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Disturbances in the excitatory/inhibitory balance of brain neural circuits are

the main source of encephalopathy during neurodevelopment. Changes in

the function of neural circuits can lead to depolarization or repeat rhythmic

firing of neurons in a manner similar to epilepsy. GABAergic neurons are

inhibitory neurons found in all the main domains of the CNS. Previous studies

suggested that DjCamkII and DjCaln play a crucial role in the regulation of

GABAergic neurons during planarian regeneration. However, the mechanisms

behind the regeneration of GABAergic neurons have not been fully explained.

Herein, we demonstrated that DjCamkII and DjCaln were mutual negative

regulation during planarian head regeneration. DjNFAT exerted feedback

positive regulation on both DjCaln and DjCamkII. Whole-mount in situ

hybridization (WISH) and fluorescence in situ hybridization (FISH) revealed

that DjNFAT was predominantly expressed in the pharynx and parenchymal

cells in intact planarian. Interestingly, during planarian head regeneration,

DjNFAT was predominantly located in the newborn brain. Down-regulation

of DjNFAT led to regeneration defects in the brain including regenerative

brain became small and the lateral nerves cannot be regenerated completely,

and a decreasein the number of GABAergic neurons during planarian head
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regeneration. These findings suggest that the feedback loop between DjCaln,

DjCamkII, and DjNFAT is crucial for the formation of GABAergic neurons

during planarian head regeneration.
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Introduction

Disturbances in the excitatory/inhibitory balance of brain
neural circuits are the main source of encephalopathy during
neurodevelopment. Once the function of neural circuits
changes, the neurons in the corresponding circuits will
depolarize or repeatedly fire rhythmically, which is a pattern
closely related to the occurrence of epilepsy. γ-Aminobutyric
acid (GABA) is the major inhibitory neurotransmitter in the
central nervous system (CNS) and thereby plays a crucial role
in the balance between inhibitory and excitatory neural circuits
(Watanabe et al., 2002). GABAergic neurons are produced
in all the main domains of the CNS, where they develop
from discrete regions of the neuroepithelium. Therefore, it is
expected that dysfunctions in the GABAergic system lead to
neurodegenerative diseases, such as Parkinson’s disease (PD)
and Huntington’s disease (HD) (Kleppner and Tobin, 2001;
Galvan and Wichmann, 2007; Gajcy et al., 2010). Therefore, a
certain degree of GABAergic neuron regeneration is essential
to maintain the excitatory/inhibitory balance. In addition, it
is widely accepted that continuous neurogenesis takes place
in the adult hippocampus throughout the life of mammals,
including humans (Eriksson et al., 1998; Zhao et al., 2008). The
newborn neurons mostly differentiate into excitatory granular
cells and functionally integrate into the preexisting hippocampal
neural circuitry (Cameron and McKay, 2001; van Praag et al.,
2002; Toni et al., 2007). However, little is known about the
number of newborn cells that can regenerate and differentiate
into inhibitory GABAergic interneurons in the damaged brain.

Calcineurin (Caln), also called protein phosphatase B
(PP2B), is a Ca2+/calmodulin-dependent serine/threonine
phosphatase that was first described in a bovine brain 40 years
ago (Ho et al., 1976; Wang and Desai, 1976). The protein has
a 60 kDa catalytic subunit (Caln A) and a 19 kDa regulatory
subunit (Caln B) (Rusnak and Mertz, 2000; Li et al., 2011).
Caln is located in the brain abundantly (Goto et al., 1986;
Kuno et al., 1992). In neurons, Caln is localized in multiple
organelles, such as cytoplasm, endoplasmic reticulum, and Golgi
apparatus (Bram et al., 1993; Mehta and Zhang, 2014; Cardenas
and Marengo, 2016). Studies indicate that GABA is regulated by
Caln in synaptogenesis, for the reorganization and development
of an adult CNS (Hayama et al., 2013; Toyoda et al., 2015; Wang
et al., 2015).

Nuclear factor of activated T-cells (NFAT) can be
dephosphorylated by Caln in order to translocate into the
nucleus and become activated (Shaw et al., 1988; Schulz and
Yutzey, 2004; Boothby, 2010). In the peripheral nervous system,
Caln/NFAT signaling plays a critical role in the survival,
proliferation, and differentiation of neural and glial precursor
cells, especially during tissue regeneration (Serrano-Perez et al.,
2015). Moreover, the neurotrophin nerve growth factor (NGF)
regulates the up-regulation of the plasminogen activation
system and synaptic protein plasminogen activator inhibitor
1 (PAI-1) in primary mouse hippocampal neurons through
Caln/NFAT (Stefos et al., 2013). In mice, GABAA receptors
promote anxiety behavior and hippocampal neurogenesis
through Caln/NFAT4, indicating that this signaling pathway
may serve as a potential drug target for the treatment of mood
disorders (Quadrato et al., 2014). Meanwhile, the transcription
factor NFAT5 is expressed in the anterior blastema of tail
fragments after 3 days into regeneration in planarian Schmidtea
mediterranea (Suzuki-Horiuchi et al., 2021).

In human T Cells, activation of Ca2+/calmodulin-
dependent protein kinase II (CamKII) can reduce the efficiency
of NFAT by nearly 35% (Hama et al., 1995). In cardiomyocytes,
the activation of cytoplasmic CamKII inhibits calmodulin and
NFAT through phosphorylation (MacDonnell et al., 2009).
In budding yeast, a lack of the CamKII homologue CMK2
increased the level of calcium/calcineurin signaling, as well
as the expression levels of PMR1 and PMC1. The expression
of target genes including CMK2, RCN1, PMR1, and PMC1 is
dependent on the activation of Crz1 (Mehta et al., 2009; Xu
et al., 2019). These results indicate that CamKII is a negative
feedback controller of the Caln/NFAT signaling pathway.
However, whether there is a mutual regulation relationship
between CamKII, Caln and NFAT or not in the neurons
regeneration process has not been previously reported.

Planarians are often used as model organisms in the study
of CNS regeneration due to their powerful regeneration ability
(Newmark and Sanchez Alvarado, 2002; Elliott and Sanchez
Alvarado, 2013). The planarian brain comprises of neurons
similar to those found in humans, including dopaminergic,
cholinergic, GABAergic, and serotonergic neurons (Nishimura
et al., 2007a,b, 2008, 2010). Ca2+ signaling plays an important
role in neuromuscular signaling and anterior-posterior
patterning in planarians regeneration (Nogi et al., 2009).
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The knockdown of certain voltage-operated Ca2+ channels
results in different regenerative polarities (Zhang et al., 2011).
And knockdown of a specific voltage-operated Ca2+ channel
(Cav1B) that impairs muscle function creates an environment
permissive for anteriorization in planarian regeneration (Chan
et al., 2017). As previously stated, we found that DjCamKII
and DjCaln were both expressed in the brain. Furthermore,
DjCamKII (RNAi) or DjCaln (RNAi) regenerated brains became
slim and could not regenerate their lateral nerve. As such, down-
regulation of DjCamKII or DjCaln led to a significant decrease
in GAD and affected the number of GABAergic neurons during
the planarian head regeneration (Zhen et al., 2020). However,
the mechanism behind how CamKII and Caln regulate the
formation of GABAergic neurons during the planarian head
regeneration is not clear. The present study aims to examine
how Caln, CamkII, and NFAT affect the number of GABAergic
neurons during head regeneration in the planarian Dugesia
japonica.

Materials and methods

Animals

A clonal strain of the planarian D. japonica, originally
obtained from Boshan, China, was established in our laboratory
and used in all experiments (Zhen et al., 2020). The D. japonica
planarians were cultured in Lushan spring water at 20◦C. Before
use in experiments, all planarians were starved for at least 7 days.
For the regeneration experiments, the planarian heads were
removed and the fragments were used for experiments at 1, 3,
5, 7, and 10 days after amputation.

In situ hybridization

Whole-mount in situ hybridization, digoxigenin (DIG)-
labeled antisense RNA probes, and fluorescence in situ
hybridization (FISH), Fluorescein-labeled antisense RNA
probes, were synthesized using an in vitro labeling kit (Roche,
Basel, Switzerland). The RNA probes-DjCaln, DjCamKII,
DjNFAT, and DjGAD primers were designed by Primer Premier
5.0 (Supplementary Table 1). Hybridizations were carried out
by incubation with the antisense RNA probe (1 ng/µl) at 56◦C
for 16 h. After hybridization, 10% horse serum was blocked at
room temperature for 2 h after maleic acid buffer washing. Then,
antibodies were diluted in maleic acid buffer containing Tween
20 (MABT) with 10% of horse serum for WISH (anti-DIG-AP,
1:2,000, Roche, Basel, Switzerland) and FISH (anti-DIG-POD,
1:500, and anti-FITC-POD, 1:500, Roche, Basel, Switzerland).
Then, a mixture of 5 bromo, 4 chloro, 3-indolyl phosphate, and
nitroblue tetrazolium (Roche, Basel, Switzerland) was utilized
for color development in WISH, while Cy3-Tyramide and FITC

Tyramide (Roche, Basel, Switzerland) [0.001% H2O2 in PBST
(0.01% Tween 20)] was utilized in FISH. The numbers of gad+

and TH+ neurons in the brain region were counted manually
under a confocal microscope (Laser confocal, Leica TCS SP8
MP, Germany) (Hill and Petersen, 2015; Brown et al., 2018).
Particles of H3p+ and TPH+ cells were counted using ImageJ,
version 6.0 (National Institutes of Health, United States),
and Chat+ cells were counted from a zseries of images using
three-dimensional segmentation software in Imaris (Hill and
Petersen, 2015). Cell counts were statistically analyzed using
GraphPad Prism 8 software.

Ribonucleic acid interference

The template of double-stranded RNA was synthesized by
PCR. The dsRNA-DjCaln, DjCamKII, and DjNFAT primers
were designed by Primer Premier 5.0 (Supplementary Table 1).
dsRNA was synthesized using MEGAscriptTM RNAi Kit
(Invitrogen, United States), and then planarians were soaked
in 50 ng/µl dsRNA for 5 h and then transferred to the culture
medium (Orii et al., 2003). Control animals were treated with
dsRNA of the green fluorescent protein (GFP) (Fraguas et al.,
2021).

Immunohistochemistry

Immunostaining with the mouse monoclonal antibody anti-
SYNAPSIN (1:300, 3C11, AB Company, United States) and anti-
phosphohistone-H3 (S10) (1:200, Cell Signaling Technology,
Danvers, United States) were performed as previously described
(Cowles et al., 2012; Lu et al., 2017). First, the planarians were
euthanized with 2% of HCl and fixed in paraformaldehyde
with phosphate-buffered saline (PBS) at 37◦C for 1 h. Then,
planarians were dehydrated with 100% of methanol and
incubated with the primary antibodies anti-SYNAPSIN and
anti-phosphohistone-H3. Incubation with secondary antibodies
(1:200, rabbit anti-mouse, and goat anti-rabbit, marked with
HRP, Bioss, United States) was performed overnight at 4◦C. The
samples were then observed using a laser confocal microscope
(Leica TCS SP8 MP).

Western blot

Protein expressions of DjCaln and DjCamkII were
quantified with Western blot using the primary antibodies
anti-DjCaln and anti-DjCamkII antibodies at 1:500 dilutions.
Western blotting was performed as previously described (Gao
et al., 2017). Briefly, planarian protein was extracted into
PBS buffer, boiled for 20 min, and subjected to SDS-PAGE
analysis. After the protein transfer to polyvinylidene fluoride
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membranes, membranes were blocked with 5% skim milk
for 2 h at room temperature (RT). Then, membranes were
incubated with primary antibodies (anti-DjCaln and anti-
DjCamkII) followed by secondary antibodies (goat anti-rabbit
horseradish peroxidase (HRP)-conjugated antibody, 1:5,000,
Bioss, United States) overnight at 4◦C. Protein signals were
observed after treatment with enhanced chemiluminescence
solution (Thermo, United States). The quantitation was
performed by measuring the optical density of bands with
ImageJ, version 6.0 (National Institutes of Health).

Quantitative real-time PCR

Expressions of DjCamKII, DjCaln, and DjNFAT mRNA
were quantified using qPCR as previously described (Lu et al.,
2017). DjCamKII, DjCaln, and DjNFAT primers were designed
by Primer Premier, version 5.0 (Supplementary Table 1). The β-
actin gene was used as the internal reference. Briefly, total RNA
was extracted with TRIol reagent (Invitrogen, United States).
The reaction was carried out under the following conditions:
initial denaturation at 95◦C for 10 s followed by 35 cycles of
denaturation at 95◦C for 30 s, annealing for 30 s at 55◦C, and
extension at 72◦C for 45 s. The qPCR amplification cycles were
performed on the ABI 7,500 real-time PCR system (Applied
Biosystems, United States) using the quick-start Universal
SYBR Green Master (Roche, Switzerland). Relative expressions
compared to β-actin were calculated using the 2−11ct method.

Statistical analysis

Results are presented as mean ± SD. Comparisons between
groups were carried out using multiple t-tests. For all analyses,
∗P < 0.05 and ∗∗P < 0.01 were considered statistically
significant. Statistical analyses were carried out using SPSS
statistical software for Windows, version 16.0 (SPSS).

Results

Regulatory relationship between
DjCaln and DjCamkII during planarian
head regeneration

To study the regulation between DjCaln and DjCamkII
during planarian regeneration, the mRNA and protein levels of
DjCaln and DjCamkII were quantified by qPCR and Western
blot. Down-regulation of DjCaln led to significant up-regulation
of the expression of DjCamkII mRNA at 5, 7, and 10 days during
planarian head regeneration (Figure 1A). Down-regulation of
DjCamkII also led to significant up-regulation of the expression
of DjCaln mRNA at 5, 7, and 10 days of during planarian

head regeneration (Figure 1B). Western blot results showed that
when the expression of DjCaln protein decreased, the expression
of DjCamkII protein significantly increased at 5, 7, and 10 days
of during planarian head regeneration (Figures 2A,B). When
the expression of DjCamkII protein decreased, the expression
of DjCaln protein significantly increased at 5, 7, and 10 days
of during planarian head regeneration (Figures 2C,D). These
results revealed that DjCamkII and DjCaln were mutual
negative regulation during planarian head regeneration.

DjNFAT promotes the expressions of
DjCaln and DjCamkII by positive
feedback during planarian head
regeneration

Caln activated NFATs by dephosphorylating multiple
N-terminal phosphoserine residues in the regulatory domain
(Muller et al., 2009). To explore the relationship between
DjCaln, DjCamkII, and DjNFAT, qPCR was performed
in DjCaln (RNAi), DjCamkII (RNAi), or DjNFAT (RNAi)
regenerative planarians. The results demonstrated that
the expression of DjNFAT was significantly decreased in
DjCaln (RNAi) or DjCamkII (RNAi) regenerative planarians
(Figures 3A,B). Down-regulation of DjNFAT led to a significant
decrease in the expression of DjCaln and DjCamkII mRNA
(Figure 4A), as well as DjCaln and DjCamkII protein levels
(Figures 4B–E) at 5, 7, and 10 days during planarian head
regeneration. These results illustrated that DjNFAT promoted
the expression of DjCaln and DjCamkII by positive feedback
during planarian head regeneration.

Expression patterns of DjNFAT in adult
and regenerating planarians

During the regeneration, DjCamKII and DjCaln were
abundant in the regenerated brain (Zhen et al., 2020). To
determine whether DjNFAT was involved in brain regeneration,
the expression of DjNFAT was examined using WISH in
decapitated animals as they formed a new brain. The results
showed that, in intact planarians, DjNFAT was mainly expressed
in the pharynx and parenchymal cells (Figure 5A). In head
regeneration, at 1 and 3 days into regeneration, the positive
signal of DjNFAT was predominantly detected at the wound
(Figures 5C,D). Then the primordium of the brain continued
to change as the regenerated brain began to undergo a pattern
formation, in which a positive signal of DjNFAT was detected
at 5 days of regeneration (Figure 5E). The regeneration of the
brain was basically completed at 7 days of regeneration, and the
DjNFAT positive signal was further strengthened (Figure 5F).
At 10 days of regeneration, the DjNFAT positive signal of
the regenerated brain reached the strongest level, and the
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FIGURE 1

Regulatory relationship between DjCaln and DjCamkII mRNA during planarian head regeneration. (A) DjCamkII mRNA levels in DjCaln (RNAi)
planarians at 5, 7, and 10 days during planarian head regeneration, n = 4. (B) DjCaln mRNA levels in DjCamkII (RNAi) planarians at 5, 7, and
10 days during planarian head regeneration, n = 4, *p < 0.05, **P < 0.01.

FIGURE 2

Regulatory relationship between DjCaln and DjCamkII protein during planarian head regeneration. (A,B) DjCamkII protein levels in DjCaln (RNAi)
planarians at 5, 7, and 10 days during planarian head regeneration, n = 5. (C,D) DjCaln protein levels in DjCamkII (RNAi) planarians at 5, 7, and
10 days during planarian head regeneration, n = 5, **P < 0.01. C, control; A, DjCaln (RNAi); K, DjCamkII (RNAi).
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FIGURE 3

DjNFAT mRNA levels in DjCaln (RNAi) and DjCamkII (RNAi) during planarian head regeneration. (A) DjNFAT mRNA levels in DjCaln (RNAi)
planarians at 5, 7, and 10 days during planarian head regeneration, n = 4. (B) DjNFAT mRNA levels in DjCamkII (RNAi) planarians at 5, 7, and
10 days during planarian head regeneration, n = 4. *p < 0.05, **p < 0.01.

regeneration of the lateral nerves was complete (Figure 5G).
Using qPCR, changes in the expression of DjNFAT mRNA
during the head regenerative process were detected, and the
results showed that over time, the expression of DjNFAT
gradually increased, peaking at 10 days of regeneration, which
was consistent with the results of WISH (P < 0.01) (Figure 5B).
In general, the above results indicated that DjNFAT was widely
expressed in intact and regenerative planarians.

DjNFAT deficiency resulted in brain
defects during planarian head
regeneration

Trunk fragments of control (RNAi) and DjNFAT (RNAi)
planarians were stained with anti-phosphohistone H3 (H3P)
on days 1, 3, and 5 of regeneration (Brown et al., 2018).
The number of dividing cells during regeneration was
determined and no significant differences were found between
control (RNAi) and DjNFAT (RNAi), suggesting that a
gross proliferation defect was not present (Supplementary
Figure 2). DjNFAT (RNAi) regenerating trunk fragments
showed a normal regionalized expression of ston2
(Supplementary Figure 1; Zeng et al., 2018), suggesting
that DjNFAT did not affect neoblast proliferation and brain
patterning.

The knockdown of DjCamKII and DjCaln led to defects
in regenerated brains including incompact phenotypes at the
posterior of the new brain, and lateral branches that could
not regenerate (Zhen et al., 2020). To study the function of
the DjNFAT gene in brain regeneration, RNAi was carried
out by socking technique commonly used in planarians
research. Immunostaining with an anti-SYNORF1 antibody
against synapsin (Cebria, 2008) revealed that DjNFAT-RNAi
treatment caused apparent brain defects at 7 and 10 days

of regeneration (Figure 6). Compared to control animals
(Figures 6A–C), DjNFAT-RNAi regenerated animals were
found that the regenerative brain became small and the lateral
nerves cannot be regenerated completely (Figures 6D–F).
Hence, these results implied that DjNFAT was required for
the formation of a functional brain during planarian head
regeneration.

DjNFAT inhibition influences the
number of GABAergic neurons during
the planarian head regeneration

To confirm whether or not DjNFAT might affect the
number of certain types of neurons at 5, 7, and 10 days
during neurogenesis, the neurotransmitter synthesizing
enzymes were used as the neuron markers in FISH
to measure the numbers of neurons in decapitated
planarians after DjNFAT-RNAi treatment. The results
revealed that the numbers of choline acetyltransferase
(DjChat, cholinergic neurons), tyrosine hydroxylase (DjTH,
dopaminergic neurons), tryptophan hydroxylase (DjTPH,
serotonergic neurons) positive-neurons were similar to
the controls in the regenerated planarians, suggesting that
DjNFAT-RNAi could not influence the regeneration of
planarian cholinergic, dopaminergic or serotonergic neurons
(Supplementary Figure 3).

As previously presented, knockdown of DjCamKII or
DjCaln led to GABAergic neurons decreased during planarian
head regeneration (Zhen et al., 2020). To confirm whether
DjNFAT also affected the number of GABAergic neurons at
5, 7, and 10 days during neurogenesis, WISH was used to
measure the number of GABAergic neurons after DjNFAT
(RNAi), with the help of neurotransmitter synthase GAD
as GABAergic neuron marker. Compared with the control
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FIGURE 4

DjNFAT regulates DjCaln and DjCamkII by feedback positive regulation during planarian head regeneration. (A) DjCaln and DjCamkII mRNA level
in DjNFAT (RNAi) planarians at 5, 7, and 10 days during planarian head regeneration, n = 4. (B,C) Relative DjCaln protein level in DjNFAT (RNAi)
planarians at 5, 7, and 10 days during planarian head regeneration, n = 5. (D,E) Relative DjCamkII protein level in DjNFAT (RNAi) planarians at 5, 7,
and 10 days during planarian head regeneration, n = 5, *P < 0.05, **P < 0.01. C, control; A, DjNFAT (RNAi).

group, the number of DjGAD-positive neurons in planarian
regenerated significantly decreased (Figures 7A,B). FISH
analysis showed that the number of DjGAD-expressing cells
in the newborn brain area was significantly reduced at 5, 7,
and 10 days after DjNFAT RNAi (Figure 7B). The expression
level of DjGAD protein in DjNFAT (RNAi) planarians was

detected by Western blot. Compared with control animals,
the results showed that DjGAD protein decreased in the
regeneration period (Figures 7C,D), which indicated that
DjNFAT may affect the number of GABAergic neurons during
planarian head regeneration through transcriptional regulation
of GAD.
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FIGURE 5

Expression patterns of DjNFAT in the intact and regenerating planarians after decapitation. (A) Dorsal view of an intact planarian shows an
abundant expression in the pharynx and parenchymal cell (arrows). (B) qPCR analysis of DjNFAT expressions in the regenerating fragments at 0,
1, 3, 5, 7, and 10 days during planarian head regeneration, n = 4, *P < 0.05, **P < 0.01. d, day. (C–G) WISH showing the expressions of DjNFAT in
regenerating planarians at 1, 3, 5, 7, and 10 days during planarian head regeneration (arrows), n = 6. Scale bars: 0.5 mm.

FIGURE 6

Immunostaining with anti-SYNORF1 in DjNFAT(RNAi) treated planarians during planarian head regeneration. (A–C) Normal regenerated brains
(control), n = 5. (D–F) The phenotypes of the regenerated brain in the DjNFAT(RNAi) treated planarians at 5, 7, and 10 days after amputation,
n = 6. Anterior is at the front. Scale bars: 0.5 mm.
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FIGURE 7

DjNFAT inhibition influences the number of GABAergic neurons during planarian head regeneration. (A) FISH showing the expression of DjGAD
in regenerating planarians at 5, 7, and 10 days after amputation, n = 5. Scale bars: 0.2 mm. (B) The number of DjGAD-expressing neurons. Error
bars represent the SD (**P < 0.01). Anterior is at the front. d, day. (C) Western blotting results of DjGAD protein expression in the regenerated
head of control and DjNFAT-RNAi planarians, n = 4. (D) The expression levels of GAD protein in regenerated planarians. C, control; I, DjNFAT
(RNAi).

Discussion

The most remarkable characteristic of the planarian
resides in its strong regeneration ability. The planarian
brain comprises of different types of neurons, including
the same type of neurons found in humans, such as
dopaminergic, cholinergic, GABAergic, and serotonergic
neurons (Nishimura et al., 2007a,b, 2008, 2010). As such,
understanding the neural regeneration mechanism of
planarians can shed light on how humans make and reintegrate

new neurons. As previously explained, down-regulation of
DjCamKII or DjCaln led to the number of GABAergic neurons
decreased during planarian head regeneration (Zhen et al.,
2020). In this study, the mechanism by which Wnt/Ca2+

signaling pathway regulates the formation of GABAergic
neurons during planarian neurogenesis was examined. The
relationship between DjCamKII and DjCaln suggests a mutual
negative regulation during planarian head regeneration.
Additionally, knockdown of DjCaln or DjCamKII reduced
the expression of DjNFAT, while knockdown of DjNFAT
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FIGURE 8

Proposed model illustrating feedback loop between DjCaln, DjCamkII, and DjNFAT that regulates the number of GABAergic neurons during
planarian head regeneration. In the control group, the mutual regulation of DjCaln, DjCamkII, and DjNFAT was in balance, and the GABAergic
neurons could be normal formed during the planarian head regeneration. In the absence of adequate regulation of DjCaln or DjCamkII after
DjNFAT RNAi, the number of GABAergic neurons would be reduced during planarian head regeneration.

could reduce both the mRNA and protein expressions of
DjCaln and DjCamKII. DjNFAT exerted feedback positive
regulation on both DjCaln and DjCamkII. DjNFAT was
predominantly expressed in the pharynx and parenchymal
cells of the intact planarian, but located in the newborn brain
during planarian head regeneration. Down-regulation of
DjNFAT affected the number of GABAergic neurons and the
expression level of DjGAD protein during planarian head
regeneration. These findings suggest that the feedback loop
between DjCaln, DjCamkII, and DjNFAT is essential for
the number of GABAergic neurons during planarian head
regeneration.

Previous studies demonstrated that CamKII can mediate
phosphorylation of Caln (Hashimoto et al., 1988; Hashimoto
and Soderling, 1989; Martensen et al., 1989) and CaMKIIδc

can directly phosphorylate Caln to negatively regulate
Calcineurin/NFAT signaling in cardiac myocytes (MacDonnell
et al., 2009). In budding yeast, the lack of CMK2 up-regulated
the level of calcium/calcineurin signaling and augmented the
expression levels of Crz1-dependent PMR1 and PMC1 (Xu
et al., 2019). In Human T Cells, CaMKII down-regulated both
Calcineurin and Protein Kinase C mediated pathways for
cytokine gene transcription (Hama et al., 1995). Consistent
with previous reports, down-regulation of DjCaln led to
increase in the expressions of DjCamkII mRNA and protein
at 5, 7, and 10 days during planarian head regeneration.

Down-regulation of DjCamkII also led to the increase in
the expression of DjCaln mRNA and protein decreased
at 5, 7, and 10 days during planarian head regeneration
(Figures 1, 2). These results indicated that DjCamKII and
DjCaln suggest a mutual negative regulation during planarian
head regeneration. Knockdown of DjCaln or DjCamKII reduced
the expression of DjNFAT, while the expression of DjCamkII
and DjCaln decreased after down-regulation of DjNFAT
(Figures 3, 4), which was a feedback positive regulation of
DjCamkII and DjCaln by DjNFAT. These results indicated
that DjNFAT exerted feedback positive regulation on both
DjCaln and DjCamkII during planarian head regeneration
(Figure 8).

The NFAT protein is part of the family of transcription
factors, which usually exists in a hyperphosphorylated state in
the cytoplasm (Shaw et al., 1988; Schulz and Yutzey, 2004;
Boothby, 2010). The NFATs play a role in many vertebrate
developmental systems, including the nervous system (Crabtree
and Olson, 2002; Schulz and Yutzey, 2004; Macian, 2005).
NFATs (NFATc1–c4) are expressed in neurons (Canellada
et al., 2008). For example, NFATc3 and NFATc4 are highly
expressed in primary hippocampal neurons (Vihma et al.,
2016). The transcription factor Nfat5 was expressed in the
anterior blastema of the tail fragments after 3 days into
regeneration in planarian S. mediterranea (Suzuki-Horiuchi
et al., 2021). In contrast to previous studies, in this paper,
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the results showed that DjNFAT was mainly expressed in the
pharynx and parenchymal cells in intact planarians (Figure 5A).
During planarian head regeneration, DjNFAT was located in
the blastema at 3 days and perceptible in the brain at 10 days
during head regeneration in planarian D. japonica (Figures 5C–
G). As previously mentioned, DjNFAT was difficult to detect in
the brain under homeostatic conditions. However, its expression
became readily apparent soon after amputation, indicating that
DjNFAT might participate in newborn brain regeneration.

Studies found that calcineurin and NFAT are essential for
neuregulin and ErbB signaling, neural crest diversification, and
differentiation of Schwann cells (Kao et al., 2009). Caln/NFAT4
signaling pathway is a key mechanism for the disruption
of synaptic remodeling and homeostasis in the hippocampus
after acute injury (Furman et al., 2016). Caln/NFAT is also
essential in driving glutamate dysregulation and neuronal
hyperactivity during AD (Sompol et al., 2017). Moreover,
Caln/NFAT signaling plays an important role in the shaping
of the synaptic connectivity of thalamocortical and nucleus
reticularis thalami GABAergic neurons mediated by slow-
wave sleep (Pigeat et al., 2015). As previously described,
knockdown of DjCaln or DjCamkII led to regenerated brains
defects including partial deletions and lateral branches not
regenerated. And the number of GABAergic neurons also
decreased during planarian head regeneration (Zhen et al.,
2020). In this study, down-regulation of DjNFAT caused
defects in regenerated brains including newborn brain small
and lateral nerve cannot regenerate (Figure 6). The number
of GABAergic neurons in DjNFAT (RNAi) planarians was
significantly reduced (Figures 7A,B), which is consistent with
DjCaln-RNAi or DjCamkII-RNAi animals (Zhen et al., 2020).
In addition, the expression level of DjGAD protein in DjNFAT
knockdown planarians was down-regulated (Figures 7C,D),
which means that DjNFAT could regulate the GABAergic
neurons during planarian head regeneration. Thus, we conclude
that the feedback loop between DjCaln, DjCamkII, and DjNFAT
regulates the number of GABAergic neurons during planarian
head regeneration (Figure 8).
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SUPPLEMENTARY FIGURE 1

The expression of DjSton2 in control and DjNFAT(RNAi) regenerated
planarians visualized by FISH.

SUPPLEMENTARY FIGURE 2

Immunostaining of phosphohistone-H3 on days 1, 3, and 5 of
regeneration in control and DjNFAT(RNAi) regenerated planarians.

SUPPLEMENTARY FIGURE 3

The different neuronal types in control and DjNFAT(RNAi) regenerated
planarians visualized by FISH. (A) FISH of neuronal populations that
regenerate properly after DjNFAT(RNAi). Cholinergic neurons (Chat). (B)
FISH of neuronal populations that regenerate properly after
DjNFAT(RNAi). Dopaminergic neurons (TH). (C) FISH of neuronal
populations that regenerate properly after DjNFAT(RNAi). Serotonergic
neurons (TPH). (n = 10). Scale bars = 0.2 mm. Anterior is at the front. ns,
no significant.
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