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Parkinson’s disease (PD) is a common neurodegenerative disease implicated 
in multiple interacting neurotransmitter pathways. Glutamate is the central 
excitatory neurotransmitter in the brain and plays critical influence in the 
control of neuronal activity. Impaired Glutamate homeostasis has been shown 
to be  closely associated with PD. Glutamate is synthesized in the cytoplasm 
and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). 
Following its exocytotic release, Glutamate activates Glutamate receptors 
(GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly 
removed by excitatory amino acid transporters (EAATs) to maintain its relatively 
low extracellular concentration and prevent excitotoxicity. The involvement of 
GluRs and EAATs in the pathophysiology of PD has been widely studied, but little 
is known about the role of VGLUTs in the PD. In this review, we  highlight the 
role of VGLUTs in neurotransmitter and synaptic communication, as well as the 
massive alterations in Glutamate transmission and VGLUTs levels in PD. Among 
them, adaptive changes in the expression level and function of VGLUTs may exert 
a crucial role in excitatory damage in PD, and VGLUTs are considered as novel 
potential therapeutic targets for PD.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease, implicated in multiple 
neurotransmitter pathways and autonomic nervous system that is associated with a range of 
clinical features (Schapira et al., 2017). Two types of clinical features are relied upon in its 
diagnosis: motor symptoms, including bradykinesia, stiffness, resting tremor, and postural and 
balance difficulties and non-motor symptoms, including autonomic dysfunction, sleep 
disturbances, behavioral changes, sensory abnormalities, and other unclassifiable symptoms 
(Kalia and Lang, 2015). The motor features are predominantly attributed to the formation of 
intracytoplasmic inclusion called Lewy bodies and the loss of dopamine (DA) neurons in the 
substantia nigra pars compacta (SNpc). The broad spectrum of non-motor symptoms of PD 
usually precede motor dysfunction. With the increasing awareness of the importance and 
presence of non-motor symptoms, PD is considered as a multisystem disorder involving various 
neurotransmitters in the brain (Klingelhoefer and Reichmann, 2017). Considering that most 
symptoms precede the complete loss of DA neurons in SNpc, it is likely that neuronal 
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dysfunction precedes degeneration and other pathophysiological 
mechanisms drive the vulnerability of DA neurons.

The current standard drug therapy for PD is dopamimetic drugs, 
such as DA precursor levodopa (L-3,4-dihydroxyphenylalanine, 
L-DOPA), DA receptor agonists, and monoamine oxidase-B (MAO-B) 
inhibitors (Armstrong and Okun, 2020). In fact, the current DA 
replacement therapies neither improve most non-motor symptoms 
nor slow disease progression, highlighting the importance of studying 
the intervention of non-DA systems (Schapira et al., 2017). Indeed, 
various neurotransmitter systems are closely associated with the 
pathophysiology of PD (Sanjari et al., 2017). Among them, glutamate 
(Glu) is the most abundant transmitter in the central nervous system 
(CNS), and exerts vital effects on mediating the continuous feedback 
of basal ganglia circuits leading to DA dysregulation in the striatum 
(Wang et al., 2020). Emerging evidence suggests that glutamatergic 
transmission participates in the processes of PD, which is necessary 
for further study (Iovino et  al., 2020; Pisanò et  al., 2020; Lyu 
et al., 2021).

Glutamate-glutamine cycle

Glutamate is the primary excitatory neurotransmitter in the brain 
and plays critical role in the control of neuronal activity. Glutamate is 
released from presynaptic terminals, and then it interacts with 
glutamate receptors (GluRs) on the plasma membrane of postsynaptic 
neurons. When triggered by glutamate, several types of GluRs work 
together to regulate excitatory postsynaptic neurotransmission 
(Plaitakis and Shashidharan, 2000). The specific receptors activated by 
glutamate can be  divided into two main families: ionotropic and 
metabotropic GluRs (iGluRs and mGluRs). The iGluRs, including 
kainate receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors, and N-methyl-d-aspartate (NMDA) 
receptors, are multimeric ion channels in charge of rapid excitatory 
transmission in the mammalian CNS (Bigge, 1999). mGluRs are 
members of the G-protein-coupled receptor superfamily that contain 
eight receptor subtypes, inducing slow excitatory responses, which 
contribute to long-lasting effects in synaptic strength called long-term 
potentiation (LTP) or long-term depression (LDP; Ferraguti and 
Shigemoto, 2006). In presynaptic neurons, glutamine is converted to 
glutamate by mitochondrial enzyme glutaminase, and then packaged 
by vesicular glutamate transporters (VGLUTs) into synaptic vesicles, 
followed by releasing into the synaptic cleft by stimulation (El et al., 
2011). Glutamate in the synaptic cleft is removed by excitatory amino 
acid transporters (EAATs) situated on the neuronal plasma membrane, 
and is also able to transport glutamate to astrocyte or back to 
presynaptic terminals. Within the astrocyte, glutamate is transformed 
into glutamine by glutamine synthetase (GS), and then transported 
back to neurons sequentially through glutamine transporters on the 
membrane of astrocytes and neurons (Andersen and Schousboe, 2022; 
Figure 1). All these transporters facilitate the transport of glutamate, 
ensuring that glutamate is maintained with the appropriate 
concentration in the correct compartment.

Extracellular glutamate concentrations are mainly regulated via 
EAATs with high affinity. EAATs have five characterized mammalian 
subtypes, including glutamate/aspartate transporter (GLAST, also 
named EAAT1), glutamate transporter-1 (GLT-1, also named 
EAAT2), excitatory amino acid carrier-1 (EAAC1, also named 

EAAT3), EAAT4, and EAAT5. EAATs are proved to maintain the 
balance of extracellular glutamate concentrations and protect neurons 
from harmful overstimulation of GluRs (Magi et  al., 2019). 
Noteworthy, Glutamate concentration is also regulated by modulating 
glutamate internalization into synaptic vesicles through VGLUTs 
(Shigeri et al., 2004). The expression and function of VGLUTs play an 
important role in glutamate release in presynaptic regions. The 
expression level of VGLUTs in each synaptic vesicle indicates the 
relative intensity of presynaptic glutamatergic innervation and control 
the quantal size of glutamatergic transmission (Daniels et al., 2006; 
Liguz-Lecznar and Skangiel-Kramska, 2007). The involvement of 
GluRs and EAATs in the pathophysiology of PD has been widely 
studied, but little is known about the role of VGLUTs in PD. Therefore, 
given that a comprehensive understanding of the pathophysiology and 
therapeutic targets of VGLUTs for PD can help in the development of 
new therapeutic approaches for PD. This article highlights the role of 
VGLUTs in neurotransmitter and synaptic communication, as well as 
the massive alterations in Glutamate transmission and VGLUTs 
levels in PD.

Distribution and molecular 
pharmacology of VGLUTs

Three subtypes of VGLUTs have been identified and 
characterized, named VGLUT1-3, which are encoded by solute vector 
gene Slc17a6-8 (Bellocchio et al., 2000; Takamori et al., 2000). The 
distributions of the three VGLUTs barely overlap, delineating 3 
complementary glutamate systems that VGLUT1 (Slc17a7) and 
VGLUT2 (Slc17a6) exert dominating neurophysiological impacts on 
almost all central neuronal circuits, whereas VGLUT3 (Slc17a8) 
participates in local transmission regulation (Fremeau et al., 2001; 
Schäfer et al., 2002). VGLUT1 and VGLUT2 are specific markers of 
glutamatergic neurons, which are co-expressed in most of the brain 
region, including the cerebral cortex, occipital lobe, frontal lobe, 
temporal lobe, cerebellum, amygdala, medulla, hippocampus, and 
putamen. Additionally, VGLUT2 is also expressed in many other 
parts of the brain, including substantia nigra, caudate nucleus, 
thalamus, subthalamic nucleus, and spinal cord (Fremeau et al., 2001; 
Kaneko and Fujiyama, 2002; Herzog et al., 2004; Hackett et al., 2011). 
Notably, VGLUT2 is the only vesicular glutamate transporter 
expressed in transgenic ventral tegmental area (VTA)/substantia 
nigra dopamine neurons (Kouwenhoven et al., 2020). VGLUT3 is 
only expressed in a few glutamate neurons in raphe nuclei, cerebral 
cortex, and cochlear inner hair cells (IHCs; Gras et al., 2002; Ruel 
et al., 2008; Hioki et al., 2010). VGLUT3 predominantly exists in 
scattered group of “non-glutamatergic” neurons, including 
cholinergic interneurons (ChIs) in the ventral and dorsal striatum, 
GABAergic neurons in the olfactory bulb, GABAergic cortical and 
hippocampal interneurons, and 5-hydroxytryptaminergic olecranon 
neurons (Somogyi et al., 2004; Gras et al., 2008; Tatti et al., 2014; 
Fasano et al., 2017). Moreover, VGLUT3 is widely expressed outside 
the brain, particularly in cochleae, retina, and spinal cord (Lee et al., 
2014; Cheng et al., 2017).

These three transporters (VGLUT1-3) show strong sequence 
homology, particularly in the transmembrane structural domains 
that constitute the translocation pathway (Bellocchio et al., 2000; 
Takamori et al., 2000). In addition, Inherent transport activities are 
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found no difference among them. VGLUTs have relatively low 
affinity [K(m) = 1–2 mM] for glutamate, which make it difficult to 
identify VGLUTs inhibitors with high affinity (Thompson et al., 
2005). VGLUTs are highly selective for glutamate which make them 
selectively targeted, thus the effect of pharmacological 
manipulations by small molecules do not disrupt other transport 
phenomena, like EAATs or GluRs (Thompson and Chao, 2020). In 
contrast to most plasma membrane transporters, the VGLUTs, like 
other endosomal neurotransmitter transporters, rely on the proton 
electrochemical gradient across the synaptic vesicle membrane 
generated by vacuolar-type H + -ATPase (V-ATPase; Blakely and 
Edwards, 2012). The difference is vesicular neurotransmitter 
transporters are driven by proton exchange and thus depend on the 
chemical component of ∆μH+ (∆pH), glutamate uptake by 
VGLUTs depends on the membrane potential (∆ψ), suggesting a 
mechanism of facilitated diffusion (Maycox et  al., 1988). 
Subsequently, chloride (Cl−) ions are reported to greatly stimulate 
glutamate uptake by synaptic vesicles in vitro (Wolosker et  al., 
1996). Increasing studies soon confirmed these initial results 
(Martineau et al., 2017; Eriksen et al., 2020; Chen et al., 2021). In 
conclusion, the vacuolar-type H + -ATPase generate transmembrane 
proton electrical gradient provide powers for VGLUTs, while 
VGLUTs binding with chloride, potassium, and protons regulate 
VGLUTs activity as well (Pietrancosta et al., 2020).

Molecular mechanism of VGLUTs 
in PD

In recent years, studies have indicated the subtle, but important, 
participation of VGLUTs-dependent glutamate/DA co-transmission 
and its roles in the regulation of different brain functions and 
dysfunctions (Buck et  al., 2021c, 2022). In-depth study in the 
molecular mechanism of VGLUTs could result in decisive 
breakthroughs in the treatment of PD.

VGLUT1 and Parkinson’s disease

Plenty of cortical excitatory neurons express VGLUT1, which 
represents a major isoform in the brain, accounting for about 80% of 
total glutamatergic vesicular transports (Fremeau et  al., 2001). 
Glutamatergic neurotransmission in the striatum has been involved 
in the progression of PD. Biphasic and bilateral alterations in the levels 
of VGLUT1 and VGLUT2 protein expression of the striatum in 
hemiparkinsonian rats suggest significant time-dependent changes in 
glutamatergic neurotransmission from both types of striatal afferents 
(Massie et al., 2010). Study has revealed that glutamate is significantly 
reduced in synaptic vesicle-enriched membrane fractions of 
VGLUT1−/− mice, the absence of VGLUT1 may alter the ability of 

FIGURE 1

Glutamate-glutamine cycle.
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releasing glutamate from nerve endings (Wojcik et al., 2004). The 
glutamatergic pathways exert significant functions in neuronal circuits 
related to PD.

The progressive degeneration of DA-capable cells in SNpc results 
in the imbalance within the cortico-basal ganglia loop, related to 
aberrant glutamatergic innervation in the brain (Orieux et al., 2000; 
Cilia et al., 2009). It has been reported that compared to controls, the 
protein level of VGLUT1 is decreased in the prefrontal cortex (PFC) 
of PD patients, revealing that VGLUT1 exerts the significant effects on 
glutamatergic damage in patients with PD (Kashani et  al., 2007). 
Whereas, the study of Raju et  al. has revealed the significantly 
increased total density of VGLUT1 in the striatum of PD monkeys 
after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP; Raju et al., 2008). In addition, El Arfani et al. have also noted 
alterations of different glutamate transporter expression levels in the 
bilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat model, 
bilateral SNpc lesions inhibit the expression of VGLUT1 and showed 
a remarkable change after 2 weeks of injury in the striatum, but no 
significant changes were observed in the motor cortex (El et al., 2015). 
In a PD mouse model, the MPTP-induced expression of VGLUT1 
protein is elevated in the medial PFC with loss of DA, while the 
expression of VGLUT1 in the dorsolateral striatum is significantly 
decreased (Pflibsen et  al., 2015). These findings indicate that the 
remarkable variations in glutamate delivery transported by VGLUT1 
may related to motor and cognitive deficits of PD.

Increasing evidence has demonstrated that as a treatment method 
for PD, electroacupuncture (EA) is able to facilitate the improvement 
of motor function in PD (Jia et al., 2010). In clinical practice, the 
subthalamic nucleus (STN) is considered as a pivotal target of deep 
brain stimulation for PD treatment, and VGLUT1 is closely involved 
in glutamate regulation of the cortical STN (Wang et  al., 2018). 
Electroacupuncture can reverse 6-OHDA-induced VGLUT1 
expression reduction in the STN (Zheng et  al., 2019). 
Electroacupuncture promotes VGLUT1 expression in the ipsilateral 
STN and improves motor symptoms in PD rats, indicating that the 
overexpression of VGLUT1 in the STN may be associated with the role 
of EA in motor symptoms of PD via the cortical-STN pathway.

VGLUT2 and Parkinson’s disease

VGLUT1 and VGLUT2 have complementary distributions 
throughout the adult brain. VGLUT2 predominantly exists in 
glutamate neurons of subcortical brain regions, such as SNpc, VTA, 
and thalamus (Kashani et al., 2007). Endogenous VGLUT2 has also 
been proved to express in a subpopulation of midbrain DA neurons 
(Kawano et al., 2006; Yamaguchi et al., 2011, 2015). A few (<20%) DA 
neurons in midbrain express detectable levels of VGLUT2  in the 
adulthood. However, the rate of co-localization of VGLUT2 and DA 
may increase during development (Mendez et  al., 2008; Bérubé-
Carrière et al., 2009). Consistently, it has been shown more than 90% 
of SNpc DA neurons presented a reporter indicative of past expression 
of VGLUT2 based on a fate mapping strategy (Steinkellner et  al., 
2018). VGLUT2 is expressed in SNpc DA neurons early in life, while 
most of these DA neurons present decreased expression of VGLUT2 
at maturity. VGLUT2 facilitates the encapsulation of glutamate into 
synaptic vesicles in vitro (Kouwenhoven et  al., 2020). Study have 
shown that VGLUT2 contributes to vesicular DA loading by increasing 

the pH gradient of vesicles (or vesicular hyper-acidification; Aguilar 
et al., 2017).

VGLUT2 functionally regulates the core co-release of glutamate 
and DA from VGLUT2+ DA neurons. VGLUT2 is the dominant 
subtype of VGLUTs existed in midbrain DA neurons (Bérubé-Carrière 
et al., 2009; Chuhma et al., 2009; Morales and Root, 2014; Morales and 
Margolis, 2017). Furthermore, VGLUT2 selectively deleted from DA 
neurons may influence the growth and survival of DA neurons in cell 
culture and development in vivo (Hnasko et al., 2010). Similarly, the 
loss of DA neurons in SNpc caused by overexpression of VGLUT2 is 
accompanied by changes in motor behavior of mice (Steinkellner 
et al., 2018). In general, these behavioral abnormalities are strongly 
linked to decreased striatal DA neurotransmission in involved 
hemispheres. Postmortem brain tissues from PD patients exhibit 
marked variations in expression of VGLUTs in the cerebral cortex and 
striatum, indicating the important role of VGLUTs in PD (Kashani 
et  al., 2007). Previous research has shown the essential roles of 
VGLUT2 expression in DA neurons in normal emotional responses 
as well as behavioral activation mediated by psychostimulant (Birgner 
et  al., 2010). Several studies have shown that downregulation of 
VGLUT2 expression exclusively in the STN of mice leads to reduced 
postsynaptic activity and behavioral hyperlocomotion, due to the 
strong modifications in both the STN and the striatum DA system 
(Schweizer et al., 2014, 2016). Moreover, MPTP-treated mouse model 
of PD has increased expression of VGLUT2  in the striatum in 
comparison to controls (Pflibsen et al., 2015).

VGLUT2 is deemed to promote the survival of DA neurons. Shen 
et al. have reported that VGLUT2 selectively deleted from DA neurons 
obviously increases the susceptibility of DA neurons to neurotoxin 
MPTP, and furthermore, upregulation of VGLUT2 in DA neurons 
prevented this vulnerability in VGLUT2 conditional Knock-out (KO) 
mice (Shen et al., 2018). This finding suggests that the absence or 
reduction of VGLUT2 expression in several DA neurons may 
be considered as a novel risk factor for the occurrence and progression 
of DA neurodegeneration in PD. Therefore, restoring the expression 
of VGLUT2 in DA neurons may be a potential and novel therapeutic 
method for PD or other neurodegenerative diseases. In contrast, 
Steinkellner et  al. reported that the proportion of DA neurons 
expressing VGLUT2 approximately doubled after 6-OHDA injection 
in the striatum. Notably, although the neurotoxicity of 6-OHDA 
reduced the total DA neurons, the number of DA neurons containing 
elevated VGLUT2 transcripts was definitely increased, suggesting that 
6-OHDA caused upregulation of VGLUT2 in transcriptional levels in 
adult SNpc DA neuron cells (Steinkellner et al., 2018). They further 
demonstrated that VGLUT2+ DA neurons enriched in surviving 
neurons in α-synuclein-induced dopaminergic neuronal injury, and 
VGLUT2 expression was found upregulated in brain tissue of PD 
patients (Steinkellner et  al., 2022). This result is consistent with 
previous studies which revealed that neonatal striatal lesions or 
6-OHDA treatment promote the expression of VGLUT2 (Dal Bo et al., 
2008; Bérubé-Carrière et al., 2009). Buck et al. also found that the 
subpopulation of VGLUT2+ DA neurons are relatively protected from 
rotenone neurotoxicity (Buck et al., 2021a). In summary, the effects of 
different neurotoxicants produced an analogous change. The above 
findings implied that the neurotoxins-induced upregulation of the 
glutamatergic machinery in VTA and SNpc neurons and their 
projections may be part of a broader neuroprotective mechanism. 
Moreover, Buck et  al. demonstrated that female drosophila has 
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elevated expression level of dVGLUT in DA neurons compared with 
male drosophila, and this finding is highly conserved across species, 
including flies, rodents, and humans. Moreover, they found that 
reducing the expression of dVGLUT in DA neurons eliminates 
females’ better resilience to DA neuron loss throughout aging. 
dVGLUT is the core role in the selective DA neuron vulnerability to 
sex- and age-related DA neurodegeneration (Buck et al., 2021b).

Noteworthy, Heterologous expression of VGLUT2 with a sustained 
or high level is toxic to DA neurons, while endogenous expression of 
VGLUT2 with a low level might exert a protective effect (Buck et al., 
2022). Glutamate co-entry through the vesicle of VGLUTs is able to drive 
VMAT2-mediated exchange, which can elevate the amount of DA and 
other cationic transmitters, as well as contribute to isolate toxic VMAT2 
substrates, including 1-methyl-4-phenylpyridine (MPP+) or 6-OHDA, 
away from sensitive cellular compartments (Dal Bo et al., 2008; Descarries 
et al., 2008). Therefore, the expressing of VGLUT2 is likely to explain the 
enhancive resistance of DA neurons to neurotoxins. DA-depletion has no 
influence in the expression of VGLUT1 and VGLUT3, but VGLUT2 
expression is conspicuously reduced in almost all basal ganglia structures 
(Favier et  al., 2013). High-frequency stimulation of the subthalamic 
nucleus (STN-HFS) can reverse the decrease in VGLUT2 expression, 
which provides evidence for the involvement of VGLUT2  in the 
regulation of basal ganglia circuitry, suggesting that VGLUT2 exert an 
important role in alleviating motor symptoms in PD (Favier et al., 2013). 
Since VGLUT2 is the only VGLUT produced by STN glutamatergic 
projections to SNpr, we speculate that during STN-HFS, information 
transmission through the trans-thalamic pathway has not been fully 
interrupted, despite its roles in the expression of VGLUT2 in SNpr are 
likely mediated by regulation of thalamic afferents.

VGLUT3 and Parkinson’s disease

Both VGLUT1 and VGLUT2 are originally known as “typical” 
cortical and subcortical VGLUTs. However, VGLUT3 predominantly 
exists in scattered group of “non-glutamatergic” neurons, or only 
expresses in a few glutamate neurons (El et  al., 2011). VGLUT3 
represents a unique modulator of glutamate release from both 
non-glutamatergic and glutamatergic neurons in the brain (Favier et al., 
2021). Although the distribution and quantity of VGLUT3 is limited, it 
plays a vital role in regulation glutamate signaling and thus modulates 
the activity of neural microcircuits (Favier et al., 2021). Currently, few 
studies have explored the role of VGLUT3 in PD, most studies focus on 
revealing the critical role of VGLUT3 in levodopa-induced dyskinesia 
(LID), which usually occurs in PD patients with long-term L-DOPA 
treatment (Divito et al., 2015; Gangarossa et al., 2016).

Reduction of DA transmission triggers profound adaptive changes 
in DA-sensitive brain structures, particularly the dorsal striatum. Striatal 
cholinergic interneurons (ChIs) are the main source of acetylcholine in 
the striatum. The increased striatal cholinergic tone is the main 
pathogenic mechanism among all the alterations associated with PD, as 
ChIs potently regulates local striatal microcirculation, which attracts 
intensive researchers to establish anticholinergic treatment for PD 
(McKinley et al., 2019). However, regulation of striatal ChIs directly 
leads to alterations in local striatal glutamate transmission (Tubert et al., 
2016). VGLUT3 is highly expressed in striatum, and plays an important 
role in ChIs-mediated glutamate release (Gras et al., 2008). Meanwhile, 
the activity of GABAergic medium spiny neurons (MSNs) and fast-
spiking GABAergic interneurons (FSIs) are related to the 

VGLUT3-dependent glutamate transmission (Favier et  al., 2021). 
VGLUT3-KO mice show circadian-dependent hyperlocomotor activity, 
while conditional deletion of VGLUT3 from ChIs does not alter evoked 
DA release in the striatum or baseline locomotor activity (Divito et al., 
2015). Loss of DA in 6-OHDA-lesioned mice is accompanied by 
increased expression of VGLUT3 and vesicular acetylcholine transporter 
(VAChT) in the striatum, and the VAChT levels remain high whereas 
the VGLUT3 expression decreases in LID mice (Gangarossa et al., 2016).

Conclusion

In this review, we  summarized the distribution and functional 
characteristics of VGLUTs in the brain, and indicate the pivotal 
influence of glutamate transmission in the functional organization of 
neuronal circuits in PD, as well as the massive alterations in glutamate 
transmission and VGLUTs levels in PD. Among them, adaptive changes 
in the expression level and function of VGLUTs may exert a crucial role 
in excitatory damage in PD, and VGLUTs are considered as novel 
potential therapeutic targets for PD. Notably, recent years, there have 
been several authoritative studies on VGLUT2, and emerging evidence 
highlights that the balance of VGLUT2 expression in select DA 
neuronal populations may be a novel identified risk factor or therapeutic 
target in the progression of PD or other neurodegenerative diseases. 
Taken together, the structure, function, and regulatory mechanisms of 
VGLUTs will be a promising area of research in PD clinical practice.
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