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Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity
occurs through over-stimulation of glutamate receptors, specifically NMDAR,
while in the non-receptor-mediated pathway, high glutamate concentrations
reduce cystine uptake by inhibiting the System Xc-, leading to intracellular
glutathione depletion and resulting in ROS accumulation, which contributes to
increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis.
Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis,
and it is essential to maintain glutamate homeostasis and inhibit oxidative stress
responses in vivo. As researchers work to develop natural compounds to further
investigate the complex mechanisms and regulatory functions of ferroptosis
and excitotoxicity, new avenues will be available for the effective treatment
of ischaemic stroke. Therefore, this paper provides a review of the molecular
mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.

neuroexcitotoxicity, ferroptosis, glutamate, cystine-glutamate antiporter, ischemic
stroke

1. Introduction

Ischemic stroke is the primary cause of death and disability in Chinese adults, characterized
by high morbidity, disability, mortality, and recurrence rate (Sturm et al., 2002; Gao J. et al.,
2022). According to statistics, the age-standardized prevalence of stroke in China in 2013 was
1114.8 per 100,000, with an incidence rate of 246.8 per 100,000 and a mortality rate of 114.8 per
100,000 (Wang W. et al., 2017), The Continuous Stroke Surveillance Program in 31 Chinese
provinces reported an annual increase of 8.3% in the incidence of first stroke in adults, from 189
cases per 100,000 people in 2002 to 379 cases per 100,000 people in 2013, with the incidence
of ischaemic stroke and hemorrhagic stroke at 335 per 100,000 population and 44 per 100,000
population, respectively, in 2013 (He et al., 2022). In the United States, more than 795,000 people
suffer a stroke each year, accounting for about one in 10 deaths in the United States, and is the
leading cause of long-term disability in the country (Engler-Chiurazzi et al., 2017; Ho et al.,
2019; Barthels and Das, 2020). By 2050, more than 150 million people worldwide will be 65 and
over (Feigin et al., 2014; Thomazi et al., 2018; He and Zhou, 2020), the number of people
suffering from stroke is expected to increase steadily in the coming decades as the population
ages (Boudreau et al., 2013; Ji et al., 2022; Kevdzija et al., 2022; Tsao et al., 2022; Zhou et al., 2022).

The central premise of ischaemic stroke treatment is to limit infarction by rapid and effective
recanalization of occluded vessels, leading to reperfusion of the ischaemic semidark zone, and
there have been significant advances in the treatment of patients with ischaemic stroke over the
last decade or so of research (Bivard et al., 2017; Malysz-Cymborska et al., 2021). Currently,
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drugs commonly used to treat ischaemic stroke include drugs to
improve cerebral circulation, neuroprotective agents, and herbs to
activate blood circulation and resolve blood stasis. The only
thrombolytic medication that has received FDA approval is tissue
fibrinogen activator (tPA), but its clinical application is restricted to a
certain time window (Fukuta et al., 2017; Hu et al., 2022; Yoon et al.,
2022). A recent meta-analysis of individual participant data on
alteplase showed that, regardless of age or stroke severity, giving
alteplase within 4-5h of stroke onset significantly improved the
overall odds of a good stroke prognosis, despite an increased risk of
fatal intracranial hemorrhage within a few days of treatment, and the
earlier the treatment, the greater the proportion of benefit. However,
recanalisation success rates were lower with intravenous
administration of alteplase, thus reducing overall efficacy (Emberson
et al., 2014; Leiva-Salinas et al., 2016). Although numerous studies
have shown that inflammation, oxidative stress, excitotoxicity, calcium
overload, apoptosis, and disruption of the blood-brain barrier are
causative mechanisms of ischaemic stroke, preclinical protective
agents targeting one of these mechanisms have not been used in the
clinic (Dirnagl et al., 1999; He et al., 2013). Therefore, there is an
urgent need to better understand the physio-pathological mechanisms
that regulate these complex molecular effects in order to facilitate the
research and development of new drugs and improve patient
prognosis (Zou et al., 2022). This article critically discusses the role of
glutamate receptor-mediated excitotoxicity and cystine/glutamate
antiporter-mediated ferroptosis in ischemic stroke, as shown in

Figure 1.

2. Glutamate receptor-mediated
excitotoxicity

2.1. The role of glutamate in synaptic
transmission

Glutamate is the main excitatory neurotransmitter in the central
nervous system (CNS) and is closely linked to synaptic activity,
plasticity, cell death and survival, learning and memory, and pain
perception (Byrnes et al, 2009; Arteaga Cabeza et al, 2021).
Excitotoxicity, a toxic effect of excessive or prolonged glutamate
activation of the receptor, was first studied by Dr. Olney (Wang
S. et al, 2017; McCaughey-Chapman and Connor, 2022).
Excitotoxicity, excessive and pathological stimulation of neurons,
associated with neuronal death in many neurological diseases,
including ischaemia, traumatic brain injury, and neurodegenerative
diseases (Connolly et al., 2016; Krasil'nikova et al., 2019). All
intercellular signaling is dependent on chemical signals, and glutamate
is one of the most important intercellular chemical signals in the
nervous system (Ozel et al., 2014; Teng et al., 2016).

Glutamate is approximately 5-15mmol/kg in brain tissue,
5-10mM in neurons, and 30-50puM in plasma, with glutamate
concentrations fluctuating in response to body metabolism, diet, etc.
(Bramham et al., 1990; Ottersen et al., 1990, 1992; Osen et al., 1995;
Danbolt, 2001). Glutamate concentrations in neurons are highest at
axon terminals, which means that axon terminals somehow restrict
glutamate movement or local synthesis and utilization of glutamate,
and glutaminase is responsible for glutamate synthesis in most
neurons (Mdrquez et al., 2009; Barbano et al., 2020; Pietrancosta et al.,
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2020). Glutamate in neurons is concentrated in synaptic vesicles via
the vesicular glutamate transporter (VGLUT) and released into the
extracellular space when the neuron is depolarized (Takamori et al.,
2000; Takamori, 2006). Glutamate concentrations are highest in
teleneuron and up to 100 mM in synaptic vesicles (Riveros et al., 1986;
Burger et al., 1989; Shupliakov et al., 1992). When an action potential
reaches the presynaptic terminal, Ca*" influx via voltage-gated calcium
channels (VGCC) triggers the fusion of vesicles loaded with
neurotransmitter with the cell membrane, thereby releasing
neurotransmitter in the synaptic cleft (Nishimune et al., 2016; Liang
et al., 2021; Tukker and Westerink, 2021; Fedorovich and Waseem,
2022). Glutamate is secreted into the synaptic gap where it can diffuse
around the neuron and interact with surrounding targets (Clewett
et al, 2017), closest to the axon terminal is the postsynaptic
membrane, which contains a large number of membrane-associated
proteins, these “postsynaptic densities (PSD)” can be seen under the
electron microscope (Kennedy, 1997; Xu Y. et al., 2021), PSDs contains
a large number of glutamate receptors, which bind to glutamate and
then trigger the postsynaptic cell to complete the synaptic transmission
of glutamate signals from the presynaptic to the postsynaptic cell (Guo
and Cordeiro, 2008; Terauchi and Umemori, 2012; Katayama et al.,
2017). The transport pattern of glutamate is shown in Figure 2.

2.2. Type of glutamate receptor and
mechanism of action

Excitotoxicity was one of the first mechanisms of ischemic cell
death to be identified and one of the most intensively studied, with the
term “excitotoxicity” describing the process by which excess glutamate
overactivates NMDA receptors (NMDARs) and induces neuronal
toxicity (Choi et al., 1988; Garthwaite et al., 1992). There are two types
of glutamate receptors: ionotropic glutamate receptors (iGluRs),
which are ligand-gated ion channels, and metabotropic glutamate
receptors (mGluRs), which are G protein-coupled receptors (Pin and
Duvoisin, 1995; Ferraguti and Shigemoto, 2006). The ionotropic
receptors include kainate (KA) receptors, alpha-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors, and N-methyl-
D-aspartate (NMDA) receptors (Takahashi, 2019; Burada et al., 2020).
iGluRs are ligand-gated ion channels that allow cations such as
calcium and potassium to cross the plasma membrane after glutamate
binding to the receptor (Wei et al., 2011; Rocha-Ferreira and
Hristova, 2016).

NMDA receptors require a basic NR1 subunit and one or more
regulatory NR2 subunits (NR2A-D), and also NR3 subunits (NR3A-
B), in some specific cases (Ye et al., 2013; Rebas et al., 2020). In the
resting state, NMDAR channels are normally blocked by Mg*, but
when large amounts of glutamate accumulate, activated AMPAR
causes partial depolarization of the postsynaptic membrane, sufficient
to clear the Mg** on the NMDAR. Among the currently known
ionotropic and metabotropic glutamate receptors, NMDAR play an
important role in allowing excess Ca** inward flow, leading to
ischemic cell death (Mao et al., 2022). Calcium overload activates a
large number of downstream pro-death signals such as calpain
activation, reactive oxygen species (ROS) production, and
mitochondrial damage (Fujimura et al., 1998; Kristian and Siesjo,
1998; Eliasson et al., 1999; Lau and Tymianski, 2010), resulting in cell
necrosis or apoptosis (Kohr, 2006; Shi et al., 2017; Yoo et al., 2017;
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Excitotoxicity is caused by over-stimulation of glutamate receptors, particularly NMDAR, leading to high calcium influx, mitochondrial dysfunction, and
DNA breakage. High levels of glutamate reduce the uptake of cystine via the Xc-system, leading to intracellular glutathione depletion resulting in the

glutathione peroxidase 4; and GSH, glutathione.

accumulation of reactive oxygen species (ROS), which increases lipid peroxidation, mitochondrial damage and ultimately ferroptosis. ACSL4, acyl-
coenzyme A synthase long chain family member 4; System Xc-, cystine/glutamate reverse transporter; LPCAT3, lysophosphatidylcholine
acyltransferase 3; AA, arachidonic acid; AdA, adrenoyl acid; ALOXs, lipoxygenases; CoA, coenzyme A; POR, cytochrome p450 oxidoreductase; GPX4,

Maher et al,, 2018). GIuN2A and GluN2B play opposite roles in
ischaemic stroke, with activation of GluN2B leading to excitotoxicity
and neuronal apoptosis, while activation of GIuN2A protects neurons
(Liu et al.,, 2007; Chen et al,, 2008). Under stress conditions,
NMDAR2A activates the PI3K/Akt kinase pathway, promoting the
expression of cCAMP response element binding protein (CREB)
related genes and inhibiting the expression of pro-death genes, and
Akt promotes cell survival by phosphorylating many downstream
targets (Wu and Tymianski, 2018). Akt also inactivates the
pro-apoptotic Bcl-2 family member BAD (Bcl2/Bcl-XL-antagonist
causing cell death) by phosphorylation, thus stopping its interaction
with and blockade of the pro-survival Bcl-2 family members Bcl-2
and Bcl-XL (Papadia and Hardingham, 2007). The JNK/p38 activator
ASK1 is also inhibited by phosphorylation by Akt, and the activity of
p53 is inhibited by Akt, resulting in reduced Bax expression (Kim
et al., 2001; Yamaguchi et al., 2001). CREB target genes include the
anti-apoptotic BTG2, the apoptotic p53 inhibitor BCL6, and the
neurotrophic factor BDNF (Hardingham et al., 2002; Hardingham,
2009). During synaptic contact, these receptors are present in high
density in a specific region of the postsynaptic membrane, which is
closely associated with the presynaptic active zone of glutamate
release (Sheng and Hoogenraad, 2007). PSD-95 was found to bind to
NMDAR2B and intracellular neuronal nitric oxide synthase (nNOS)
as part of a scaffold synaptic protein, and in the presence of
intracellular calcium, PSD-95 plays a crucial role in the mechanism
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by which NMDAR activity triggers the production of nitric oxide
production by nNOS and excitotoxicity (Cui et al., 2007; Forder and
Tymianski, 2009; Abergel, 2020). NO combines with superoxide
radicals to produce large amounts of nitrite, which leads to protein
oxidation, lipid peroxidation, and DNA damage (Lipton et al., 1993),
as shown in the Figure 3.

AMPAR is constructed from four subunits (GluR1-4; Hwang and
Lupica, 2020; Zhang et al.,, 2022). Under resting conditions, the
NMDAR channel pores are blocked by Mg** ions and once sufficient
membrane depolarization has been established, the Mg?* block is
removed, allowing the influx of cations (Lin et al., 2008; Olive, 2009).
AMPAR activation increases Na* influx into neurons, depolarizes
membranes, and activates voltage-dependent Ca** channels and
NMDARs (Andriessen et al., 2010), the substitution of a positively-
charged arginine residue for a neutrally-charged glutamine residue at
the apex of the membrane reentrant pore loop (M2) changes the
conductance properties of channels containing an edited GluR2
subunit (Kohr et al., 1998; Hood and Emeson, 2012). Most GluR2
subunits expressed in the mature rat cochlea are edited form and
therefore, when incorporated into AMPA receptors, render the GluR
complex calcium impermeable (Carriedo et al., 1996; Graham et al.,
2011; Basappa et al., 2012). Molecular cloning has identified five
isoforms, named GluK1, GluK2, GluK3, GluK4, and GluK5 according
to the new IUPHAR nomenclature, which form functional receptors
in various combinations (Dingledine et al., 1999).
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Synaptic cleft

FIGURE 2

Glutamate in neurons is concentrated in synaptic vesicles via VGLUT and is released into the extracellular space in response to neuronal depolarization.
There are two main classes of glutamate receptors, that is, mGluRs and iGluRs, glutamate clearance from the extracellular space takes place mostly
through the high-affinity EAATs, EAAT 1 and 2 are mainly expressed in astrocytes. Glutamate enters glial cells via EAAT1 and EAAT2, where it is
metabolized to glutamine, which is released into the extracellular space and converted to glutamate after uptake by neurons, completing a cycle.
EAAT, excitatory amino acid transporter; mGluR, metabotropic glutamate receptor; iGluRs, ionotropic glutamate receptors; VGLUT, vesicular glutamate
transporters; and PSD, postsynaptic density.
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FIGURE 3
In ischaemic stroke, GIUN2A and GluN2B play opposing roles, with GluUN2B activation leading to excitotoxicity and apoptosis and GluN2A activation
promoting cell survival.
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3. Excess glutamate accumulation can
inhibit the cystine/glutamate reverse
transporter and lead to ferroptosis

Since 2005, the Nomenclature Committee on Cell Death (NCCD)
has updated the classification system and in 2018 introduced an
updated version based on molecular mechanisms, in which cell death
is divided into two parts, accidental cell death (ACD), and regulated
cell death (RCD; Galluzzi et al., 2018; Cepelak et al., 2020). There are
several types of RCD, including apoptotic and non-apoptotic (Shen
etal., 2022). Ferroptosis cells often show a necrotic appearance, such
as cell swelling, plasma membrane rupture, and mitochondrial
damage, unlike apoptotic cells, which are characterized by membrane
blistering and contraction (Hou et al., 2021). Ferroptosis is a newly
identified form of cell death caused by iron-dependent lipid
peroxidation. Which leads to cell membrane damage and the
accumulation of reactive lipid hydroperoxides to lethal levels (Munro
etal,, 2022). Our original knowledge of the molecular mechanisms of
ferroptosis stemmed from studies using small molecule compounds
to selectively inhibit cancer cells with oncogenic RAS mutations
(Chen et al,, 2021; Andreani et al., 2022). Ca®* plays a fundamental
role in glutamate-mediated excitotoxicity or oxidation-mediated cell
death, a form of programmed cell death similar to or possibly identical
to ferroptosis (Tan et al., 2001; Maher et al., 2018). Inhibiting System
Xc- and inactivating GSH peroxidase-4 (GPX4) causes cellular
glutathione (GSH) depletion and impaired ROS scavenging, resulting
in disruption of cellular redox homeostasis, accumulation of ROS in
the lipid peroxidation or Fenton reaction, and ultimately cell death
(Shi et al., 2021).

3.1. Characteristics of ferroptosis

Ferroptosis cells undergo morphological changes at both the
cellular and ultrastructural levels: the plasma membrane loses its
integrity, the cytoplasm becomes enlarged, the mitochondria become
smaller than normal cells, the mitochondrial cristae shrink or
disappear, the outer mitochondrial membrane ruptures and the
membrane density increases (Dolma et al., 2003; Yagoda et al., 2007;
Dixon et al.,, 2012; Friedmann Angeli et al., 2014; Vanden Berghe et al.,
2014). Mitochondria are an important source of ROS. Recent studies
have found that impaired mitochondrial function leading to ROS
production, DNA stress, and metabolic reprogramming is responsible
for lipid peroxidation and ferroptosis (Gao et al., 2019; Lee et al., 2020;
Lietal, 2021). Ferroptosis is mainly associated with iron accumulation
and lipid peroxidation. Excess iron combines with hydrogen peroxide
in a Fenton reaction to produce large amounts of hydroxyl radicals,
increasing oxidative damage. Iron also increases the activity of
lipoxygenase (ALOX) or prolyl hydroxylase (PHD), further
aggravating lipid peroxidation (Chen X. et al., 2020; Lin et al., 2021;
Tang D. et al,, 2021). Lipid peroxidation occurs as a free radical-driven
reaction that primarily affects the metabolism of polyunsaturated fatty
acids (PUFAs) in cell membranes (Gao Q. et al., 2022; Nie et al., 2022).
Lipopolymer peroxidation products include the initial lipid
hydroperoxide (LOOH) and the subsequent reactive aldehyde
(MDA 4-HNE), which increase during ferroptosis (Nie et al., 2022).
The PTGS2 gene encodes prostaglandin endoperoxide synthase
(PTGS), a key enzyme in prostaglandin biosynthesis (Yang et al.,
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2014). Acyl-Coenzyme A synthase long chain family member 4
(ACSL4) is thought to be a specific biomarker and driver of ferroptosis
as it is a key enzyme involved in fatty acid metabolism. Upregulation
of ACSL4 leads to an increase in polyunsaturated fatty acid content in
phospholipids, which are particularly susceptible to oxidative
reactions and ultimately ferroptosis (Yuan et al., 2016; Doll et al,,
2017). Activation of transcriptional pathways of genes responsible for
antioxidant defense (GSH, CoQ10, and NRF2) and membrane repair
(ESCRT-III) limits membrane damage during ferroptosis (Dixon
etal., 2012; Sun et al., 2016; Bersuker et al., 2019; Doll et al., 2019; Dai
etal., 2020). The dynamic balance between damage and resistance to
damage determines the survival or death of cells.

3.2. Critical role of amino acid metabolism
and lipid metabolism in ferroptosis

3.2.1. Amino acid metabolism

Cystine/glutamate reverse transporter (System Xc-) is an amino
acid reverse transporter protein that mediates the inward flow of
cystine and the outward flow of glutamate (Kagami et al., 2018; Wang
et al., 2020; Marcoli et al., 2022). The cystine taken into the cell is
reduced to cysteine, part of which participates in intracellular GSH
synthesis and the other part flows out of the cell to be converted to
cystine and re-involved in the System Xc- (Liu N. et al., 2020; Tang
Z. et al, 2021). Glutathione is an antioxidant and an important
indicator of oxidative stress in cells (Guo et al., 2012). When there is
too much extracellular glutamate, it inhibits the function of the System
Xc-, resulting in less cystine entering the cell, which is an excitatory
neurotransmitter with neurotoxic and excitatory effects (Liao et al.,
2018; Ratan, 2020). System Xc- mediates the uptake of cystine and the
release of glutamate, thereby promoting the synthesis of GSH, which
acts as a co-molecule with GPX-4 to assist in the scavenging of lipid
peroxides to protect cells (Zhao et al, 2021). System Xc- is a
heterodimeric protein consisting of one light chain and one heavy
chain with a disulfide bond between the two chains (Chen et al., 2022;
Wang Y. et al., 2022). The light chain subunit SLC7A11 is the primary
transporter and is highly sensitive to cystine and glutamate, while the
heavy chain subunit SLC3A2 acts essentially as a chaperone protein
and plays an important role in the transport of SLC7A11 to the plasma
membrane (Koppula et al, 2018). SLC7A1ll is a 12-channel
transmembrane protein with both its N and C termini in intracellular
locations, whereas SLC3A2 is a single-transmembrane protein with its
N terminus in intracellular locations and its ¢ terminus in extracellular
locations (Sato et al., 1999; Xu C. et al., 2021; Chen et al., 2022). In
addition, Knockdown of SLC3A2 has been shown to result in a
significant lowering of SLC7A11 protein levels, suggesting that
SLC3A2 is critical in sustaining SLC7A11 protein stability (Nakamura
et al., 1999; Shin et al., 2017; Koppula et al., 2018). Intracellular
cysteine is an essential precursor of glutathione. Glutathione is a
tripeptide synthesized by cysteine, glutamate and glycine (Koppula
et al,, 2018; Gan, 2019; Zhao et al,, 2022). The biosynthesis of GSH
involves two crucial steps, first by formation of gamma-
glutamylcysteinyl linkage by formation of gamma-glutamyl cysteine,
followed by the addition of glycine via glutathione synthase (GSS) to
produce the tripeptide glutathione (Raza et al., 2022). Endogenous
enzymes protect cells from damage caused by excess ROS, including
superoxide dismutase which converts superoxide (O,”) to hydrogen
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peroxide (H,0,), glutathione peroxidase (GPX) which converts free
H,O, to water, glutathione reductase which converts glutathione
disulfide to the sulfhydryl form and catalytic breakdown of H,O, to
water and oxygen by peroxidase (Mahmoud et al., 2014). Oxidation
of glutathione by the action of GPX and reduction of glutathione by
glutathione reductase (GR) at the expense of NADPH (Koppula et al.,
2018). Thus, System Xc- is critically important for the uptake of
cystine to produce cysteine for the maintenance of intracellular
GSH levels.

Two transcription factors were identified that regulate SLC7A11,
nuclear factor red lineage 2-related factor 2 (NRF2) and activating
transcription factor 4 (ATF4). NRF2 is a master transcription factor
that accounts for antioxidant responses (Becker et al., 2016; Kuo et al.,
2022). Under normal physiological conditions, Nrf2 is ubiquitinated
by the Keap1-Cullin3 ubiquitin ligase complex and is conventionally
fragmented by the 26 s proteasome. In contrast, under oxidative stress
conditions, ubiquitin ligase activity is blocked by modifying the
cysteine residues in Keap1, thereby stabilizing and activating (Noguchi
et al.,, 2018), stable NRF2 then translocates into the nucleus, binds to
antioxidant response elements in the gene promoter region and
regulates the transcription of a range of target genes involved in
antioxidant defense and cellular redox maintenance (Ooi et al., 2018;
Koppula et al., 2021a), Similarly, overexpression of NRF2 upregulated
the expression levels of antioxidant genes such as SLC7A11 and
promoted the synthesis of GSH (Shih et al., 2003). Consequently,
SLC7AL11 is one of the most important transcriptional targets that can
mediate the anti-oxidant response.

Transcription factor ATF4 regulates the expression of genes
involved in amino acid metabolism, redox homeostasis and
endoplasmic reticulum stress response (Pakos-Zebrucka et al., 2016;
Sazonova et al., 2021). Translation of ATF4 mRNA is silenced by two
short UORFs located in the 5" untranslated region (UTR). The kinase
that is catalyzed by elF2a phosphorylation is activated by various
cellular stresses, such as amino acid deprivation, endoplasmic
reticulum stress, and viral infection (Koppula et al., 2018; Scalise et al.,
2020). Inhibition of eIF2alpha phosphorylation levels led to inhibition
of ATF4 mRNA translation and decreased ATF4 protein levels, while
increased elF2alpha phosphorylation levels led to enhanced ATF4
mRNA translation and increased ATF4 protein (Pathak et al., 2019).
One upstream kinase of eIF2« is general control non-repressor-2
(GCN2), which is activated by free tRNAs in the presence of amino
acid deprivation (Scalise et al., 2020). Thus, during amino acid
deletion, GCN2 phosphorylates elF2a, leading to the inhibition of
protein synthesis in general, while increasing the translation of the
specific transcription factor ATF4 (Ferraz-Bannitz et al., 2021). ATF4
associates with amino acid response elements (AARE) and promotes
the transcription of genes related to amino acid metabolism and stress
response, in particular SLC7A11, thereby enabling cells to cope with
amino acid-limited conditions (Koppula et al., 2021b). Indeed,
SLC7A11 expression can be strongly induced by deprivation of a
variety of amino acids, and SLC7A11 expression induced by amino
acid deprivation is mainly mediated by ATF4 (Koppula et al., 2021b).
In summary, these data support that amino acid deletion induces
SLC7AL11 expression through the GCN2-elF2a-ATF4 signaling axis.

Several studies have shown that the above transcription factors
regulate downstream biological effects, including ferroptosis,
antioxidant, and nutrient-dependent, through the regulation of
SLC7A11 expression. SLC7A11 inhibits ferroptosis by increasing
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intracellular cystine and promoting glutathione synthesis (Dixon
et al,, 2012). By increasing SLC7A11 expression, ATF4 and NRF2 at
least partially inhibit ferroptosis, whereas p53 stimulates ferroptosis
by repressing SLC7A11 expression (Jiang et al., 2015; Fan et al., 2017;
Roh etal., 2017). A study showed that p53 inhibits cystine uptake and
leads to ferroptosis by suppressing SLC7A11, a component of the
cystine/glutamate countertransport protein. In addition, mutant
p533KR is defective in p53-dependent cell cycle arrest, apoptosis and
senescence, but retains the ability to inhibit SLC7A11 expression,
thereby regulating cystine metabolism and ferroptosis (Jiang
etal., 2015).

3.2.2. Lipid metabolism

Fatty acid metabolism is divided into anabolic and catabolic
pathways, both of which are regulated by a variety of enzymes (Wakil
and Abu-Elheiga, 2009). Fatty acid p-oxidation (FAO) in mitochondria
normally consumes most of the fatty acids, leading to a reduction in
lipid peroxidation. Cytoplasmic lipid droplets form the energy hub of
almost all eukaryotic cells and when energy is available, they store
energy in the form of esterified fatty acids and release them to local or
distant tissues for oxidation (Goodman, 2019).

Lipids play an important role in cellular functions, including
membrane formation, energy production, intra- and intercellular
signaling, and the regulation of cell death. Oxidation of
phospholipids contributes to ferroptosis in cells (Yang et al., 2016).
Lipid peroxides are produced in cells by three main pathways: first,
lipid ROS from iron via a non-enzymatic Fenton reaction, second,
lipid peroxides from oxidation and esterification of PUFAs, and
third, lipid peroxides from iron-catalyzed lipid autoxidation. AA is
a PUFAs that can be converted to adrenal acid (AdA) by prolonged
enzymes. The accumulation of oxygenated AA-PE and AdA-PE
evokes intracellular ferroptosis. Free PUFAs can be ultimately
converted to phosphatidylethanolamine (PE)-PUFAs-OOH by
three important enzymes, ACSL4, lysophosphatidylcholine
acyltransferase 3 (LPCAT3), and lipoxygenases (LOXs; Jiang et al.,
2020). The formation of lipid peroxides involves the formation of
AA-PE from phosphatidylethanolamine (PE), an essential
component of cell membranes, and arachidonic acid (AA), a PUFA,
catalyzed by ACSL4 and LPCAT3, which is then peroxidized by
iron-dependent LOX to form AA- OH -PE, the major actuator of
ferroptosis (Protchenko et al,, 2021; Liu et al., 2022), this is shown
in Figure 4. ACSL family made up of proteins on the endoplasmic
reticulum and outer membrane, ACSLs are responsible for the
formation of fatty acid acyl coenzyme a esters from free long-chain
fatty acids. The ACSL family contains five enzymes, ACSL4 is one
of a family of five isomers, but only ACSL4 has a specific effect on
ferroptosis (Yan and Zhang, 2019; Capelletti et al., 2020).

4. Crosstalk between excitotoxicity
and ferroptosis

Excitotoxicity is mainly due to excessive glutamate release during
ischemia leading to excessive activation of NMDAR, which leads to
intracellular calcium overload, ROS-induced oxidative stress,
mitochondrial dysfunction, and impaired membrane permeability
(Yoo et al., 2017), Ca®* overload via glutamate receptor-induced
cPLA2 activation produces neurotoxic metabolites such as
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FIGURE 4
Regulation of lipid peroxidation in ferroptosis, ACSL4, acyl-coenzyme A synthase long chain family member 4; LPCAT3, lysophosphatidylcholine
acyltransferase 3; CoA, coenzyme A; GPX4, glutathione peroxidase 4; and PUFA, polyunsaturated fatty acid.

prostaglandins, leukotrienes, ROS, and platelet-activating factor via
AA and lysophospholipid metabolism. It is known to be particularly
sensitive to ferroptosis as AA and ADA are the main substrates of lipid
peroxidation (Liu Y. et al., 2020; She et al., 2020; Hong et al., 2022),
this is shown in Figure 5. The ROS generation cascade also includes
the reaction of superoxide with nitric oxide to form peroxynitrite,
hydrogen peroxide catalyzed by peroxidase to form hypochlorous
acid, and the Fenton reaction catalyzed by iron to form hydroxyl
radicals (Lin et al., 2016; Griendling et al., 2021). Mitochondrial ROS
are essential not only for apoptosis but also for ferroptosis, although
the common mechanisms determining the relationship between the
two different types of cell death remain obscure (Gao et al., 2019; Lee
etal, 2020; Lietal, 2021; Tang Z et al., 2021). However, there appears
to be crosstalk between oxidative stress and ferroptosis during the
development of ischaemic stroke. Excess glutamate accumulates
extracellularly during stroke, causing excessive NMDAR activation
and neuroexcitotoxicity, as well as inducing NMDAR-mediated iron
uptake (Cheah et al., 2006), as BBB dysfunction during stroke allows
iron-containing substances to enter the brain and accumulate in areas
of ischaemic brain tissue prior to neurodegeneration (Helal, 2008;
DeGregorio-Rocasolano et al., 2019). Thus, crosstalk between iron
and glutamate in neurons is a target for intervention that cannot
be ignored.

AMPK, a family member of serine/threonine kinases, is an
invaluable endogenous defense factor against cerebral ischemia.
During cerebral ischemia or hypoxia, the deprivation of energy
and the consequent increase in the AMP/ATP ratio facilitates
AMPK phosphorylation and initiates autophagy to bolster energy
production (Jiang et al., 2014; Fang et al., 2018; Qin et al., 2022).
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AMPK activator A-769662 mimics the effects of silymarin and
inhibits ROS production and neuronal cell death after OGD/R. In
conclusion, these results suggest that silymarin-mediated
neuroprotection may in part require activation of AMPK signaling
(Xie et al., 2014). Under oxidative stress, Nrf2 is released from
Keapl and translocated to the nucleus, where it binds to the
antioxidant response element (ARE) and upregulates the
expression of NQO1 and HO-1 (Meng et al., 2014). The Nrf2/ARE
signaling pathway counteracts ischemia-reperfusion injury by
enhancing endogenous antioxidant defense factors and
suppressing ROS production during reperfusion, which indicates
that enhanced antioxidant properties can protect neurons (Young
Park et al.,, 2019), and more importantly, NRF2 plays a key role in
mediating iron/hemoglobin metabolism. NRF2 regulates the light
and heavy chains of the iron storage protein ferritin (FTL/FTH1),
and the iron transporter (SLC40A1) responsible for iron efflux
from cells (Harada et al., 2011; Agyeman et al., 2012; Kerins and
Ooi, 2018). NRF2 controls many of the enzymes that participate
in glutathione synthesis and metabolism, including the catalytic
and regulatory subunits of glutamate-cysteine ligase (GCLC/
GCLM), glutathione synthase (GSS) and the subunit of the
cystine/glutamate transporter xCT (SLC7A11), all of which are
required for glutathione synthesis (Kwak et al., 2002; Sasaki et al.,
2002). Among the multiple AMPK-related signaling pathways, the
Nrf2 signaling pathway plays an important role in the regulation
of genes and proteins with cytoprotective functions (Jiang et al.,
2021). AMPK/NREF2 not only protects cells from oxidative stress
damage, but also effectively regulates the expression of related

genes to inhibit ferroptosis.
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FIGURE 5
AMPK, a member of the serine/threonine kinase family, is an important endogenous defense factor against ischemia, and the Nrf2/ARE signaling
pathway counteracts ischemia—reperfusion injury by inducing endogenous antioxidant defense factors and attenuating ROS production during
reperfusion injury.

5. Treatment of ischemic stroke
5.1. Maintaining glutamate homeostasis

Glutamate is an important transmitter that plays a vital role in a
variety of biological processes. Excess glutamate leads to over-
stimulation of postsynaptic glutamatergic receptors, particularly
NMDARs and AMPARSs, allowing calcium to enter the cell, causing
neuronal depolarisation and further neuronal death (Glotfelty et al.,
2019), Inhibition of glutamate release, enhancement of glutamate
clearance and blockade of glutamate receptors may be major directions
for future stroke research. Methionine sulfoximine was found to
be effective in inhibiting glutamate synthesis in mice (Ghoddoussi
et al,, 2010), Dextromethorphan can inhibit glutamate release by
inhibiting presynaptic voltage-dependent calcium channels (VDCGC;
Lin etal., 2009). In terms of glutamate clearance, ceftriaxone effectively
increases GLT expression in glial cells and enhances glutamate
clearance (Lai et al., 2011). NMDAR inhibitors are widely studied
drugs, and magnesium sulfate has shown a prominent role in
protecting neurons from excitotoxicity by inhibiting NMDAR,
reducing the transmission of the excitatory neurotransmitter
glutamate, and reducing the inward flow of calcium ions (Ovbiagele
et al., 2003). Memantine is a non-competitive NMDAR inhibitor.
Memantine selectively blocks the over-activation of NMDAR in
excitotoxicity and memantine increases the upregulation of brain-
derived neurotrophic factor (BDNF) and glial cell-derived
neurotrophic factor (Martinez-Coria et al., 2021). A meta-analysis
showed no improvement in key outcome indicators and mortality in
acute ischaemic stroke treated with magnesium sulfate (Avgerinos
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etal., 2019), it seems to be due to the fact that it is more difficult to
treat effectively within the time window. Peritoneal dialysis has been
demonstrated to decrease peripheral blood glutamate levels in rats
with cerebral ischemia (Godino Mdel et al., 2013). Therefore,
inhibition of glutamate synthesis, enhancement of glutamate clearance
and inhibition of glutamate receptors play an important role in the
protection of ischemic stroke.

5.2. Inhibition of calcium increase and
oxidative stress

Calcium ions are a commonly present second messenger that
regulates a variety of activities such as excitability, cytoplasmic
division, motility, transcription and apoptosis in eukaryotic cells
(Bootman, 2012; Carafoli and Krebs, 2016; Pchitskaya et al., 2018).
The initial calcium influx following excitotoxic glutamate stimulation
is known to trigger a secondary intracellular calcium overload, and
this secondary response strongly correlates with neuronal death
(Randall and Thayer, 1992; Tymianski et al., 1993). The plasma
membrane sodium-calcium exchanger (NCX) is an essential
modulator of intracellular calcium levels, using the force of sodium
influx to expel calcium ions. The action of the NCX partially restores
calcium ions to physiological levels following glutamate stimulation
(White and Reynolds, 1995). Another major player in intracellular
calcium homeostasis is the mitochondria, which can restore
intracellular calcium concentrations by absorbing large amounts of
calcium themselves (Valdinocci et al., 2019; Sanz-Morello et al., 2021),
and by facilitating ATP-dependent calcium extrusion (Budd and
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Nicholls, 1996; White and Reynolds, 1996). Mitochondrial uptake of
calcium in response to excitotoxic glutamate stimulation leads to ROS
production (Castilho et al, 1999), excessive opening of the
mitochondrial membrane permeability transition pore leads to a
decrease in mitochondrial membrane potential (Castilho et al., 1999),
induction of neuronal death (Stout et al., 1998; Ward et al., 2000).
Therefore, inhibition of calcium increase and oxidative stress may be a
therapeutic target in ischaemic stroke. Studies have demonstrated that
the influx of calcium ions into cells during excitotoxicity is an essential
pathway causing cell death, so interruption of the inward flow of
extracellular calcium ions and decreasing the degree of calcium
overload could theoretically protect neuronal cells to a large extent.
Calcium antagonists have been proven in animal experiments to
dramatically reduce the size of brain infarcts in rats and to have a
protective neuronal effect (Zapater et al., 1997; Choi et al., 2011).
Results of a meta-analysis show no effect of calcium antagonists on
primary patient outcomes or death, and researchers show no evidence
to support the use of calcium antagonists in patients with ischaemic
stroke as beneficial (Zhang et al., 2019). 4,1-benzothiazoles are
non-calcium antagonist drugs that reduce calcium levels in neurons
by modulating mitochondria (Viejo et al., 2021). Calcium antagonists
continue to be the subject of stroke research, although they have not
achieved the desired results in clinical trials, probably because of
intolerable side effects, low efficacy and short treatment windows. Uric
acid is the final oxidation product of purine catabolism in the body
and accounts for about two-thirds of the total antioxidant capacity of
plasma (Becker, 1993). Uric acid has been shown to prevent glutamate-
induced cell death in vitro and to inhibit ROS and RNS to reduce
infarct size and improve prognosis in rodents after transient or
permanent cerebral ischemia (Squadrito et al., 2000; Romanos et al.,
2007; Onetti et al., 2015; Chamorro et al., 2016). Edaravone is an

10.3389/fnmol.2023.1113081

antioxidant drug that has been shown to scavenge the accumulation
of free radicals and lipid peroxidation products in both clinical trials
and basic experiments (Kasuya et al., 2014; Fidalgo et al., 2022).

5.3. Inhibition of ferroptosis

As ferroptosis is characterized by excessive lipid peroxidation, iron
chelators, lipophilic antioxidants, and lipid peroxidation inhibitors can
inhibit ferroptosis (Wang K. et al., 2022). Four types of ferroptosis
inhibitors have been identified: GPX4 specifically catalyzes the loss of
lipid peroxide oxidation activity in a GSH-dependent manner, FSP1
converts ubiquitin ketone on cell membranes to reduced ubiquitin,
which can inhibit peroxidation and prevent iron droopy, GCH1/BH4
pathway is an endogenous antioxidant pathway, GCHI protects cells
from ferroptosis mainly through the antioxidant effect of BH4, and
DHODH protects cells from ferroptosis in mitochondria by regulating
the production of dihydrobisquinone in the inner mitochondrial
membrane (Wang D. et al.,, 2022), this is shown in Figure 6. Some
compounds inhibit ferroptosis directly or indirectly by targeting lipid
peroxidation and iron metabolism (Chen G. et al., 2020). Both iron
chelators (2,2"-pyridine, deferoxamine, deferoxamine mesylate) and
inhibitors of lipid peroxides (Ferrostatin-1, Liproxstatin-1, Vitamin E)
suppressed ferroptosis (Cepelak etal., 2020; Li et al., 2020). In additional,
GSH, GPX4, heat shock protein f-1 and Nrf2 negatively modulate
ferroptosis by restraining ROS production and repressing cellular uptake
ofiron (Sun etal, 2015; Qin et al., 2021). DFO, the most widely used iron
chelator approved by the FDA, inhibits lipid peroxide chelation by
inhibiting the Fenton reaction, and one study found that DFO effectively
protects neurons by increasing the expression of hypoxia-inducible
factor 1 (HIF-1; Baranova et al., 2007; Zhang et al., 2021). The widely

FIGURE 6

Four ferroptosis defense pathways. GCH1, GTP cyclohydrolyse-1; FSP1, ferroptosis suppressor protein 1; CoQ10, coenzyme Q; DHODH,
dihydroorotate dehydrogenase; DHO, dihydroorotate; OA, orotate; GSH, glutathione; and BH4, tetrahydrobiopterin.
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used RTAs are ferrostatin-1 and liproxstatin-1, which can inhibit lipid
peroxidation linked to ferroptosis (Han et al., 2020). ACSL4 is a crucial
enzyme for AA and ADA esterification and is most probably an essential
target for the inhibition of ferroptosis. Thiazolidinediones (TZNs) have
been shown to potentially inhibit the activity of ACSL4 specifically and
to prevent ferroptosis (Doll et al., 2017; Zhang et al., 2021).

6. Conclusion and perspectives

Excessive accumulation of glutamate not only leads to excitotoxicity,
but also to ferroptosis, Therefore, maintaining glutamate homeostasis is
essential to inhibit excitotoxicity and ferroptosis. We can see a large
number of articles using glutamate modeling to study the mechanism of
excitotoxicity, most of which only look at the increase in calcium ions and
mitochondrial dysfunction caused by excitotoxicity. In fact, the researchers
used glutamate to create excitotoxic cell models that also caused
ferroptosis, and excitotoxicity may be only part of the equation. Therefore
it is also important to focus on neuronal ferroptosis when using glutamate
for modeling in future studies. Neuronal excitotoxicity or ferroptosis can
be effectively inhibited by compounds in most basic studies, particularly
glutamate receptor inhibitors, but the role in clinical trials has been greatly
reduced, probably mainly due to the failure to treat effectively within the
time window in dlinical trials. A number of influencing factors are
essential, including informed patient consent, family cooperation and a
well-established hospital system of care may all be influential in clinical
trials. We remain confident in developing natural compounds that regulate
both ferroptosis and excitotoxicity in future basic practice and further
investigating their complex mechanisms and regulatory effects.
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