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Spinal cord injury (SCI) is a global medical problem with high disability and mortality 
rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury 
has a complex etiology, lack of diagnostic methods, poor treatment effect and other 
problems, which lead to the difficulty of spinal cord regeneration and repair, and 
poor functional recovery. Recent studies have shown that gene expression plays an 
important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding 
RNA molecules that target mRNA expression in order to silence, translate, or interfere 
with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, 
autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs 
contribute to these events. This article reviews the pathophysiological mechanism 
of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in 
secondary neuroinflammation after SCI, so as to provide new ideas and basis for 
the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs 
in neurological diseases may also make them potential biomarkers and therapeutic 
targets for spinal cord injuries.
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1. Introduction

Spinal cord injury (SCI) is a serious nervous system disease. In addition to limitations in motor 
and sensory function, patients with SCI also have dysfunction of multiple systems. This impairment 
leads to a severe deterioration in the quality of life of patients, increasing the disability rate of SCI 
and the mortality rate of SCI (Giger et al., 2010; Yan et al., 2012). About 90% of SCI is caused by 
trauma (Alizadeh et al., 2019).

Spinal cord injury includes primary and secondary stages after injury. The primary stage 
includes the destruction of nerves and axons, hemorrhaging, and the destruction of glial membranes 
(Couillard-Despres et al., 2017; Anjum et al., 2020). Spinal cord compression intensity and severity 
are highly dependent on the initial injury. In addition to neurological, physiological, and biochemical 
changes, microglia and astrocytes are also affected (Figure 1). As cytotoxicity, reactive oxygen 
concentrations, and glutamate levels continue to rise, secondary damage is further exacerbated. The 
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main clinical manifestations of secondary injury are vascular injury, 
ischemic edema, electrolyte disorders, inflammatory reactions, oxidative 
stress, cytotoxicity, apoptosis, glial scar formation, and Wallerian 
degeneration (Dimitrijevic et al., 2015; Anjum et al., 2020). After the 
primary stage, the body enters the secondary injury stage, including 
acute, subacute, and chronic phases. Ion imbalance, edema, necrosis, 
vascular injury, and inflammation are the main factors of the acute 
phase. The subacute stage mainly includes Wallerian degeneration, 
neuronal apoptosis, and axonal demyelination. After entering the 
chronic phase, axon remodeling and glial scar formation lead to fiber 
bundle disorders (Dumont et al., 2001; Bareyre and Schwab, 2003; Di 
Giovanni et al., 2003). Most studies and clinical interventions focus on 
the chronic stage. Spinal cord injury has the characteristics of great 
harm, high incidence, limited clinical diagnosis, and difficult treatment. 
X-ray, CT, MRI, lumbar puncture cerebrospinal fluid examination, 
Neurophysiological examination, etc., all belong to the physical 
examination of clinical diagnosis of SCI. Spinal MRI is the gold standard 
for evaluating spinal instability, spinal canal invasion, and intramedullary 
nerve structure injury caused by mechanical trauma. It plays an 
important role in the clinical diagnosis of SCI (Ellingson et al., 2014; 
Kumar and Hayashi, 2016). In clinical practice, MRI is often used to 

show the abnormal conditions inside and outside the medullary and 
make a preliminary judgment on the degree of injury (spinal cord 
compression, extent of disk herniation, ligament instability near the 
injury site; Kumar and Hayashi, 2016; Shah and Ross, 2016). However, 
conventional spinal MRI cannot provide or predict the association 
between adjacent spinal segments and degenerative changes in the brain, 
exploring the plasticity of the brain and spinal cord (Freund et al., 2019). 
This limitation has driven the development of subsequent quantitative 
MRI tests (magnetization transfer, magnetic resonance relaxation 
imaging, diffusion imaging, etc.). It also promotes the exploration and 
research of conventional MRI markers, neuroimaging biomarkers and 
effective biomarkers (Koskinen et al., 2013; Jirjis et al., 2016; Seif et al., 
2018; Ziegler et al., 2018). MicroRNAs (MiRNA), as key regulatory 
factors in transcriptional regulation of gene expression changes in 
nervous system diseases, have been gradually paid attention to and 
studied by scholars. The direct contact between cerebrospinal fluid and 
blood in the central nervous system is considered an important source 
of biomarkers (Badhiwala et  al., 2018; Baichurina et  al., 2021). The 
current clinical treatment of SCI mainly includes emergency surgery in 
the acute phase, drug therapy, and rehabilitation therapy in the chronic 
phase (Furlan et al., 2016; Liu et al., 2018). However, suitable solutions 

FIGURE 1

Glial cells in secondary injury after SCI. Normally, neurons play a protective role, and microglia resist the inflammatory response. Once SCI occurs, the 
blood–brain barrier is destroyed, leading to neuronal degeneration under the effect of neurotoxicity, and microglia cells play a pro-inflammatory role.
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for the problems of nerve regeneration and functional repair in patients 
with SCI have not been found, and there are no effective treatment 
plans. Some studies have tried to explore other interventions to treat SCI 
more accurately and effectively with the help of exosomes, cell 
transplantation, and biological scaffolds (Li et al., 2017; Lien et al., 2019; 
Mohammadshirazi et al., 2019).

2. MicroRNAs

Non-coding RNA refers to RNA that does not encode proteins. 
These include rRNA, tRNA, snRNA, snoRNA, microRNA, and other 
RNAs with known functions, as well as RNAs with unknown functions 
(Shi et al., 2022). MicroRNAs (miRNAs) are a group of endogenous 
non-coding single-stranded RNAs that regulate gene expression (Ho 
et  al., 2022). Short RNA molecules, microRNAs contain 19–25 
nucleotides. The 3′-untranslated region (3′-UTR) of a target RNA allows 
a miRNA to target hundreds of other mRNAs. It can cause mRNA 
degradation or inhibit mRNA expression at the transcriptional level. 
miRNAs can regulate protein synthesis, gene expression, and thus affect 
various diseases and growth and development processes. miRNAs play 
equally important roles in maintaining morphological stability, axonal 
morphology and plasticity of cells in the nervous system (Bartel, 2004; 
Ning et al., 2014). The total number of human miRNAs is about 800, and 
they act on 30% of protein-coding genes (Bentwich et al., 2005; Li et al., 
2009). miRNAs are associated with many allergic diseases, such as 
eczema, allergic rhinitis, asthma and so on (Lu et al., 2012; Li et al., 2020; 
Weidner et  al., 2021). miRNAs play important roles in different 
physiological and pathological processes of nervous system diseases, 
neurovascular diseases, and diabetes (Vienberg et al., 2017; Sun et al., 
2018; Gasecka et al., 2020; van den Berg et al., 2020; He et al., 2021; 
Wang, 2021; Wang L. et al., 2021; Su et al., 2022). They have become a 
biomarker of cardiovascular diseases, ischemic stroke, and 
neurodegenerative diseases because of their regulation of gene 
expression (Eyileten et  al., 2021). miRNAs have been shown to 
be consistently maintain in the blood and cerebrospinal fluid of patients 
with Alzheimer’s disease (AD), are related to AD-related proteins in the 
brain, and play a role in the pathogenesis of AD (Qiu et  al., 2015; 
Takousis et al., 2019). miRNAs are related to multiple pathophysiological 
pathways in Parkinson’s disease and target the genes BCL2, BDNF, and 
SIRT1 by upregulating miR-9, miR-34a, and miR-141 (Rostamian 
Delavar et  al., 2018). miR-939 and miR-26a are related to the 
neuroinflammatory response and oxidative stress in the pathogenesis of 
Parkinson’s disease (Martinez and Peplow, 2017). In ischemic stroke, 
reduced ischemia is associated with the downregulation of miR-30a, 
which is achieved by enhancing Beclin-1-mediated autophagy (Wang 
et  al., 2014). Upregulation of miR-146a is associated with 
neuroprotection in cerebral ischemia (Zhou X. et al., 2016; Figure 2).

3. The role of miRNAs in the 
pathogenesis of SCI

Numerous studies have confirmed the role of miRNAs in SCI 
secondary injury (inflammatory response, angiogenesis, axon 
regeneration, glial cell development, etc.; Strickland et al., 2011; Yunta 
et al., 2012; Bhalala et al., 2013; Hu et al., 2013; Shi et al., 2017). miRNAs 
regulate the expression of related proteins by up-regulating or down-
regulating target genes that are altered after SCI. For example, the 

changes of miR-10a, miR-10b, miR-142-3p, miR-338 and miR-133 
contents after SCI, which are closely related to the pathogenesis of the 
disease (Zhou S. et al., 2016). Exosomes derived from bone marrow 
mesenchymal stem cells have been shown to inhibit the NF-κB pathway 
by upregulating miR-23b targeting TLR4, participate in the process of 
oxidative stress, alleviate the inflammatory response after SCI, and 
improve motor function of rats after SCI (Nie and Jiang, 2021). By 
pretreating neuron-derived exosomes rich in miR-126-3p under hypoxic 
conditions, PIK3R2 can be regulated to reduce pain hypersensitivity 
induced by ischemia–reperfusion injury (Wang H. et  al., 2021). 
miR-29a/199B inhibits the RGMA/STAT3 axis and promotes neural 
function repair in rats after SCI (Yang and Sun, 2020). Neuron-derived 
exosomes regulate astrocyte and microglia activation through 
miR-124-3p to protect against traumatic SCI (Jiang et  al., 2020). 
Intravenous administration of miR-133b decreased macrophage 
aggregation and extracellular matrix protein expression at the site of SCI 
and reduced harmful fibrous scar formation after SCI (Theis et al., 2017). 
Overexpression of miR-223 decreased the protein expression levels of 
interleukin (IL)-1β, IL-18, NLRP3, ASC, and caspase-1, and regulated 
the transformation of macrophages between types in injured spinal 
cords of mice with chronic sciatic nerve injury (Zhu et al., 2021). In 
addition, miR-20a, miR-21, miR-497, miR-494, miR-223, miR-29b, 
miR-320, and miR-124 were involved in the apoptosis of cells after SCI 
(Jee et al., 2012b; He et al., 2015; Zhao et al., 2015; Xu et al., 2016; Bai 
et al., 2021; Huang et al., 2021; Malvandi et al., 2022; Ma et al., 2022a). 
miR-133b, miR-20a, and miR-124 are involved in promoting 
angiogenesis and regulating nerve repair after SCI (Yu et al., 2015; Theis 
et al., 2017; Cui et al., 2019; Wang T. et al., 2019; Danilov et al., 2020).

3.1. Mechanisms of miRNA in neuropathic 
pain after SCI

As a protective response mechanism of the body, pain often 
indicates that some tissues are in or are about to be in a state of injury. 
Increasing evidence suggests that miRNA expression, DNA methylation, 
and histone modifications are associated with chronic pain (Descalzi 
et al., 2015). Chronic pain is accompanied by cognitive, emotional, and 
anxiety disorders. Microglia and astrocytes, as glial cells in the spinal 
cord, play an important role in neuroinflammation and nerve 
conduction to regulate pain (McWilliams et al., 2003). Microglia are the 
resident immune cells in the central nervous system. In the acute 
inflammatory phase of SCI, M1 microglia are mainly seen, causing a 
pro-inflammatory response. In the chronic phase of SCI, M1 microglia 
transform to M2 microglia in the secondary injury phase, showing anti-
inflammatory effects (Figure 3). miRNAs are considered to be “genetic 
switches” for microglial transformation between phenotypes. With the 
progress of sequencing technology, the expression profiles of miRNAs 
in microglia have been gradually identified. Most miRNAs can target 
mRNAs to downregulate protein expression in microglia and prevent 
the progression of neuropathic pain (Jeong et al., 2016; Inoue and Tsuda, 
2018). miRNAs and other non-coding RNAs are considered key in the 
pathogenesis of the inflammatory response, nerve injury, and pain, and 
are seen as potential therapeutic targets (Lu and Rothenberg, 2018; Ling 
et  al., 2021) and play an important role in the occurrence and 
development of inflammation (Bai et al., 2007). Non-coding RNAs have 
been widely studied and are regarded as key factors involved in the 
pathophysiology of chronic pain, and their main mode of action is the 
deletion of Dicer (an enzyme involved in miRNA production). In rats 
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with Dicer1 gene knockdown, the expression of the glial fibrillary acidic 
protein was inhibited by miR-17-5p, and the proliferation of astrocytes 
was inhibited (Hong et al., 2014). miRNAs play a regulatory role in 
nociceptive hypersensitivity (Schinkel et al., 2006; Sakai and Suzuki, 
2015) and affect neuronal excitability by changing the expression of ion 
channels (Wang, 2013). Cav1CaV1.2l-type calcium channel underlies 
plasticity in chronic neuralgia. As a direct target of caav1.2l-type calcium 
channel, miR-103 can induce neuropathic pain by intrathecal injection 

of miR-103 (Fossat et al., 2010; Favereaux et al., 2011). Spinal cord injury 
not only affects the expression of miRNA in dorsal root ganglion (DRG) 
neurons but also affects the expression of miRNA in other neurons and 
glial cells in the spinal cord and brain. Cells at the site of injury are not 
directly affected but can function through glial activation and 
remodeling of synaptic plasticity. Neurons of the DRG and trigeminal 
ganglion, as first-line nociceptive signalers, are the primary sensory 
neurons in SCI. Extracellular miRNAs can activate DRG neurons, 

FIGURE 2

MicroRNAs in normal and pathological states. Under normal circumstances, miRNA is involved in neural development, synaptogenesis, neurogenesis, gene 
expression, and signal transmission. In its pathological state, miRNA is involved in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, SCI and stroke.

FIGURE 3

Polarization typing of microglia at different times after SCI. In the acute phase, microglia mainly express M1, showing a pro-inflammatory response. The 
pro-inflammatory effect of microglia reached a peak on the seventh day after the injury, and the inflammatory response became more obvious; in the 
chronic phase, the M1 type transformed into the M2 type, showing an anti-inflammatory effect. Finally, the second peak of microglia appeared during the 
neural remodeling phase (6–8 weeks after SCI).
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generate rapid inward currents, and mediate nociceptive sensation with 
the help of Toll-like receptors (Park et  al., 2014). The expression of 
miR-155 changes in inflammation-related diseases, and it is upregulated 
after osteoarthritis. Intrathecal injection of miR-155 inhibitors attenuates 
neuropathic pain, inhibiting the corresponding proinflammatory 
cytokines. miR-195 has been reported to mediate the neuroinflammatory 
response and neuropathic pain by regulating autophagy, a key 
component of neuroinflammation after SCI (Li X. et al., 2013; Vigorito 
et al., 2013; Tan et al., 2015). ATG14 is a key regulator in the process of 
autophagy and a direct target of miR-195; by upregulating miR-195, the 
autophagy response is inhibited, and the neuroinflammatory response 
is enhanced, intensifying neuropathic pain (Obara and Ohsumi, 2011; 
Shi et  al., 2013). miR-203 and miR-124 are also involved in the 
neuroinflammatory response after SCI. The target of the former is the 
Ras-related protein Rap-1A(RAP1A)3′-UTR. The content of RAP1A in 
the dorsal spinal cord increases after spinal ganglion shock. In previous 
studies, it has been shown that the expression of miR-203 was increased 
in the spinal cord after formalin stimulation, which also indicated that 
mir-203 may be involved in neuropathic pain (Urayama et al., 1997; Li 
H. et al., 2015). Intermittent electrical stimulation could reduce the 
expression of miR-124 in rats after SCI, and intrathecal injection of 
miR-124 could reduce neuropathic pain caused by peripheral nerve 
injury. Therefore, miR-124 may also be involved in the occurrence and 
development of neuropathic pain after SCI (Strickland et al., 2014). 
Different types of disease have quantified abnormal miRNA expression 
in body fluids and biopsied tissues, linking this abnormal expression to 
inflammation and pain (Andersen et al., 2014, 2016; Lin et al., 2017). 
Studies have mainly focused on miR-21, miR-146a, and miR-155 (Tafuri 
et al., 2015). It is necessary and meaningful to study the mechanisms the 
involvement of miRNA in neuropathic pain after SCI, which can not 
only provide a diagnostic basis for treatment of patients with pain but 
can also provide evidence for disease prognosis.

3.2. miRNAs in neuronal repair and axon 
regeneration after SCI

miRNAs are tightly controlled during neural development and can 
regulate the expression of multiple genes. According to a study from 
Li et al., miRNAs and related signaling pathways play important roles 
in the formation of glial scars and axonal regeneration after SCI (Li 
et al., 2016), including neuronal degeneration and remodeling, axonal 
regeneration, mRNA degradation, and myelin reformation caused by 
translation inhibition (Fiorenza and Barco, 2016). The proliferation of 
astrocytes, the formation of myelin debris, and the appearance of scar 
tissue are the causes of axonal regeneration and nerve repair disorders 
after SCI, which play a decisive role in recovery (Zheng et al., 2012). 
Regulatory factors such as mTOR, STAT3, NF-kB, cAMP, and JNK are 
related to the regulation of astrocytes in disease pathogenesis (Hung 
et  al., 2016). The effects of miRNAs on astrogliosis through the 
regulation of signaling pathways has been gradually confirmed. For 
example, miR-590 and miR-582 can target NF-kB signaling; miR-146a, 
miR-133b, and miR-124 can target the regulation of the RhoA 
signaling pathway (Li P. et al., 2015; Xu et al., 2015). Targeting miR-21 
may serve as a therapeutic approach to control gliosis after SCI and 
improve the prognosis of the disease (Sahni et  al., 2010). 
Overexpression of miR-145 can reduce the number of astrocyte-
related cell processes and affect cell proliferation and migration (Wang 
et al., 2015). miRNAs may be directly or indirectly involved in the 

repair of nerve injury caused by SCI. The dramatic changes of miRNAs 
in axonal regeneration after SCI also suggest that miRNAs play a key 
role in the pathogenesis of SCI (Bareyre and Schwab, 2003; Nakanishi 
et  al., 2010). miRNAs increase in abundance after SCI and are 
regulated by SCI; abnormal miRNA expression may aggravate SCI. A 
bioinformatics analysis showed that abnormally expressed miRNAs 
play regulatory roles by acting on potential targets, and several 
miRNAs have been identified to be involved in axonal regeneration. 
RhoA is an inhibitor of axon growth. In non-mammalian zebrafish, 
miRNA-133b is upregulated by the small molecule GTPase RhoA to 
regulate protein levels to restore motor function and promote axon 
regeneration (Yu et al., 2012). In recent years, more and more studies 
have mainly focused on the role of miRNAs and the Rho/ROCK 
pathway in axonal growth promotion and neuronal apoptosis 
inhibition (Yan et al., 2012; Li et al., 2016; Zhou S. et al., 2016). In 
mouse P19 cells, overexpression of miR-124 can promote axon growth, 
and research shows that blocking miR-124 inhibits axon growth (Yu 
et  al., 2008). miR-124 can also reduce the SCI area through the 
reduction of astrocytes and increasing neurons (Xu et al., 2012). In 
addition, miR-138 regulates axonal regeneration through negative 
feedback by interacting with SIRT1, a histone deacetylase dependent 
on its target, NAD (Liu et al., 2013; Li X. H. et al., 2013). Overexpression 
of miR-20a in damaged spinal cord tissues led to sustained 
degeneration of motor neurons when knocked out in a study by Jee 
et al. (2012a,b). The corresponding target gene protein levels increased 
after miR-20a overexpression, reducing apoptosis and improving 
motor function (Jee et al., 2012b) Increased expression of miR-486 also 
increased oxidative stress-mediated neurodegenerative responses (Jee 
et al., 2012a).

3.3. Role of miRNA in vascular regeneration 
after SCI

Neurogenesis and angiogenesis are closely related and often occur 
synchronously after SCI. Endothelial cells regulate neuronal 
differentiation through the secretion of soluble factors in vitro (Fuchs 
et al., 2004; Ohab et al., 2006). Promoting angiogenesis and neurogenesis 
is beneficial to rehabilitation after SCI and stroke, and they are regulated 
by multiple miRNAs. miR-27a regulates the TLR4 signaling pathway by 
downregulating TICAM-2, reduces reperfusion injury in rats after SCI, 
reduces the inflammatory destruction of the blood–spinal cord barrier 
caused by spinal cord ischemia, and reduces edema (Li X. Q. et al., 
2015). Mesenchymal stem cell-derived exosomes transfected with 
miR-126 promoted neurogenesis and angiogenesis by inhibiting cell 
apoptosis and restoring neural function after SCI (Huang et al., 2020). 
miR-21 is related to vascular endothelial growth factor, the Ang-1 
receptor, and Ang-1 after SCI (Ge et  al., 2014). Locally permeable 
macrophages after SCI accelerate mitochondrial damage by delivering 
miR-155, which activates the NF-κB signaling pathway by targeting the 
suppressor of cytokine signaling 6 (SOCS6) and inhibits p65 
ubiquitination and degradation. This study demonstrated the role of the 
miR155/SOCS6/p65 axis in regulating the mitochondrial function of 
vascular endothelial cells and attempted to describe the causes of 
crosstalk and the mechanisms of interaction between vascular 
endothelial cells and macrophages after SCI (Ge et al., 2021). miR-210 
inhibits ePhrin-A3 and protein tyrosine phosphatase to promote 
angiogenesis after SCI (Ujigo et al., 2014). miR-223 is also involved in 
post-SCI angiogenesis (Liu et al., 2015). miR-107 increases endothelial 
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VEGF165/164 levels and the number of capillaries in ischemic stroke (Li 
Y. et al., 2015).

3.4. miRNAs may be biomarkers for SCI

miRNAs have two major characteristics of tissue specificity and 
stability in body fluids, and changes in miRNA content after SCI is a 
prerequisite for their possible role as a post-SCI biomarker. At present, 
the gold standard for clinical diagnosis of SCI is MRI and the American 
Spinal Injury Association Impairment Scale, but due to the poor basic 
condition of patients, comorbidity with other injuries, and the limited 
level of drug and surgical treatment availability, the reliability of these 
two assessments decreases (Lubieniecka et  al., 2011). Proteins can 
be used as biomarkers; however, despite extensive studies in animal 
models, no standard treatments have been established based on protein 
biomarkers. It is difficult to determine the severity of related symptoms 
and variability of injury recovery caused by secondary injury after SCI 
solely by neurological examination (Yang et al., 2018). Glial fibrillary 
acidic protein and calcium-binding protein S100-β are potential protein 
biomarkers of astrocytes in injured tissues, and the levels of these two 
proteins in cerebrospinal fluid and serum of patients with SCI are higher 
than in healthy controls (Kwon et al., 2010). Proteins are sometimes 
collected from cerebrospinal fluid to determine the location and extent 
of the damage, and cerebrospinal fluid is harvested mainly by invasive 
lumbar puncture. The operation is difficult, and patient acceptance is 
low. Therefore, to quickly determine the scope of SCI, finding specific 
biomarkers that can be directly derived from blood or body fluids is 
more conducive to clinical practice and precisely targeted interventions. 
Recent studies have shown that miRNA is tissue-specific and stable in 
body fluids, making it a good candidate as a blood biomarker (Laterza 
et al., 2009). About 400 miRNAs have been identified using microarrays, 
and nearly 300 of them showed altered expression in rat models of SCI, 
with mutations in 97 miRNAs, including 60 with increased expression 
and 37 with decreased expression (Jin et al., 2014; Ning et al., 2014). Jee 
et al. upregulated the expression of NeuroD6 and Ngn1 and reduced 
apoptosis by inhibiting miR486 and miR20a and were the first to use 
miRNAs as novel drug targets for the treatment of human SCI (Jee et al., 
2012a,b). Expression of miR-181a, miR-127, miR-1, miR-206, miR-152, 
miR-221, and miR-214 was changed after SCI, among which miR-181a 
and miR-127 affected the expression levels of CplA2 and SPLA2 in the 
cytosol. miR-1, miR-206, miR-152, miR-221, and miR-214 are involved 
in the pathogenesis of SCI via gene regulation on corresponding targets 
such as intercellular adhesion molecule 1, tumor necrosis factor-α and 
IL-1β (Baichurina et al., 2021). Tigchelaar et al. studied the expression 
of miRNAs in pig serum and cerebrospinal fluid in animals with 
different degrees of SCI. The results showed that two miRNAs (miR-
1,285, miR-4,331) were decreased in pig serum, while the other five 
miRNAs (miR-208b, miR-885-5p, miR-133b, miR-204, and miR-1) were 
increased. This indicates that the total miRNAs in serum are correlated 
with the degree of SCI, which further indicates that miRNAs may serve 
as biological markers and have a certain guiding value in SCI (Tigchelaar 
et al., 2017). Based on this study, Tigchelaar et al. further observed the 
distribution of miRNAs by collecting cerebrospinal fluid and blood from 
patients with clinical acute SCI. The results showed significant changes 
in 50% of miRNAs in patients with SCI, with the greatest changes (at 
least 190) in the levels of miRNAs detected in cerebrospinal fluid (CSF). 
Different from the above results, experiments in non-human animals 
showed that serum miRNAs were more strongly correlated with the 

severity of SCI and the prognosis of the disease (Tigchelaar et al., 2019). 
miRNAs, as epigenetic participants, are common markers of disease, 
which also makes them key regulators in various pathophysiological 
processes. In addition to miRNA, non-coding RNAs, such as long-and 
short-ncRNAs and piRNA, may also affect the occurrence and 
development of human diseases. Abnormal regulation of miRNAs 
occurs in cellular processes and disease, and changes in miRNA levels 
can be detected in body fluids, making them potential targets for clinical 
treatment and diagnostic markers, which are helpful for disease 
classification and diagnosis (Nieto-Diaz et al., 2014; Yu et al., 2015; Shi 
et al., 2017; Figure 4).

3.5. SCI therapy based on miRNAs

The neuroprotective effects based on microRNAs in SCI experiments 
are mainly reflected in the following aspects. (1) Using lentiviral 
transfection technology to reduce lesion volume and improve motor 
function after SCI by targeted upregulation of a specific microRNA 
(miR-124; Gu et al., 2017), adeno-associated virus-miR-383-infected 
bone marrow infused locally with bone marrow interstitial stem cells 
was able to help restore motor function in rats while protecting tissue 
integrity (Wei et al., 2017). (2) miR-210 improved motor function after 
SCI by acting on astrocytes and vascular microcirculation (Zhu et al., 
2017). (3) Given the role of microRNAs in neuroprotection and 
inflammatory responses after SCI, miR-27a has also been used to 
improve treatment and research protocols for blood–brain barrier 
protection after spinal cord ischemia–reperfusion injury (Li X. Q. et al., 
2015). (4) The use of miRNA inhibitors plays a significant role in 
reducing secondary injuries after SCI. The selection of treatment 
methods often starts with miRNA inhibitors to observe their effects on 
neurogenesis and neuronal survival. Animal studies have confirmed that 
miR-20a inhibitors, miR-486 inhibitors, and miR-223 inhibitors could 
improve hindlimb motor function in SCI (Guan et  al., 2019; Wang 
T. et al., 2019; Wang Y. et al., 2019). In a rat model of transient spinal 
cord ischemia, inhibition of miR-320 significantly improved the motor 
function of the hind limbs. This process may be caused by an increase 
in phosphorylated Hsp20 content. Inhibiting the expression of miR-320 
can not only play a neuroprotective role but also prevent the exacerbation 
of ischemia reperfusion injury (He et al., 2015).

4. Circrnas and microRNAs in SCI

CircRNAs are important immunoreactive elements in regulating 
disease-related pathophysiological environment and gene expression. It 
has a stable loop structure in the mammalian cytoplasm and has a very 
rich binding site for microRNAs. CircRNAs have sequence specificity 
and structure specificity. More and more evidence shows that circRNAs 
have 5′ cap and 3′ tail structures, and generate covalent closed-loop 
structure through reverse splicing (Bagchi, 2018; Wu et al., 2019), that 
is, phagocytic microRNAs by acting as a microRNAs sponge. Competing 
endogenous RNA (ceRNA) is involved in gene expression and regulating 
transcription, and interacts with microRNA to play an important 
biological and regulatory role in the progression of disease (Ma et al., 
2022b). Especially in SCI it can activate astrocytes, improve 
neuroinflammatory response and regulate neuronal apoptosis, and 
participate in the regulation of nerve repair and regeneration. The 
increasing expression of circRNA during neuronal differentiation 
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suggests that circRNA plays an important role in neurological diseases. 
It has been shown that the circRNA-01477/miR-423-5p axis plays an 
important role in the regeneration microenvironment after SCI. In 
addition, the expression of circRNAs can be displayed more directly 
through high resolution in situ hybridization, and the dynamic influence 
of circRNAs on synaptic function can be reflected (You et al., 2015; Peng 
et al., 2021). Using whole transcriptome sequencing, abnormal circRNAs 
and microRNAs were identified 3 days after SCI. It was also determined 
that miR-223-3p, miR-182, circRNA-003801, circRNA-014620 and 
circRNA-013613 may be related to the inflammatory response after SCI 
(Peng et  al., 2020). In order to elaborate the relationship between 
circRNAs and microRNAs, relevant studies have also formed circRNA-
microRNA-mRNA networks through gene expression profile 
construction and gene chip technology, further clarifying the interaction 
between some specific circRNAs and microRNAs (Sámano et al., 2021). 
In conclusion, the role of circRNAs in SCI cannot be ignored. In SCI, 
circRNAs are closely related to microRNAs, and both participate in gene 
expression regulation and protein expression translation.

5. Challenges and perspectives of 
miRNAs

Secondary injury after SCI often leads to changes in the immune 
microenvironment of the spinal cord and then changes the expression 
content of miRNAs in vivo. Previous studies on miRNAs have shown 
that they play an important role in supporting neuronal survival and 

providing plastic conditions for neural regeneration. However, due to 
“off-target effects” caused by the rapid degradation of abundant RNases 
in circulation or during cell phagocytosis and the interactions between 
miRNAs and target genes, the accurate delivery of miRNAs has become 
an urgent problem to be solved. Multiple and repeated injections may 
improve this accordingly. This requires us to further develop the study 
of miRNAs to identify specific target genes and block off-target effects. 
In addition, different responses of miRNAs in the brains of male and 
female mice after focal cerebral ischemia were found to affect 
experimental results, and female mice have been suggested to 
be included in experiments to overcome sex bias in research. Research 
has suggested that miRNAs are greatly influenced by sex, contributing 
to the risk and limitations of clinical translation of miRNAs in SCI 
treatment. Most studies have focused on the regulation of a single 
miRNA as a therapeutic target, and current studies focus on broad-
spectrum analysis of all miRNAs using bioinformatics methods. 
Although analysis software has predicted miRNA–target gene 
interactions in broad spectrum studies, the specific interactions of many 
miRNAs have not been further verified using experimental inhibition 
or knockdown.

Despite many current challenges and limitations, miRNA-based 
therapy at the molecular level has emerged as an effective strategy for 
the treatment of central nervous system injury. To try an explore how 
miRNAs affect different target genes and screen relevant candidate 
miRNAs for disease treatment, studies should focus on developing 
reasonable and effective miRNA dosages and forms and find accurate 
drug delivery methods to reduce and block off-target effects. The 

FIGURE 4

Regulation of microRNAs in different mechanisms after SCI. The figure shows that microRNAs play a key role in different pathological states after SCI. The 
up-regulation and down-regulation of microRNA content affect various pathophysiological processes to varying degrees. Under the regulation of 
microRNA, mRNA expression is affected, which further affects the expression of corresponding target proteins.

https://doi.org/10.3389/fnmol.2023.1099256
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnmol.2023.1099256

Frontiers in Molecular Neuroscience 08 frontiersin.org

discovery of such mechanisms is necessary for the development of 
clinically effective miRNA-based drugs, and a large number of clinical 
trials are needed to confirm the clinical significance and application 
value of miRNA therapy.
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