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Neonatal hypoxic-ischaemic events, which can result in long-term neurological 
impairments or even cell death, are among the most significant causes of brain 
injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic 
pathophysiology and cellular pathways make it difficult to treat brain damage; 
hence, the development of new neuroprotective medicines is of great interest. 
Recently, numerous neuroprotective medicines have been developed to treat 
brain injuries and improve long-term outcomes based on comprehensive 
knowledge of the mechanisms that underlie neuronal plasticity following 
hypoxic-ischaemic brain injury. In this context, understanding of the medicinal 
potential of cannabinoids and the endocannabinoid system has recently 
increased. The endocannabinoid system plays a vital neuromodulatory role in 
numerous brain regions, ensuring appropriate control of neuronal activity. Its 
natural neuroprotection against adult brain injury or acute brain injury also clearly 
demonstrate the role of endocannabinoid signalling in modulating neuronal 
activity in the adult brain. The goal of this review is to examine how cannabinoid-
derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury 
and to assess the critical function of the endocannabinoid system and its potential 
for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain 
injury.
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Introduction

One of the major causes of impairment in newborns is neonatal hypoxic-ischaemic 
encephalopathy (HIE), which has serious long-term implications for child development (Barata 
et al., 2019; Zhou et al., 2023). At present, the incidence of perinatal asphyxia ranges between 
0.5–1% of all live births, and substantial neurologic damage occurs in as many as 50–75% of 
these children (Torfs et al., 1990; Ferriero, 2004). Depending on the severity, location, and type 
of neurologic damage as well as the gestational age, impairments may include a variety of 
sensorimotor and cognitive abnormalities, which arise at various stages of development and 
have a considerable effect on children, their families, and society (Du Plessis and Volpe, 2002; 
Carli et al., 2004). Although neuroprotective treatment has improved, the development of 
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neurological damage remains a substantial issue in HIE cases (Berger 
and Garnier, 2000).

Currently, neuroprotective measures, such as the rapid 
identification of affected neonates to enable the timely initiation of 
therapy, improved monitoring during the perinatal period, strict 
control during intensive care, and therapies that lessen the developing 
injury, are urgently needed to minimize the neurological effects of 
hypoxic-ischaemic brain damage (Shalak et al., 2003; Sanders et al., 
2010). For instance, it is important to concentrate on the period 
directly after the hypoxic-ischaemic episode in neonatal insults 
because this is when therapeutic approaches can be  effective in 
preventing brain damage. This time frame is typically brief and might 
range from 2 to 6 h. Therefore, rapid identification would enable easier 
application of various rescue treatments. Recent studies on neonates 
have revealed that hypothermia provides varying degrees of 
neuroprotection, either by preventing DNA breakage and apoptotic 
cell death after hypoxia-ischaemia (Esteve et al., 1999; Adachi et al., 
2001) or by delaying the accumulation of intracellular calcium, 
decreasing the synthesis of nitric oxide, and decreasing the glutamate 
concentration in the synaptic space (Hashimoto et al., 2003; Zhu et al., 
2004). The only currently available treatment for hypoxic-ischaemic 
injury in newborns is therapeutic hypothermia, which, despite 
advancements in its administration, is ineffective in approximately 
50% of treated infants (Natarajan et  al., 2016). In addition, this 
treatment has variable efficacy in asphyxiated children and is more 
effective in treating larger babies than smaller babies (Wyatt et al., 
2007). Thus, the complicated pathophysiology of HIE makes treatment 
challenging and necessitates the development of multiple approaches 
(Juul and Ferriero, 2014).

Currently, alternative treatments focus on reducing brain damage 
caused by free radicals by using antioxidant compounds, such as 
allopurinol, which blocks xanthine oxidase (Palmer et al., 1993; Van 
Bel et al., 1998) and N-acetylcysteine activity, which reduces apoptosis 
and inflammation while increasing the intracellular level of 
glutathione to sequester free radicals (Jatana et al., 2006; Lee et al., 
2008). Erythropoietin, which has antiapoptotic and angiogenic effects, 
is another frequently utilized antioxidant-related medication (Sola 
et al., 2005) and has been shown to promote neurogenesis and have 
neuroprotective effects in newborn rats (Chang et al., 2005; Gonzalez 
et  al., 2007). Similarly, melatonin prevents brain damage and the 
subsequent development of sequelae (Carloni et al., 2008; Signorini 
et al., 2009). Additionally, substances with anti-inflammatory qualities 
have been investigated. These include second generation tetracyclines, 
which prevent microglia from being activated, approaches that 
increase the lifespan of neurons (Arvin et al., 2002; Jantzie et al., 2005), 
and statins, which reduce the expression of interleukin-1β and 
intercellular adhesion molecule 1 (Carloni et al., 2006, 2009). Due to 
the intricacy of neonatal hypoxic-ischaemic pathophysiology, there is 
presently no treatment specifically for perinatal brain injuries.

Recent research suggests that cannabinoids are highly effective 
neuroprotective agents in both acute neurodegenerative 
conditions, such as hypoxic-ischaemic encephalopathy or 
traumatic brain injury, and chronic conditions, such as multiple 
sclerosis (MS), Parkinson’s disease, and Alzheimer’s disease (AD) 
(Ben Amar, 2006; Maresz et al., 2007). Additionally, cannabinoids 
have anti-excitotoxic (Marsicano et al., 2003), anti-inflammatory 
(Chang et al., 2001), and vasodilatory effects (Parmentier-Batteur 
et al., 2002) and can regulate calcium homeostasis (Barha et al., 

2011). Due to their ability to alter glial and neuronal responses, 
these chemicals have become recognized as neuroprotectants. 
According to recent research, several anti-inflammatory 
medications may enhance healing by encouraging neurogenesis 
after brain injury (Whitney et  al., 2009). Because of its anti-
inflammatory properties, cannabinoid receptor activation is an 
important neuroprotective therapy for neonatal hypoxic-ischaemic 
brain injury (Fernandez-Lopez et  al., 2010). In this report, 
we  concentrate on the function of cannabinoids and 
endocannabinoids and their potential to prevent brain damage 
caused by neonatal hypoxia and ischaemia.

Cannabis and cannabinoids

In the 1960s, as marijuana use for recreational purposes increased, 
anecdotal reports suggested that cannabis could help people with 
Tourette syndrome, MS, and epilepsy (Cristino et al., 2019). Cannabis, 
the most widely used illegal recreational drug in the world, comprises 
approximately 80 phenolic compounds and terpenes, also known as 
“cannabinoids” (Izzo et al., 2009). As we know, major efforts have been 
made to pinpoint the chemical components that give marijuana and 
other cannabis flower preparations their euphoric, perception-
altering, and potentially therapeutic effects (Kerai et al., 2018; Lucas 
et al., 2018). For instance, cannabinoids originating from plants are 
commonly referred to as phytocannabinoids, of which 
9-tetrahydrocannabinol (THC), the main psychoactive ingredient in 
cannabis, is the most well-known (Izzo et  al., 2009). The 
phytocannabinoid cannabidiol (CBD), in addition to THC, may have 
an important role in mediating the impact of cannabis on post-
traumatic stress disorder (PTSD). While THC is known to exert 
effects by directly activating cannabinoid receptors, CBD is known to 
interact with a variety of neurochemical systems, most notably 
serotonergic and adenosine signalling, and thus its pharmacology is 
more complex (Carrier et al., 2006; Izzo et al., 2009; Rock et al., 2012). 
Since the psychoactive effects of THC limit its therapeutic potential 
and restrict its use in clinical investigations, CBD is more acceptable 
for clinical development, even for paediatric populations (Devinsky 
et al., 2016, 2017).

The endocannabinoid system

Two inhibitory G-protein-coupled receptors (GPCRs), cannabinoid 
receptor 1 (CB1) and cannabinoid receptor 2 (CB2), as well as two 
important endogenous ligands, N-arachidonoylethanolamine 
(anandamide/AEA) and 2-arachidonoylglycerol (2-AG), make up the 
majority of the endocannabinoid system. Additionally, fatty acid amide 
hydrolase (FAAH) and monoacylglyceride lipase (MAGL), which 
hydrolyse AEA and 2-AG, respectively, are metabolic enzymes that 
considerably influence endocannabinoid signalling (Meyer et al., 2018). 
The lipid membranes of postsynaptic neurons contain the precursors 
for AEA and 2-AG. To bind to endocannabinoid receptors in the 
presynaptic space and control the release of other neurotransmitters, 
such as glutamate, GABA, dopamine, serotonin, and acetylcholine, AEA 
and 2-AG are produced as needed and are retrogradely transported 
across the synaptic cleft (Lovinger, 2008; Jutras-Aswad et  al., 2009; 
Katona and Freund, 2012) (Figure 1).
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Cannabinoid and endocannabinoid 
neuroprotective mechanism after HIE

Accumulated studies have reported that endocannabinoids 
modulate the intensity and extent of neurotoxic processes (Barata 
et  al., 2019; Gupta et  al., 2020) and the inflammatory response 
(Chiurchiu et  al., 2018; Marinelli et  al., 2023) and promote cell 
survival (Viscomi et al., 2009). Synthetic cannabinoid agonists have 
shown considerable grey and white matter protection in animal 
studies of brain injury (Fernández-López et al., 2007). In large animal 
models of perinatal asphyxia, the cannabinoid WIN55212-2 
administered immediately after HI protected against mitochondrial 
injury and prevented apoptosis (Alonso-Alconada et  al., 2010). 
Cannabidiol given immediately after HI reduced neuronal injury, 
cerebral haemodynamic impairment, brain oedema and seizures and 
restored motor and behavioural performance 72 h after HI (Pazos 
et  al., 2013). In rodent models of stroke, prolonged 7-day 
administration of the cannabinoid WIN55212-2 immediately after 
injury enhanced neuronal and oligodendrocyte recovery and 
regeneration in long-term (Fernandez-Lopez et  al., 2010). 
Cannabinoids, however, achieve neuroprotection in part through 
hypothermia (Leker et al., 2003).

Endocannabinoid metabolism

In 1992, AEA, the first described endocannabinoid, was 
discovered in the brain of a pig (Devane et  al., 1992). In the 
mid-1990s, 2-AG, the second most studied endocannabinoid, was 
found in the intestines of canines (Sugiura et al., 1995). The most 
prevalent endocannabinoids in the central nervous system (CNS) 
and all peripheral tissues are AEA and 2-AG. The phospholipid 
precursors for AEA and 2-AG appear to be produced as needed 
in the somatodendritic compartment of neurons in response to 
calcium influx or activation of intracellular phospholipases. 
Although it is believed that endocannabinoids are instantly 
produced in response to specific stimuli, there is some evidence 
that they are transported through cells, stored, and even degraded 
in adiposomes, suggesting a complicated underlying mechanism 
of endocannabinoid signalling (Oddi et al., 2008; Kaczocha et al., 
2010). 2-AG may be the predominant endogenous agonist of CB2 
receptors, and AEA has a higher affinity for CB1 receptors 
(Pacher et al., 2006). Additionally, it is well known that tissues 
contain more 2-AG than AEA (Sugiura and Waku, 2002). 
Although AEA and 2-AG have well-established production and 
metabolism mechanisms, how these endocannabinoids are 

FIGURE 1

Simplified scheme representing endocannabinoid system-modulated synaptic transmission. The endocannabinoids AEA and 2-AG are not stored in 
vesicles but instead are synthesized de novo from phospholipid precursors through calcium-dependent mechanisms. 
N-acylphosphatidylethanolamine (NAPE) is hydrolysed by N-arachidonoyl-phosphatidylethanolamine-specific phospholipase D (NPLD) to yield AEA, 
and diacylglycerol (DAG) is converted to 2-AG by diacylglycerol lipase (DAGL). Both endogenous ligands traverse the synaptic cleft and activate 
presynaptic CB1 receptors, thereby regulating ion channels and ultimately suppressing neurotransmitter release. Endocannabinoid signalling is 
terminated following degradation by hydrolytic enzymes in the presynaptic and postsynaptic compartments. Primarily, AEA is converted to arachidonic 
acid (AA) and ethanolamine by fatty acid amide hydrolase (FAAH) localized to the postsynaptic cell, whereas 2-AG is hydrolysed presynaptically into AA 
and glycerol by monacylglycerol lipase (MAGL).
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transported across the cell membrane remains unknown. 
Increasing evidence currently points to the possibility that cells 
can absorb AEA and 2-AG through protein transporter-mediated 
enhanced diffusion (Yates and Barker, 2009; Nicolussi and 
Gertsch, 2015).

Endocannabinoid receptors

The first endogenous CB1 receptor was initially discovered in 
samples from rat brains (Devane et al., 1988). The cerebral cortex, 
hippocampus, caudate-putamen, substantia nigra pars reticulata, 
globus pallidus, entopeduncular nucleus, cerebellum, and spinal cord 
all have high levels of CB1 receptor expression (Hu and Mackie, 2015). 
Presynaptic CB1 receptors are primarily found in neurons. Some 
evidence indicates that only a small percentage of postsynaptic CB1 
receptors is found in the mitochondria’s exterior membrane (Benard 
et al., 2012), where it interferes with the respiratory chain and electron 
transport, altering brain metabolism and memory formation (Hebert-
Chatelain et al., 2016). The CB1 receptors in astrocytes play a role in 
leptin signalling in the hypothalamus and the modulation of synaptic 
plasticity in the hippocampus (Bosier et al., 2013; Robin et al., 2018). 
In addition to stimulating adult progenitor stem cell proliferation and 
differentiation into neurons or astrocytes, activation of the CB1 
receptor has a function in neurodegenerative diseases (Prenderville 
et al., 2015).

Immune and haematopoietic cells were the first cells to 
be identified to have the second major endogenous CB2 receptor 
(Munro et  al., 1993; Galiègue et  al., 1995). The widespread 
expression of CB2 receptors in immune cells indicates that 
endocannabinoids have a unique immunomodulatory function 
(Lynn and Herkenham, 1994). In addition to traditional immune 
tissues (thymus, bone marrow, and spleen), other peripheral 
organs, including the liver (Julien et al., 2005), pancreatic beta cells 
(Juan-Pico et  al., 2006), bone (Ofek et  al., 2006), myocardium 
(Montecucco et al., 2009), and vasculature (Rajesh et al., 2007), 
express CB2 receptors. According to research on neurological 
disorders, the main function of the CB2 receptor is immunological 
regulation. Studies on human brain samples have shown that 
microglia affected by disorders such as AD, MS, and amyotrophic 
lateral sclerosis (ALS) have high and specific expression of the CB2 
receptor (Aymerich et al., 2018). Furthermore, adult neurogenesis 
is also stimulated by CB2 receptor activation (Palazuelos et al., 
2012), and some data suggest that the CB2 receptor plays a role in 
controlling the permeability of the blood–brain barrier (BBB) 
(Chung et al., 2016). According to a study, healthy neurons show 
very little expression of the CB2 receptor, and CB2 receptor 
activation produces the opposite effect to that of CB1 receptor 
stimulation (Navarrete et  al., 2013). However, some of these 
investigations relied on pharmacological or immunological 
methods that were later discovered to have low selectivity, making 
the results of these studies questionable (Soethoudt et al., 2017). 
Finally, it is unclear how CB2 receptors impact neuronal activity. 
According to one study, functional interaction between the 
sodium-bicarbonate transporter and the postsynaptic CB2 receptor 
lowers neuronal excitability in the CA3 and CA2 areas of the 
hippocampus (Stempel et al., 2016).

Neurodevelopmental pattern of the 
cannabinoid and endocannabinoid 
system

The essential involvement of cannabinoid and endocannabinoid 
system receptors in important developmental processes, such as 
neurogenesis, glial formation, neuronal migration, axonal elongation, 
fasciculation (axonal bundling), synaptogenesis, and synaptic pruning, 
has been extensively demonstrated in the literature (Berghuis et al., 
2007; Mulder et al., 2008; Maccarrone et al., 2014). The major targets 
of THC are CB1 and CB2 receptors, with the CB1 receptor playing a 
considerable role in CNS development due to its widespread 
expression in the developing brain, unlike the CB2 receptor, which has 
a function that is mostly associated with cells of the microglial/
macrophage lineage (Zurolo et al., 2010). In humans, CB1 receptors 
are present and are functional by the ninth gestational week, which 
coincides with the start of cortex development. In rodents, CB1 
receptors are present and functional from gestational day 11 (Biegon 
and Kerman, 2001; Zurolo et al., 2010). CB1 receptors are temporarily 
present on white matter neuronal fibres in both rats and humans 
during the embryonic stages (Berrendero et al., 1999; Mato et al., 
2003). The growth and migration of axons to their final location to 
establish neuronal pathways may reflect the effects of CB1 receptors 
on axons or their presence on nonneuronal cells (astrocytes and 
oligodendrocytes) that direct neuronal migration and axonal 
elongation. Numerous pluripotent cells carry the CB1 receptor, which 
controls cell division and proliferation (Maccarrone et al., 2014; De 
Salas-Quiroga et  al., 2015), neural differentiation (Harkany et  al., 
2007). In postmitotic neurons, CB1 receptor expression and 
endocannabinoid signalling play crucial roles in the migration and 
differentiation of glutamatergic and GABAergic cortical cells, 
cholinergic basal forebrain neurons, GABAergic cerebellar cells, and 
hypothalamic neurons, according to studies conducted on rodents 
(Keimpema et  al., 2013). Before reaching high levels in early 
adulthood, when it is ubiquitously expressed and becomes the most 
abundant GPCR, and the expression of the CB1 receptor is dynamic 
throughout postnatal development until adolescence (Wang et al., 
2003; Mackie, 2005). The adult brain regions with the highest 
concentrations of CB1 receptors include the cerebral cortex, basal 
ganglia, hippocampus, and cerebellum (Mackie, 2005), and CB1 
receptors are predominantly localized to the synapse on presynaptic 
terminals (Freund et al., 2003) of both glutamatergic and GABAergic 
cells (Marsicano and Lutz, 1999).

The two main ligands of the endocannabinoid system, AEA and 
2-AG, exhibit divergent ontogenic bioavailability and diverse 
developmental trajectories. While increasing 2-AG levels throughout 
embryonic development are correlated with cell differentiation and 
axonal elongation in the brain, it has been shown that AEA is 
essential during the early stages of pregnancy for embryo 
implantation in the uterus (Maccarrone et al., 2014). In addition, 
2-AG levels peak at postnatal day 1 and then remain constant until 
adolescence, when they fluctuate (with high levels during both early 
and late adolescence) before returning to normal levels in adulthood 
(Berrendero et al., 1999; Ellgren et al., 2008). In contrast, in the 
majority of the examined brain areas, AEA concentrations gradually 
rise from gestational day 21 and peak throughout adolescence 
(Ellgren et al., 2008; Lee et al., 2013).
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Endocannabinoid signalling in the 
immature brain and neural cell fate

Endocannabinoid signalling effects go well beyond 
neuromodulation and can even affect the survival of injured neurons. 
The ability of CB1 and CB2 receptors to communicate across multiple 
signalling pathways that regulate brain cell formation and maturation 
during developmental stages is reflected in cannabinoid regulation of 
neural cell survival (Galve-Roperh et  al., 2013; Maccarrone et  al., 
2014). Therefore, throughout embryonic neurogenesis and during 
perinatal and adolescent brain development when gliogenesis, 
myelination and neuron circuit refinement take place, cannabinoid 
receptors, their downstream signalling pathways and endocannabinoid 
ligands are all active. Endocannabinoid signalling exerts important 
cellular plasticity effects that may have an impact on neuronal 
remodelling of the developing brain in addition to supporting 
neuronal homeostasis in the adult brain. We next briefly discuss the 
effects of CB1 and CB2 receptors signalling on neural cell plasticity 
during brain development (Figure 2).

CB1 receptor signalling

CB1 receptors are expressed by cells ranging from neural 
progenitor (NP) cells to fully differentiated neurons with distinctly 
diverse functions. CB1 receptor signalling in NPs controls cell identity 
and proliferation, encouraging the shift from radial glial cells to 
intermediate progenitors (Diaz-Alonso et al., 2015). Later, the ability 
of CB1 receptor signalling to regulate NP proliferation was found to 
be  conserved in adult neurogenic regions, where CB1 receptors 

govern the proliferation of hippocampal subgranular cells (Aguado 
et al., 2007). The CB1 receptor is also active in the subventricular zone 
and influences oligodendrogenesis and neurogenesis (Xapelli et al., 
2013). Hemopressin, a CB1 receptor modulator, has been 
demonstrated to encourage SVZ-derived oligodendrogenesis in 
newborn mice (Xapelli et al., 2014). In addition, a study of genetic 
engineering of FAAH and diacylglycerol lipase (DAGL), the key 
enzymes responsible for AEA breakdown and 2-AG synthesis, 
respectively, confirmed that endocannabinoid signalling controls 
adult neurogenesis in a manner consistent with findings from 
endocannabinoid receptor knockout mouse models (Gao et al., 2010).

CB2 receptor signalling

The vast majority of neuronal populations lack the CB2 receptor, 
and its function in normal physiological brain function is a current 
topic of study. However, the importance of CB2 receptor signalling has 
been shown in cases of neurodegenerative diseases and nervous 
system injury. CB2 receptors are mostly recognized for their capacity 
to regulate neuroinflammation, and their activation is linked to 
decreased levels of inflammatory cytokines, innate immunity, and 
infiltration of peripheral immune cells (Turcotte et  al., 2016). 
Therefore, the CB2 receptor has neuroprotective effects that are 
primarily due to the regulation of the negative effects of inflammation. 
Previous studies have reported that inhibition of hippocampal 
neurogenesis can be  prevented by the administration of a CB2 
receptor agonist (Avraham et  al., 2014); this treatment can also 
prevent inhibition of oligodendrogenesis in Borna Disease (BD) virus 
encephalitis (Solbrig et al., 2010). Additionally, notable examples of 

FIGURE 2

Endocannabinoid system control of neurogenesis and neural cell fate in the immature brain. CB1 receptor expression is present in neural progenitors 
(NPs) and increases during neuronal proliferation, differentiation and maturation. In contrast, the CB2 receptor is present in NPs and is downregulated 
upon neuronal proliferation, differentiation and maturation. During neuronal development, CB1 and CB2 receptors control NP proliferation, neuroblast 
migration and neuron maturation. Under neuroinflammatory conditions, activation of CB1 receptors has been shown to restore adult neurogenesis 
and decrease the number of injured neurons.
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the positive effects of the CB2 receptor in models of acute 
inflammation include protection against ageing-related 
neuroinflammation and reduced neurogenesis (Goncalves et al., 2008; 
Marchalant et al., 2009). In the APP/PS1 experimental model of AD, 
CB2 receptor activation can reduce both cognitive decline and 
hippocampal neurogenesis impairment (Wu et al., 2017).

The CB2 receptor is also expressed in NPs, and in addition to 
indirect regulation of neurogenesis and neuroprotection, its activity 
regulates cell proliferation and neurogenesis in a cell-autonomous 
manner (Palazuelos et al., 2012). As their activity promotes neuroblast 
migration towards the damaged cortex, CB2 receptors are known to 
be  involved in brain encephalopathies (Bravo-Ferrer et  al., 2017). 
These studies have highlighted the role of endocannabinoid signalling, 
including that of both the CB1 and CB2 receptors, in neuroblast 
migration along the rostral migratory stream (Oudin et al., 2011). 
Overall, the role of endocannabinoid signalling in neuronal 
development and plasticity is demonstrated by the capacity of the CB1 
receptor to connect to numerous signalling pathways involved in 
neural precursor cell proliferation, neuronal differentiation, and 
survival. Furthermore, the therapeutic effects of cannabinoids in the 
treatment of brain encephalopathies and injuries to the developing 
brain are explained by the complementary effects of CB2 receptor 
signalling on neural cell survival. Notably, the development of CB2 
receptor-specific manipulation techniques can mitigate the negative 
effects of neuroinflammation without causing the side effects that are 
associated with typical neuronal CB1 receptor activity.

Therapeutic potential of the 
cannabinoid and endocannabinoid 
system after hypoxia-ischemia

Several studies have proposed the involvement of the cannabinoid 
and endocannabinoid systems in a variety of activities, including the 
modulation of calcium homeostasis and excitability, regulation of 
immune and inflammatory responses (Klein, 2005), activation of 
cytoprotective signalling pathways (Pacher et  al., 2006), and 
modulation of synaptic plasticity, excitatory glutamatergic 
transmissions (Freund et  al., 2003) and their hypothermic and 
antioxidant properties (Hampson et al., 2000), although the precise 
neuroprotective mechanisms of cannabis are not fully understood. In 
this context, the cannabinoid and endocannabinoid system may 
additionally serve as a crucial neuroprotective mechanism in both 
acute and chronic neuronal hypoxic-ischaemic brain injury.

Numerous in vitro investigations have documented the 
neuroprotective properties of cannabis in connection with its 
antioxidant properties (Marsicano et al., 2002). Cannabis has shown 
these antioxidant-related neuroprotective effects in in vivo models of 
neurodegenerative disorders (De Lago and Fernández-Ruiz, 2007). 
Additionally, it has been shown to reduce body temperature (Pertwee 
et al., 1991). Studies on adult rats using various cannabinoids have 
shown that a considerable portion of the neuroprotective effect of 
these substances depends on the presence of hypothermic conditions, 
as returning the rat body temperature to a normal temperature 
decreases or even eliminates the positive effect (Leker et al., 2003). 
Additionally, hypothermia, the current gold standard of treatment is 
not an easily accessible and 100% curative therapy due to its limited 
availability and technical complications. There is definitely a need for 

combination cannabinoid receptor agonist therapies that are easily 
accessible and have additive neuroprotective effects (Gupta et  al., 
2020). Previous studies have observed that a single injection of the 
CB1 synthetic agonist HU-210 significantly reduced body 
temperature, conferring a strong neuroprotective effect in hypoxic-
ischaemic rats, and this beneficial effect was lost when animals were 
treated with the selective CB1 antagonist SR141716 (Leker et  al., 
2003). The enhancement of hypothermia by stimulating the 
endocannabinoid systems or by combined therapies targeting the 
endocannabinoid system plus hypothermia may have beneficial 
outcomes in neonates, so these responses are currently under 
investigation in preclinical models (Lafuente et al., 2016; Barata et al., 
2019). Furthermore, cannabinoids cause vasodilation in the brain 
(Golech et al., 2004), stabilize the BBB and are involved in neuron 
proliferative processes (Aguado et al., 2006). Cannabinoids improve 
the energy metabolism of astrocytes (Stella, 2004) and shield these 
glial cells from cytotoxic and proapoptotic stimuli after brain damage 
(Docagne et al., 2007).

Previous research has shown that CB1 receptor activation prevents 
acute stroke through several mechanisms, including the reduction of 
BBB disruption, a decrease in the volume of infarcted brain tissue, and 
the induction of hypothermia. These effects are all typically reversed 
by CB1 receptor antagonists (Chi et al., 2012). Additionally, animals 
subjected to CB1 receptor deletion have more severe strokes 
(Parmentier-Batteur et al., 2002), although one study revealed that 
CB1 receptor antagonists might offer protection in cases of temporary 
or permanent cerebral artery blockage (Muthian et  al., 2004). 
Similarly, CB2 receptor activation decreases infarct volume and 
enhances neurological outcome and cerebral microcirculatory 
function in mice with middle cerebral artery blockage (Zarruk et al., 
2012). In fact, palmitoylethanolamide and other N-acylethanolamines 
protected against transient focal cerebral ischaemia in rats and against 
the effects of middle cerebral artery occlusion in mice via mechanisms 
that did not require activation of the CB1 receptor but the CB2 
receptor or TRPV1 (Franklin et al., 2003). Recent studies have shown 
that the anti-inflammatory and immunomodulatory effects of 
cannabis are mediated by CB2 receptors (Fernandez-Ruiz et al., 2007). 
Numerous studies have demonstrated the anti-inflammatory 
therapeutic potential of CB2 receptor activation in conditions affecting 
the central nervous system, including MS, traumatic brain injury, and 
AD (Mauler et al., 2003; Ni et al., 2004; Ramirez et al., 2005). The 
presence of CB2 receptors in inflammatory cells in the brain, including 
microglia (Maresz et al., 2005), has recently been demonstrated, and 
CB2 receptor expression is induced by hypoxia-ischaemia in the brain 
(Fernandez-Ruiz et al., 2008). Additionally, CB2 receptor agonists 
have demonstrated promising results in a variety of neonatal hypoxic-
ischaemic brain injury paradigms, reducing cell death and modulating 
glutamate release, cytokine production, and the expression of 
cyclooxygenase-2 and iNOS. In an animal model of stroke, it was 
discovered that the CB2 receptor agonist O-1966 increased blood flow 
to the brain and reduced neuroinflammation (Sinor et al., 2000). In 
addition, CB2 receptor activation has been shown to reduce infarct 
size after middle cerebral artery occlusion and to decrease 
inflammation-dependent neurodegeneration, reducing the release of 
inflammatory cytokines and leukocyte adhesion to cerebral vessels 
(Zhang et al., 2007; Rivers and Ashton, 2010). These findings lend 
support to the idea that the protective effects of CB2 receptors are 
primarily due to their anti-inflammatory properties (Castillo et al., 
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2010). This offers new information on its potential application as a 
neuroprotective target following neonatal hypoxia.

However, the potential therapeutic effect of CB receptors on 
ischaemic disorders is far from clear in currently. For example, CB1R 
activation can promote either protective or toxic responses after brain 
ischaemia (Pellegrini-Giampietro et al., 2009), as these receptors can 
either promote the inhibition of glutamate (inducing neuroprotection) 
or the release of gamma-aminobutyric acid (thus amplifying the toxic 
response), leading to oxidative stress. In a recent report (Rivers-Auty 
et al., 2014), the CB2R-selective agonist GW405833 did not show a 
beneficial effect in a model of cerebral HI, although CB2R-induced 
neuroprotection has long been known to be  related to its anti-
inflammatory capacity. Thus, the antioxidant capacity and/or the anti-
inflammatory effect developed by the endocannabinoid system after 
perinatal asphyxia remain a subject of investigation. Further studies 
should analyse the modulatory effect of CB receptors agonists on ROS 
and inflammatory cytokine production after HIE, which may 
contribute to illustrating the role of the cannabinoids and 
endocannabinoid system in HIE treatment.

Finally, numerous studies have suggested that using synthetic 
cannabis can lessen damage after brain injury (Fernández-López et al., 
2007; Alonso-Alconada et  al., 2012; Dai et  al., 2014). A 
histopathological study specifically found that administering 
WIN55212 soon after recovery from hypoxia-ischaemia successfully 
reduced brain damage (Fernández-López et al., 2007). Additionally, 
WIN55212 was shown to prevent the death of apoptotic cells in every 
area examined by maintaining the integrity and activity of the 
mitochondria (Fernandez-Lopez et  al., 2010) and to encourage 
neurogenesis in the subventricular zone, oligodendrogenesis, white 
matter remyelination, and neuroblast production after neonatal 
hypoxic-ischaemic episodes (Zhang et al., 2009).

Conclusion

Interest in cannabinoids and endocannabinoids as treatments to 
manage neonatal hypoxic-ischaemic encephalopathy is supported by 
the pharmacological characteristics of cannabinoids. In experimental 
HIE and brain insult models, the administration of cannabis has been 
shown to have neuroprotective effects. Cannabis preparations may 
mitigate some of the negative effects of HIE damage in the developing 
brain. Because cannabinoids have a complicated pharmacology that 

enables them to target various molecular effectors and receptors, the 
use of cannabinoid compounds with diverse pharmacological profiles 
will have distinct effects. Endocannabinoids safeguard the developing 
brain by inhibiting neuronal excitotoxicity, inflammation, and 
oxidative stress as well as by altering the fate of neurons and preventing 
neurodegeneration and harmful glial activation. These cannabis 
substances provide promising potential clinical applications and raise 
the possibility of better long-term benefit outcomes for 
these individuals.
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