs
facilitate the strengthening of memories (Dupret et al., 2010),
strongly indicative of a role of the second ERK wave in memory
persistence (Bekinschtein et al., 2008; Miyashita et al., 2008).
Likewise, the interconnectivity between the hippocampus and
the amygdala would allow for the transmission of information
across these two areas and therefore the observed ERK
activation at similar times (Tovote et al., 2015).

Although the hypothesis may be plausible, so far
there is no direct evidence that supports this and further
experiments should be considered (see section “Conclusions
and perspectives”). Another unexplored aspect of the two-wave
ERK phosphorylation is whether the activation that occurs in
the second wave is in the same neurons compared to the first
one or in a subset of them, similar to what was observed for the
IEG ARC (activity-regulated cytoskeleton-associated protein)
activation in a spatial maze (Ramirez-Amaya et al., 2005).

The similar kinetics observed in different fear memory
protocols together with the evidence that increased and
decreased ERK activity influences the ability of LTM to be
formed, suggest a specific role of ERK activation function
during memory formation. Moreover, the relevance of ERK
activation during temporal integration argues in favor of a
distinct participation of the kinase in the memory trace, rather
than a general activity marker.

Conclusions and perspectives

Along this review we have revised data on the activation of
ERK in neurons, ranging from signals that trigger the pathway
to the subcellular targets underlying learning-related plasticity.
The heterogeneity of neurotransmitter signals triggering ERK
phosphorylation may account for a general role of this kinase in
memory plasticity. Though the requirement of enhanced ERK
activation by multiple systems for memory formation remains
elusive, it suggests an integrative function of the kinase. This
computation would allow for various stimuli converging at
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the single neuron level to modulate ERK activation dynamics
according to their specific pattern of occurrence, possibly
allowing these neurons to be recruited into the engram.

Likewise, there is a wide variety of ERK actions including
binding to actin filaments and local translation initiation in
dendrites, suggesting a role in stabilizing structural changes
in dendritic spines. In turn, these changes may lead to the
maintenance and strengthening of certain synapsis that may be
fundamental for LTM.

The transcription factor CREB is able to increase neuronal
excitability which results in the recruitment of neurons to the
engram (Yiu et al., 2014). ERK activation of transcription factors
including CREB, as well as facilitating transcription by crosstalk
with HATs reveals a tight association between ERK effects on
gene expression regulation and memory formation. Together
with the ability of blocking potassium channels, thus increasing
neuronal excitability per se, this evidence suggests a role of ERK
not only in synaptic plasticity necessary for memory formation,
but also in the engagement of neurons into the memory trace.
Although it remains an open question whether increasing ERK
activity in certain conditions might also increase particular
neurons’ probability to be included in a particular memory
engram, it was recently reported (Zamorano et al., 2018) that
ERK is preferentially re-activated during memory retrieval
in the same neurons that were activated during acquisition,
underpinning a first step to determining whether ERK is a viable
’engram marker’.

The concerted activation of ERK at similar times by different
memory tasks and in various brain regions might suggest
that ERK is required in a brain-wide circuit-specific neuronal
activation fashion. Moreover, the temporal integration of ERK
activation during memory formation reveals an overlap between
parallel mechanisms associated with memory. Depending on
temporal constraints and the specific elements involved, these
shared processes may either interfere with each other resulting
in memory impairment or allow for a synergistic effect and
subsequently, memory enhancement.

Although ERK activation kinetics may reflect neuronal
circuit activity relevant for learning, the direct link between
these two phenomena is still missing. Moreover, what does
an increase in ERK activation mean? More neurons in which
ERK is getting activated or more activation at the level of each
single neuron? Thanks to new technological approaches that
simultaneously record molecular activation by FRET biosensors
together with neuronal activity with calcium imaging (Laviv
et al., 2020), it might now be possible to address this type of
question.

Evidence involved ERK dysregulation as a contributing
factor to memory deficits observed in brain disorders.
There remains, however, some outstanding gaps in our
understanding to be filled and some difficult issues to be
resolved. Overactivation of the ERK pathway may explain some
of the findings reported in AD models, in particular, the fact

that ERK inhibition rescues memory deficits. In contrast, in
most of the learning tasks in healthy animals, inhibition of ERK
resulted in memory impairment, indicating the importance of
ERK activation homeostasis for memory stabilization.

All together, this evidence indicates that ERK may
function as a molecular hub orchestrating neuronal plasticity,
contributing to memory trace recruitment, and therefore, a key
target for therapies for several brain disorders.
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