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Recent advances highlight that inflammation is critical to Alzheimer Disease 
(AD) pathogenesis. Indeed, several diseases characterized by inflammation are 
considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, 
and traumatic brain injury. Moreover, allelic variations in genes involved in 
the inflammatory cascade are risk factors for AD. AD is also characterized by 
mitochondrial dysfunction, which affects the energy homeostasis of the brain. 
The role of mitochondrial dysfunction has been characterized mostly in neuronal 
cells. However, recent data are demonstrating that mitochondrial dysfunction 
occurs also in inflammatory cells, promoting inflammation and the secretion 
of pro-inflammatory cytokines, which in turn induce neurodegeneration. In 
this review, we summarize the recent finding supporting the hypothesis of the 
inflammatory-amyloid cascade in AD. Moreover, we  describe the recent data 
that demonstrate the link between altered mitochondrial dysfunction and the 
inflammatory cascade. We  focus in summarizing the role of Drp1, which is 
involved in mitochondrial fission, showing that altered Drp1 activation affects 
the mitochondrial homeostasis and leads to the activation of the NLRP3 
inflammasome, promoting the inflammatory cascade, which in turn aggravates 
Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the 
relevance of this pro-inflammatory pathway as an early event in AD.

KEYWORDS

Alzheimer inflammation, mitochondria, DRP1, NLRP3, TXNIP

1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia, with prevalence rates of 
11% in those of 65 years and older (Hebert et al., 2013) and 68% in memory disorder clinics 
(Paulino Ramirez Diaz et al., 2005). With the progression of the disease, macroscopic atrophy 
affects the entorhinal area and hippocampus, amygdala, and associative regions of the neocortex. 
AD is characterized by white matter loss and myelin degeneration due to death of 
oligodendrocytes occurring in the early phase of AD. Hallmark signs of AD are the formation 
of amyloid plaques and neurofibrillary tangles (NFT) in the hippocampal and entorhinal regions 
(Perrone et al., 2012). Amyloid plaques are constituted by accumulation of the beta amyloid 
peptides (Aβ), which aggregate both intracellularly and extracellularly and is produced by the 
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processing of the amyloid precursor protein (APP; Hardy and Selkoe, 
2002). NFT are formed in neurons by intracellular aggregation of 
hyperphosphorylated tau. About 90–95% of AD cases are sporadic 
and only 5–10% are familiar, showing mutations in APP gene or the 
genes encoding the proteins involved in APP cleavage and Aβ 
production (presenilin 1-PSEN1-and presenilin 2 PSEN2). The 
presence of mutations in APP or PSEN1/2 in familiar AD initially 
supported the hypothesis of the “Amyloid cascade” as a central player 
in AD onset and progression, indicating the over-production of Aβ as 
the causative event responsible for the pathophysiological process 
leading to AD progression. However, recent studies underline that Aβ 
deposition and NFT are not sufficient to clarify AD onset and 
progression, opening the way to the amyloid-inflammatory cascade 
(Wang and Mandelkow, 2016; Long and Holtzman, 2019). In 
agreement, aging and several diseases that are risks for AD, such as 
type 2 diabetes, obesity, hypertension, and metabolic syndrome, are 
characterized by chronic inflammation (Matrone et al., 2015). It has 
been hypothesized a central role of microglia activation as initial step 
initiating the pathological cascade leading to AD. Indeed, several AD 
risk genes play a central role in the innate immunity (Scheltens et al., 
2021). Microglia are central for the brain homeostasis, ensuring 
effective synapse pruning and plasticity, as well as supporting myelin 
stability. Several microglia phenotypes have been described, showing 
different morphology, molecular and metabolic characteristics that 
correspond to the different functions of the microglia. Recent data 
underline that dysfunctional microglia affect the synaptic plasticity 
and alter the cognitive function, contributing to AD pathophysiology. 
Interestingly, mitochondrial fission promotes inflammatory activation, 
showing a link between mitochondrial dynamics and microglia 
activation (Lawrence et al., 2022). NOD-like receptor family, pyrin 
domain containing 3 (NLRP3) plays a central role in inflammation, 
by producing pro-inflammatory cytokines. On the other hands, 
Dynamin Related Protein 1 (Drp1) is essential for the homeostasis of 
mitochondria dynamics and is implicated in mitochondria fission. 
We  will summarize below the link between Drp1 and NLRP3  in 
promoting inflammation and participating in AD pathophysiology.

2. AD and inflammation

In the last decades, increasing evidence has demonstrated that a 
sustained immune response can be classified as an essential factor 
involved in AD pathophysiology as well as Aβ aggregation and tau 
hyperphosphorylation (Matrone et al., 2015; Kinney et al., 2018). In 
normal conditions, acute inflammation is a response counteracting 
injury to the brain. This well-established mechanism serves as 
protection and may be activated upon different stimuli. However, the 
disruption of the equilibrium between pro-inflammatory and anti-
inflammatory signaling can results in chronic neuroinflammation, 
where the sustained immune response becomes a central feature of 
neurodegenerative disorders (Matrone et al., 2015). Recent studies 
underline that inflammation plays a central role in AD 
pathophysiology and is implicated in the development of the 
pathological changes (Aβ aggregation and NFT) observed in AD. In 
agreement, various inflammatory molecules have been proposed as 
AD biomarkers (Novoa et al., 2022). In addition, diseases characterized 
by systemic inflammation, such as obesity, type 2 diabetes, and 
cerebrovascular diseases, are considered risk factors for AD (Novoa 

et  al., 2022). In neurodegenerative diseases, inflammation can 
be produced in two ways. In one mechanism, peripheral inflammation 
produces cytokines, which alters and cross the Blood Brain Barrier 
(BBB), further inducing the release of pro-inflammatory factors by the 
brain endothelial cells and by glial cells associated to the BBB. This 
process enhances the BBB permeability to peripheral immune cells, 
leading to the entry of leucocytes into the brain (Varatharaj and Galea, 
2017). These events promote the activation of astrocytes and microglia, 
leading to further production of cytokines into the brain, ultimately 
promoting neuronal dysfunction. This mechanism is defined as 
neuroinflammation (Carson et al., 2006). In a second mechanism, the 
innate immune system of the brain (such as the microglia) promotes 
a cascade leading to neuroinflammation. This mechanism can 
be induced by neuronal lesions or aggregated proteins, such as Aβ, 
which activates the astro-glial cells, leading to cytokine production 
and ultimately promoting synaptic dysfunction and neurodegeneration 
(Lull and Block, 2010).

As with most of the other mechanisms investigated in AD, it is not 
yet definitively understood whether inflammation is the cause, 
contribution, or secondary phenomenon of this disorder. In the next 
paragraphs, we will delineate a comprehensive report of the studies 
performed to elucidate the role of inflammation and the new frontiers 
aimed to target inflammation in AD.

2.1. Role of inflammation in AD: clinical 
data

The majority age related diseases, such as diabetes, and obesity-
that are risk factors for AD-and AD are characterized by chronic 
inflammation (Chung et  al., 2009). In the 1980s, it has been 
demonstrated the presence of inflammatory proteins and immune-
related cells in the proximity of Aβ plaques (Rogers et al., 1988; Griffin 
et  al., 1989). Since the 1990s, researchers have demonstrated a 
significant presence of sustained inflammation in patients with AD 
(Aisen and Davis, 1994), confirmed by post-mortem tissues analysis 
(Gomez-Nicola and Boche, 2015). Epidemiological studies of large-
scale cohorts have shown that people showing enhanced 
pro-inflammatory proteins in the blood in mid-life are at higher risk 
of cognitive decline over the decades compared to subjects 
maintaining a low presence of pro-inflammatory factors in the blood 
(Leung et al., 2013; Huang et al., 2022). In addition, in their later life, 
these individuals are characterized by lower volume of brain with 
abnormal microstructure of white matter, increased myelin loss and 
the inability of the oligodendrocytes, the cells responsible for the 
production and maintenance of myelin, to repair myelin damages 
(Nasrabady et al., 2018; Collij et al., 2021). These observations were 
among the first to support the idea that systemic inflammation occurs 
one or two decades before the appearance of dementia symptoms, 
suggesting its active role in promoting the progression of cognitive 
decline and neurodegeneration. In parallel, genome-wide association 
studies (GWAS) reported that more than 60% of the genes linked to 
late-onset sporadic AD are inflammation-related (Efthymiou and 
Goate, 2017; Misra et al., 2018; Carpanini et al., 2021). In this scenario, 
preliminary studies aimed to evaluate the potential beneficial effect of 
long-term administration of anti-inflammatory drugs. Indeed, people 
who regularly took anti-inflammatory drugs over a long period of 
time showed reduced risk of developing AD later in life. Unfortunately, 
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the search for anti-inflammatory drugs effective in preventing AD was 
less straight forward than it could seem looking at the plethora of data 
supporting the pivotal role of inflammation. Indeed, the effect of anti-
inflammatory drugs remains under debate. Chronic inflammation 
exacerbates amyloid β deposition and tau hyperphosphorylation and 
participate to the pathogenesis of AD (Matrone et  al., 2015). 
Interestingly, chronic administration of non-steroidal anti-
inflammatory drugs (NSAIDs) appears to be beneficial only in the 
very early stages of the AD process along with initial Aβ deposition, 
early microglia activation and subsequent release of pro-inflammatory 
mediators (Imbimbo et al., 2010). On the other side, over time the 
beneficial effect of NSAIDs is no more significant, especially when 
older groups of patients are studied. In 2009, Breitner and colleagues 
suggested that the differences seen in these observational studies may 
be due to the fact that NSAIDs may not simply reduce the risk of AD, 
but delay AD onset in later ages (Breitner et al., 2009), suggesting that 
NSAIDs may be beneficial in delaying AD only when administered in 
the young age. Since AD is more common in old subjects and occurs 
as a chronic effect after decades from the initial pathological alteration, 
NSAID is beneficial in preventing AD when administered to young 
subject, while NSAID is less effective when administered in the old 
age, explaining the variance observed among different patient groups. 
Other factors may also cause the inconsistencies reported in several 
publications. The selection of the most effective NSAIDs for a study 
and the presence of other factors as concomitant pathologies to AD 
can affect the epidemiological results, producing discrepancies among 
different studies. To overcome these limits, in recent years, more 
homogeneous approaches have been taken in clinical trials to clarify 
the effects of NSAIDs without confounding variables. Jack Rivers-
Auty and colleagues used logistic regression and an innovative 
approach of negative binomial generalized linear mixed modeling to 
investigate both prevalence and cognitive decline in the AD 
Neuroimaging dataset for commonly used NSAIDs and paracetamol 
(Rivers-Auty et al., 2020). They demonstrated that most NSAIDs can 
reduce the prevalence of AD, but not cognitive decline. Interestingly, 
paracetamol also had a similar effect, which lead the authors to 
hypothesize that the prevalence of AD is independent of inflammation. 
Finally, they also analyzed the use of diclofenac (a non-steroidal anti-
inflammatory drug), finding a significant association between 
diclofenac intake and the reduction in AD incidence and similarly to 
slower cognitive decline, suggesting a possible therapeutic effect of 
this compound in AD. Recent genetic data strongly support the key 
role of inflammation and immune-related genes in AD pathogenesis 
by demonstrating that a mutation in the Triggering Receptor 
Expressed on Myeloid Cells 2 (TREM2) confers a very high likelihood 
to develop AD (Basha et al., 2023). The R47H allelic variant of TREM2 
confers a 2–4,5-fold increased risk of developing AD (Basha et al., 
2023). TREM2 variants are the second genetic risk factor for AD, 
behind apolipoprotein E4 (ApoE4), demonstrating the key role of the 
innate immunity in AD pathogenesis (Basha et al., 2023). As we have 
seen, clinical studies present limits that are difficult to overcome: they 
require large cohort of individuals, long periods of observations, they 
can be  affected by the presence of co-morbidities, environmental 
factors, and habits that can alter the outcome of a study. Moreover, it 
is almost impossible to standardize the protocols adopted among 
different studies in order to compare their results. Finally, the 
investigations of the molecular mechanisms of inflammation involved 
in the pathogenesis of AD is pivotal to develop drugs blocking the 

chronic mechanism that support AD development. For these reasons, 
pre-clinical studies are crucial and mouse transgenic models 
(expressing mutant amyloid precursor protein and presenilin mutants, 
resulting in increased Aβ deposition, or human tau mutant leading to 
tau hyperphosphorylation) have helped the identification of the focal 
pathways dysregulated in neuroinflammatory diseases, as described 
in the next paragraph.

2.2. Role of inflammation in AD: 
pre-clinical data

Initially the observed presence of inflammation in AD patients 
was considered the consequence of neuronal damage, which in turn 
activate the immune system promoting the inflammatory response. 
However, recent studies demonstrate that chronic inflammation in 
AD enhances both Aβ- and NFT-induced pathology. Notably, recent 
studies underline that the amyloid cascade hypothesis is not sufficient 
to explain the development of NFT and suggest that inflammation 
may represent the link between the initial Aβ-induced dysfunction 
and the subsequent development of NFT. In agreement, recent 
investigations demonstrate that inflammation exacerbates both Aβ- 
and NFT-induced pathology leading to AD (Kinney et al., 2018).

Studies carried out in different animal models are essential to 
clarify the role of inflammation in AD. The role of pro-inflammatory 
factors in promoting neurodegeneration has been summarized by 
Chen and colleagues (Chen et al., 2016). Some researchers investigated 
the effect of anti-inflammatory compounds in AD. NSAIDs treatment 
in AD mice models ameliorates AD pathophysiology (McGeer and 
McGeer, 2007). Studies have also been carried out in not transgenic 
models of AD, further supporting the role of ani-inflammatory 
compounds in ameliorating AD. Indeed, Lindsay and colleagues 
demonstrate that andrographolide—a natural compound-ameliorates 
not only inflammation but also oxidative stress in Octodon degus, 
which is a rodent that develops AD spontaneously (Lindsay et al., 
2020). Moreover, the effect of an anti-inflammatory compound 
(GsRb1) has been analyzed in a rat model of AD, where Aβ was 
injected intraventricularly. GsRb1 treatment ameliorates the 
inflammatory reaction and restored the learning capability in this AD 
model, further supporting the role of inflammation in AD pathology 
(Novoa et  al., 2022). To further elucidate the pathological role of 
neuroinflammation in AD, different strategies using immune 
challenge-based models and neurotoxin-induced AD models have 
also been employed (Nazem et al., 2015). According to the endotoxin 
hypothesis, the endotoxin molecules cause or contribute to the 
neurodegenerative process (Brown, 2019). LPS-induced rodent 
models are used for studying neuroinflammation and inflammation-
induced amyloidosis. These rodents develop memory impairment by 
affecting the consolidation of memory process. Acute treatment with 
LPS before training blocks contextual-cue fear conditioning, which is 
a hippocampal-dependent learning paradigm (Zakaria et al., 2017). 
These data further support the role of inflammation in promoting 
neuronal dysfunction (Brown, 2019). Since LPS treatment in rodents 
induces both amyloidosis and cognitive dysfunction, it has been 
proposed as AD model (Zakaria et  al., 2017). However, when an 
LPS-induced memory impairment AD model is designed, the 
following factors must be  taken into consideration: route of 
administration (mainly intraperitoneal and intracerebroventricular), 
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duration of exposure, age, and sex of the animal. LPS administration 
causes many behavioral effects, namely, fever, hypersomnia, activation 
of hypothalamus-pituitary–adrenal (HPA) axis-causing sympathetic 
activation, reduction in exploration, social interaction, consumption, 
and activity. According to studies based on LPS injection, researchers 
have showed that peripheral inflammation induces neuroendocrine 
alterations, astrocyte and microglia activation, as well as 
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) 
and pro-inflammatory cytokine expression in the brain (Brown, 
2019). Interestingly, gut microbiome derived LPS accumulates in AD 
affected brain, further aggravating the pro-inflammatory environment 
of the brain (Zhao et al., 2021). In addition, intracellular accumulation 
of APP, Aβ peptide, and hyperphosphorylated tau as well as 
exacerbation of memory deficits were observed in LPS-treated APP 
transgenic mice (Sheng et al., 2003; Lee et al., 2008). However, this 
approach has limitations, as seen when evaluating the number of 
injections and the route of administrations used (directly into the 
central nervous system vs. systemic), which can lead to different 
pathological effects and contradictory results (Valero et al., 2014). The 
data obtained by injecting LPS in wild type mice and rats are 
important to demonstrate the role of inflammation in promoting 
neuronal dysfunction and an AD-like phenotype. More detailed 
analysis of the molecular pathways involved have been carried out in 
transgenic AD mice models, unveiling specific inflammatory pathways 
that are central in AD pathophysiology.

The App NL-G-F knock in (KI) model carries a combination of 
Swedish, Arctic, and Iberian APP mutations. This KI model more 
closely represents human amyloidogenic pathways than other APP 
models. Another KI model used to unveil the early impact of 
neuroinflammation in AD is the App NL-F. Both KI models show an Aβ 
plaque composition comparable to that of AD patients. Interestingly, 
in these model microglia is associated with diffuse plaques and 
mushroom spine loss, underlying the crucial function of microglia-
mediated synapse loss and supporting that the expression of 
neuroinflammation-related genes is an AD risk factor (Saito 
et al., 2014).

The role of TREM2 in AD pathophysiology is well characterized 
in the APP/PS1 and 5xFAD AD mice models. Both heterozygous and 
homozygous Knock out (KO) of TREM2 in these AD models strongly 
reduce the presence of macrophages associated to Aβ plaques, 
reducing Aβ plaques load in 4 months old AD mice, while Aβ load is 
increased in 8 months old AD mice lacking TREM2 (Basha et al., 
2023). TREM2 KO in AD mice leads also to reduced production of 
pro-inflammatory cytokines and ameliorates astrocytosis, as observed 
by decreased expression of glial fibrillary acidic protein (GFAP; Basha 
et al., 2023). However, microglia and macrophages lacking TREM2 
show a decreased capability to phagocytose Aβ and apoptotic cells and 
TREM KO in AD mice finally lead to enhanced neurodegeneration 
(Kinney et  al., 2018). TREM2 is also involved in tau-mediated 
pathology. Indeed, the KO of TREM2 in mice expressing human tau 
aggravates tau pathology (Kinney et al., 2018). Studies in AD and tau 
mice models suggest that TREM2 plays a dual role in Aβ and tau 
pathology, appearing to being beneficial in the initial phase of the 
disease by contributing in altered protein phagocytosis, whereas it 
exerts a pathological role in the later phase of the disease by enhancing 
inflammation and neurodegeneration (Kinney et al., 2018). This dual 
role of TREM2 is currently explained by three distinct mechanisms 
related to inflammation that are relevant in AD: (i) the function of 

phagocytosis of damaged and misfolded proteins; (ii) the survival and 
proliferation of cells involved in the inflammatory response; (iii) the 
regulation of the whole inflammatory process (Kinney et al., 2018).

Further supporting the role of inflammation in AD, several studies 
carried out in AD mice models reveal the relevance of the Receptor for 
Advanced Glycation Endproducts (RAGE) in AD pathophysiology 
(Perrone et al., 2012). RAGE is a multi-ligand receptor whose activity is 
also triggered by Aβ. Silencing of RAGE specifically in microglia 
ameliorates neuronal dysfunction in an AD contest (Origlia et al., 2010). 
Interestingly, High Mobility Group Box 1 (HMGB1)—another ligand 
of RAGE-seems to be involved in AD progression (Mo et al., 2023). 
HMGB1 is a ubiquitous non-histone DNA binding protein, which may 
exert various functions depending on its subcellular localization. Inside 
the nucleus, HMGB1 acts as a structural chromatin protein, regulating 
DNA repair and gene expression (Mo et al., 2023). In the cytoplasm, 
HMGB1 modulates autophagy and is implicated in the removal of 
damaged mitochondria (Mo et al., 2023). HMGB1 can also be secreted 
by inflammatory cells or released by necrotic cells. Extracellular 
HMGB1 is considered as an alarm protein or a damage associated 
molecular pattern (DAMP) protein and induces inflammation through 
interaction with various receptors, such as RAGE, Toll-like receptor 4 
(TLR 4), CD24, and CXCR4 (Mo et al., 2023). Inhibition of HMGB1 is 
beneficial in AD mice (Paudel et al., 2020), further supporting the key 
role of inflammation in AD onset and progression.

3. Cell types promoting inflammation 
in AD

3.1. Microglia

Microglia are known resident immune cells within the central 
nervous system (CNS) and are among the main responsible for the 
surveillance of the surrounding neurons health. Among the various 
microglia phenotypes described, three of them are more relevant for 
the understanding of AD pathophysiology: the steady state, the 
activated and the primed phenotype (Bivona et al., 2023). Steady state 
microglia exert a neuroprotective function and present a basic and low 
level of cytokine production, with an anti-inflammatory function. 
Activated microglia show a protective function against injuries, 
enhances the production of cytokines, both pro-inflammatory (IL-1β, 
IL-18, and TNF) and anti-inflammatory cytokines in order to 
counteract an excessive inflammation and inhibit a subsequent 
neuronal damage. Activated microglia can revert its phenotype to 
steady state, when the activating stimulation is removed. Primed 
microglia show a more aggressive and pro-inflammatory activity and 
maintain the memory of the specific stimulation with a Toll-like 
receptor 4 (TLR4)-mediated mechanism. Primed microglia cannot 
revert his phenotype and turn again on the steady state phenotype 
(Bivona et al., 2023).

Microglial activation is highly regulated. In normal conditions, 
the microglia are maintained inactive by healthy neurons through the 
continuous release of inhibitors such as the chemokine CX3CL1, 
whose receptor CX3CR1 is expressed uniquely on microglia surface 
(Arnoux and Audinat, 2015). In addition, the CD200 protein 
expressed on the surface of neurons, astrocytes and oligodendrocytes 
interacts with its receptor CD200R, which is expressed only by 
macrophages and microglia. The interaction between CD200 and 
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CD200R induces microglia inactivation and maintains microglia in a 
resting state (Biber et al., 2007). Microglia in AD are initially activated 
by Aβ formation, through the ability of the pattern recognition 
receptors (PRRs) to recognize misfolded and aggregated proteins with 
a consequent trigger of the innate immune response (Tu et al., 2015), 
leading to migration of the microglia close to the plaques and 
subsequent phagocytosis of Aβ. When the pro-inflammatory stimulus 
is chronic, microglia efficacy to bind and phagocyte Aβ decreases and 
the overall clearance becomes compromised while the immune 
activation continues (Hickman et al., 2008). The accumulation of Aβ 
together with chronic release of pro-inflammatory cytokines drives 
neuronal damage by reducing trophic factors such as brain-derived 
neurotrophic factor (BDNF) and insulin-like growth factor (IGF; 
Sheng et al., 1998; Hickman et al., 2008).

The colony stimulating factor 1 (Csf 1) and IL-34 are also 
important for microglia proliferation during the neurodegenerative 
process occurring in AD (Gómez-Nicola et al., 2013).

The mechanisms involved in microglia activation induced by Tau 
are not yet fully elucidated. Recent data show that microglia 
phagocytose of aggregated Tau, which is targeted to lysosomes, leading 
to NLRP3 inflammasome activation (Stancu et al., 2019). Moreover, 
tau interacts with polyglutamine binding protein 1 (PQBP1), which 
in turn induces the cGAS-STING pathway, leading to microglia 
activation (Jin et al., 2021).

The microglial myeloid differentiation primary response 88 
(MyD88) and the p38 mitogen activated protein kinase (MAPK) 
signaling pathways are also involved and drive the release of 
neurotoxins, in a process initiated by the pro-inflammatory cytokine 
TNF, contributing to the damage of neurons (Michaud et al., 2011; 
Wang et  al., 2015; Schnöder et  al., 2016). Moreover, in these 
conditions, microglia are characterized by a phenotypic change: the 
retraction of their processes that correlates with an impaired ability to 
remodel synapses, a phenomenon that contributes to impaired 
synaptic plasticity observed in AD (Nimmerjahn et al., 2005). All 
these events contribute to the microgliosis that leads to 
neurodegeneration (Zhang J. et al., 2021).

Microglia activation leads to the secretion of IL-1β and IL-18, 
which plays a role in AD progression, as we will describe in more 
detail in the paragraphs below.

3.2. Astrocytes

Astrocytes provide trophic support to neurons and form a 
protective barrier that isolates neurons from amyloid deposits. 
Astrocytes are not only essential for the maintenance of neuronal 
health, but also are an important component implicated in synaptic 
transmission, they modulate brain energetics and cerebrovascular 
function (Delekate et al., 2014). In the healthy brain, astrocytes are 
assembled into dynamic networks. Connexins control this network 
and their expression is reshaped in AD, leading to a perturbation of 
the astrocytic network as occurs when astrocytes are activated leading 
to reactive astrogliosis (Delekate et  al., 2014). Besides microglia, 
astrocytes contribute to the clearance of Aβ but this role is affected in 
the presence of chronic stress and inflammation. Accumulation of 
astrocytes, indeed, has been detected in proximity of the Aβ deposits 
in AD patients (Kuchibhotla et al., 2009). Recently, it has been shown 
that the functional connectivity of astrocytes is altered early in AD 

(Shah et al., 2022). Indeed, it is observed a decreased calcium signaling 
in astrocytes of AD mice before the appearance of Aβ plaques (Shah 
et al., 2022). Moreover, disruption of astrocyte network in AD affects 
the cortical neuronal activity, promoting cognitive decline (Lines 
et al., 2022). The prolonged response of astrocytes to Aβ accumulation 
promotes neuroinflammation, contributing to nitric oxide (NO) 
mediated neurotoxicity. Activated astrocytes can participate to the 
formation of Aβ, as suggested by Rossner et al. in a study on the 
overexpression of β-secretase (BACE1) in astrocytes affected by 
chronic stress (Rossner et al., 2005). Moreover, the end-feet of these 
cells form a lacework of fine lamellae closely linked to the outer 
surface of the BBB endothelium and basement membrane. 
Inflammation induces astrocytes proliferation and activation, followed 
by astrocytes loss and changes in the end-feet structures, affecting the 
integrity of the BBB (Escartin et  al., 2021). Finally, the ability of 
astrocytes to produce pro-inflammatory prostaglandins and cytokines, 
such as IL-1β and IL-18, in large quantities during prolonged 
inflammation negatively alter the BBB protective function, as better 
reported in the next paragraph (Sofroniew, 2015).

3.3. Blood brain barrier

The blood brain barrier (BBB) is one of the main brain barriers 
that impedes free diffusion between brain and blood and regulates the 
transport of essential nutrients, ions, and metabolic waste products. It 
is formed by endothelial cells which are tightly linked by tight 
junctions (TJs) and it is surrounded by pericytes and astrocytes, which 
provide support and regulatory functions.

Systemic inflammation has disruptive effects on the BBB 
integrity, leading to the diffusion of peripheral inflammatory factors 
into the brain. These factors induce alterations into the brain that in 
turn may participate to neuronal dysfunction and cognitive decline 
in AD patients. Among the known factors, the most important are 
prostanoids and NO. The mediators involved in their release, the 
Matrix Metalloproteinases (MMPs) and the Reactive Oxygen Species 
(ROS), activate pathways such as the MAPK, and induce 
mitochondrial dysfunctions with a subsequent destruction of the 
BBB integrity (Ralay Ranaivo et al., 2012; Takata et al., 2021). Some 
miRNAs have a role in the BBB structure and function integrity 
maintenance. The expression of miR-155 in microvessels is strongly 
and rapidly upregulated by inflammatory cytokines and alters BBB 
function by affecting expression of TJs and adhesion components 
(Lopez-Ramirez et al., 2014). Next to direct morphological changes 
in the BBB, systemic inflammation can also cause non-disruptive 
changes that affect BBB functionality (Perrone et al., 2012). Chronic 
inflammation downregulates the multi-functional efflux transporter 
permeability glycoprotein (P-gp) and upregulates the expression of 
the influx carriers responsible for TNF translocation (Roberts, 2008). 
Systemic inflammation is also responsible for the reduced bulk flow 
of cerebrospinal and interstitial fluids, resulting in impaired Aβ 
clearance (Tarasoff-Conway et al., 2015; Mogensen et al., 2021). In 
AD, the elevated production of TNFα and IL-1β by microglia and 
astrocytes promotes BBB dysfunction by affecting the TJs, leading to 
BBB hyperpermeability. In addition, TNFα and IL-1β reduce the 
expression of the low-density lipoprotein receptor-related 1 (LRP1), 
which drives the efflux of Aβ from the brain to the blood, resulting 
in a reduced Aβ clearance (Versele et al., 2022).
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4. Role of the inflammasome in AD

4.1. The NLRP3 complex

We underlined above the crucial role of cytokines and chemokines 
in the inflammation process. However, the molecular pathways 
involved are not yet fully characterized. Although it is well 
documented that IL-1β, IL-6, TNF-α, IL-8, and TGF-β and 
macrophage inflammatory protein-1a (MIP-1a) are upregulated in 
AD patients (Domingues et al., 2017), it is not yet fully clarified their 
role in the onset or progression of AD. Pro-inflammatory cytokines 
can promote Aβ formation by upregulating BACE1 and APP levels. 
Further studies are necessary to elucidate the mechanisms induced by 
pro-inflammatory molecules and their effect in AD progression. 
Recently, several publications described the role of nucleotide-binding 
domain, leucine-rich-repeat containing family, pyrin domain-
containing 3 (NLRP3) inflammasome in AD (Milner et  al., 2021; 
Barczuk et al., 2022; Sharma et al., 2022). The NLRP3 inflammasome 
is a multiprotein complex, activated upon infection or stress. The 
inflammasome is formed by NLRP3 protein and the apoptosis 
associated speck-like protein containing a caspase recruitment 
domain (ASC). This macromolecular complex responds to pathogen-
associated molecular patterns (PAMPs) and damage-associated 
molecular patterns (DAMPs; Kelley et al., 2019).

NOD-like receptor family, pyrin domain containing 3 contains an 
N-terminal pyrin domain (PYD), which clusters upon stimulation, 
allowing the interaction with ASC and the procaspase-1. Procaspase-1 
clustering drives its autocleavage and the formation of the active 
caspase-1, which induces the cleavage of inactive cytokines pro-IL-1β 
and pro-IL-18 into their active forms, IL-1β and IL-18, respectively. 
Notably, enhanced levels of IL-1β induces the production of other 
cytokines, including IL-6, which in turn promotes the activation of the 
kinase CDK5 that hyper-phosphorylates tau, further promoting AD 
progression (Rauf et al., 2022). Furthermore, chronic production of 
IL-1β enhances brain acetylcholinesterase activity and microglia 
activation, producing a vitious circle of dysfunction that promotes AD 
progression by reducing the acetylcholine function and promoting 
inflammation (Rauf et al., 2022). Chronic IL-1β secretion leads also to 
astrocytes activation and subsequent production of the 
pro-inflammatory S100β, further exacerbating neuroinflammation 
(Rauf et  al., 2022). In addition to caspase-1-dependent cytokine 
production, caspase-1 activates Gasdermin D (GSDMD) by cleaving 
it, producing a fragment that oligomerizes generating a pore-forming 
complex that translocates to the plasma membrane leading to release 
of pro-inflammatory cytokines and pyroptosis, a lytic form of cell 
death (Yang et  al., 2019). Inflammasome activation exacerbates 
amyloidogenesis, as shown by the study of Venegas et al. (2017), which 
shows that ASC specks can cross seed Aβ in AD and consequently 
perpetuate the vicious cycle of brain inflammageing. Intriguingly, 
NLRP3 inflammasome activation is associated with mitochondrial 
function, as described in the next paragraph.

4.2. Mitochondria alterations in AD

Mitochondria are dynamic double-membrane organelle which 
undertake several roles from energy production to apoptosis 
regulation, Ca2+ signaling, lipid, and amino acid synthesis. 

Mitochondrial ATP, produced by aerobic oxidative phosphorylation 
(OXPHOS), plays an important role for the cell functions. Indeed, 
enzymatic complexes, present in the inner membrane of the 
mitochondria, synthesize ATP from ADP and phosphate. However, 
OXPHOS is a major source of endogenous toxic free radicals, 
including hydrogen peroxide (H2O2), hydroxyl (HO), and superoxide 
(O2−) radicals that are products of normal cellular respiration 
(Moreira et  al., 2010). Data demonstrate an impairment of the 
mitochondrial enzymatic complex in AD brain (Castellani et  al., 
2002). Neurons in AD show striking and significant increase of 
mitochondrial DNA (mtDNA) localized in the cytoplasm, 
demonstrating mitochondrial damage (Castellani et al., 2002). ROS 
overproduction in AD impairs mitochondrial function and reduces 
the supply of the ATP. Several research demonstrate that oxidative 
damage occurs before Aβ plaque formation (Nunomura et al., 2001), 
suggesting that mitochondrial dysfunction plays an early role in AD 
pathophysiology. Mitochondrial abnormalities appear to be  key 
features during the maturation of AD-like pathology in YAC and 
C57B6/SJL transgenic mice. In the absence of energy source, abnormal 
mitochondria produce an excess of free radicals, which can reduce the 
supply of ATP and contribute to mitochondrial dysfunction in AD 
(Reed et al., 2008). AD mice show APP mitochondrial localization in 
cortical neurons, overexpression of oxidative stress markers, deletions 
in mtDNA, and impaired energy metabolism (Devi et al., 2006). In 
particular, mitochondrial APP localization inhibits the translocation 
of COX subunits IV from the cytoplasm to mitochondria, reducing 
COX activity and increasing H2O2 levels (Devi et al., 2006). Intra-
cerebroventricular injection of Aβ in mice induces H2O2 production 
in neocortex mitochondria, leading to neurotoxicity (Morais Cardoso 
et al., 2002). Aβ also affects the mitochondrial membrane potential 
(Sbai et al., 2022), affects the mitochondrial fission/fusion balance and 
mitochondrial distribution (Wang et al., 2020).

Neuronal function is also modulated by the Ca2+ concentration 
and mitochondria are high-capacity Ca2+ sinks that control the 
cytosolic Ca2+ loads. Aβ in the presence of Ca2+ promotes mitochondria 
dysfunction by inducing a complete uncoupling of respiration, altering 
the morphology of mitochondria, decreasing the mitochondrial 
membrane potential, and affecting the mitochondria capacity to 
accumulate Ca2+ (Moreira et al., 2001). The excessive Ca2+ uptake into 
mitochondria enhances ROS production, which inhibits ATP 
synthesis and increases the mitochondrial permeability transition 
pore (PTP). Increased PTP levels promote the release from the 
mitochondria of various proteins, such as cytochrome c and apoptosis-
inducing factor (AIF), promoting the initiation of apoptosis by 
activating the caspase cascade (Hengartner, 2000). Moreover, 
pro-apoptotic proteins released by mitochondria can translocate into 
the nucleus, leading to DNA fragmentation, which in turn promote 
cell death.

4.3. Role of mitochondria in activating 
NLRP3 inflammasome

Activators of NLRP3 induce both NLRP3 deubiquitination and 
the destabilization of mitochondria membrane potential, its 
permeabilization, and permeability transition that results in the 
externalization and release of mitochondria derived molecules (i.e., 
mitochondrial DNA, ATP, etc.; Liu et al., 2018). These molecules bind 
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NLRP3 and cause its translocation to mitochondria surface, with 
consequent inflammasome activation, which occurs in the cytoplasm.

A two-step model has been proposed to describe the activation of 
the NLRP3 inflammasome: a first signal, in response to 
proinflammatory receptors, induces NF-κB-dependent expression of 
both proIL-1β and NLRP3 (transcriptional priming) and NLRP3 
deubiquitination (non-transcriptional priming); later, a second 
mechanism triggers the assembly and activation of the inflammasome 
(Sutterwala et al., 2014). Exception to this general mechanism has 
been described: the model is not always applicable, with signal I or II 
missing depending on the molecule activating the NLRP3 
inflammasome assembly (Gaidt et al., 2016).

Reactive Oxygen Species have a crucial role in the NLRP3 
activation and assembly. Many pathogens and endogenous signals 
promote ROS generation (Martinon, 2010). Several mitochondrial 
processes lead to ROS production, which can activate signaling 
cascades involved in proliferation, apoptosis, and senescence. 
Antioxidant enzymes such as superoxide dismutase (SOD) and 
glutathione peroxidase control ROS homeostasis, protecting the cells 
from the dangerous effects caused by an imbalance in ROS production. 
When the anti-oxidant systems fail in maintaining the ROS 
homeostasis, the cells are subjected to oxidative stress and cytotoxicity. 
Oxidative stress, indeed, activates inflammatory pathways and 
promotes the formation of pro-mutagenic DNA adducts, creating 
genetic instability that participate in the progression of various 
diseases (Sosa et  al., 2013; Huang et  al., 2016). Considering that 
NLRP3 and ASC localize within mitochondria upon NLRP3 activators 
stimulation, studies suggested that NLRP3 activators could induce 
mitochondrial ROS generation which in turns activate the NLRP3 
inflammasome (Zhong et  al., 2013; Pang et  al., 2021). Studies 
investigating the effect of ROS scavengers and ROS inhibitors support 
this hypothesis (Bauernfeind et al., 2011; Alfonso-Loeches et al., 2014; 
Dai et al., 2017; Liu et al., 2017). Nevertheless, ROS seems to function 
in the priming step, but not in the activation one (Bauernfeind et al., 
2011). Further studies are needed to elucidate the link between ROS 
and NLRP3 activation (Abais et al., 2015).

4.4. Role of NLRP3 in AD

Recent studies demonstrate that NLRP3 inflammasome activation 
contributes to the pathogenesis of chronic inflammatory or 
metabolic disorders.

In the AD context, Aβ has been described as priming stimulus to 
NLRP3 transcription (Nakanishi et al., 2018), however, the molecular 
mechanisms involved are not yet fully elucidated. Aβ phagocytosis by 
microglia represents a key step for lysosomal destabilization and 
consequent release of lysosome content. The assembly of the 
inflammasome is later promoted by Cathepsin B, a lysosomal 
proteolytic enzyme, by a still unknown mechanism (Campden and 
Zhang, 2019). Moreover, Aβ induction of NLRP3 activation leads to 
GSDMD cleavage and production of a Gasdermin D (GSMD) 
fragment that oligomerizes at the plasma membrane, resulting in 
pyroptosis (Han et al., 2020). Another fascinating hypothesis suggests 
that a negative regulator of NLRP3, NLRP10 (Eisenbarth et al., 2012), 
reduces NLRP3 assembly. NLRP10 is able to bind ASC, decreasing its 
availability to interact with NLRP3, reducing the assembly of the 
inflammasome. In stressful conditions, NLRP10 is degraded by the 

cathepsin released upon Aβ phagocytosis, leaving ASC free to bind 
NLRP3 and form a functional inflammasome (Murphy et al., 2014).

Moreover, the release of ATP from dying neurons modulates the 
activation of NLRP3 inflammasome by activating the P2X7 receptors 
on microglia, causing K+ efflux, ROS generation, and inducing the 
recruitment of pore-forming pannexin-1. The formation of this 
channel by pannexin-1 promotes the entry of extracellular molecules, 
altering the homeostasis of NLRP3 activation (Gombault et al., 2012).

Although several studies investigate the relationship between Aβ 
and NLRP3, there are only few reports analyzing the link between tau 
and NLRP3 inflammasome. In 3xTg AD mice model, the inhibition 
of IL-1β receptor by injection of blocking antibodies results in reduced 
tau kinase activity and ameliorates the cognitive impairment, implying 
that NLRP3 inflammasome activation exacerbates tau phosphorylation 
and subsequent neuronal damage (Kitazawa et al., 2011). Ising and 
colleagues demonstrate that loss of function of NLRP3 reduces tau 
hyperphosphorylation and aggregation (Ising et al., 2019). Another 
study shows that tau activates the NLRP3 inflammasome after being 
phagocytosed by microglia, further enhancing tau-mediated damage 
(Stancu et  al., 2019). Furthermore, in tau transgenic mice, ASC 
deletion or NLRP3 inhibition blocks tau-induced pathology (Liang 
et al., 2022). These data indicate that activation of NLRP3 exacerbate 
tau pathology through a positive feedback loop, which contributes to 
AD pathology.

While the role of NLRP3 in microglia is well characterized, only 
recently researchers focused on NLRP3 role in astrocyte. Studies 
carried out analyzing astrocytic cell lines stimulated with LPS indicate 
that NLRP3, ASC, and IL-1β are not expressed in astrocytes (Gustin 
et  al., 2015). This observation is supported by data obtained by 
employing neurosphere-derived astrocytes (Tarassishin et al., 2014). 
On the other side, Tg2576 transgenic mice, which develops Aβ 
plaques, show a strong expression of IL-1β in the reactive astrocytes 
surrounding the Aβ deposits (Apelt and Schliebs, 2001). In agreement, 
other studies carried out in animal models presenting lesions of the 
central nervous system demonstrate that astrocytes express NLRP3, 
ASC, and caspase-1 (Kawana et  al., 2013). The mechanism of 
activation of NLRP3  in astrocytes is still controversial. Recent 
investigations provide data indicating that GSMD is cleaved by a 
noncanonical caspase 4 pathway in astrocytes in AD (Moonen et al., 
2023). The NLRP3 inflammasome is active also in the BBB, leading to 
BBB dysfunction (Liu et al., 2022). Knock out of NLRP3 in AD mice 
(APP/PS1/NLRP3−/− mice) ameliorates memory deficit as well as 
decreases Aβ production and deposition. These mice show an 
increment in anti-inflammatory microglia, promoting the 
phagocytosis and clearance of Aβ (Heneka et  al., 2013). NLRP3 
inflammasome inhibitor Mcc950 exerts a beneficial effect in a rat 
model of AD by ameliorating the synaptic plasticity (Qi et al., 2018). 
Indeed, in this rat model of AD the long-term potentiation (LTP) is 
impaired and treatment with Mcc950 ameliorates the LTP impairment 
(Qi et al., 2018). Enhanced NLRP3 activation promotes a chronic 
inflammatory state leading to tau hyperphosphorylation, NFT 
formation, and synaptic dysfunction (Heneka, 2017). Knock out of 
NLRP3 reduces tau hyperphosphorylation and ameliorates spatial 
memory impairment in Tau22 mice (Ising et al., 2019). In early phase 
AD patients, the levels of IL-1β and caspase 1 activity are enhanced, 
confirming the over activation of NLRP3 as early event in AD 
(Venegas et al., 2017). Peripheral blood mononuclear cells (PBMCs) 
derived from AD and amnestic mild cognitive impairment (aMCI) 
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patients shows elevated levels of NLRP3, IL-1β and caspase 1, showing 
the presence of systemic NLRP3 activation and inflammation in aMCI 
and AD patients (Rui et al., 2021; Figure 1).

4.5. Other inflammasomes and their role in 
AD

There exist 22 human NLR proteins which can bind various 
caspases involved in the production of inflammatory cytokines, more 
frequently caspase-1. NLRs can bind the caspases either directly or via 
the ASC adaptor, an apoptosis-associated speck-like protein 
containing CARD and PYD domains. The NLR type of inflammasomes 
can be subdivided on the basis of their structures and assembly model 
into the NLRA, NLRB, NLRC (containing, e.g., NOD1, NLRC4, 
NLRC5, and NLRX), and NLRP (e.g., NLRP1 and NLRP3) 
subfamilies. The NLRP3 inflammasome is considered a predominant 
element in the inflammatory process, but the activation of other 
inflammasomes is also induced by mitochondria dysfunction. Indeed, 
mitochondrial DNA released in the cytoplasm activates the NLRC4 
(Jabir et  al., 2015), the NLRP3 and the AIM2 inflammasomes 
(Korhonen et al., 2021).

Recent findings indicate that NLR family CARD Domain 
Containing 4 (NLRC4), AIM2 (Interferon-inducible protein AIM2), 
and NLR Family Pyrin Domain Containing 1 (NLRP1) are also linked 
to mitochondrial dysfunction and appear to play a key role in neuronal 
diseases (Patergnani et al., 2021). In a rat model of AD, obtained by 
intracerebral injection of streptozotocin (STZ), NLRC4 expression is 

increased as well as IL-1β production, while the expression of NLRP1, 
NLRP3, and AIM2 is unvaried compared to control rats, suggesting 
that NLRC4 promotes inflammation in this AD rat model (Saadi et al., 
2020). NLRP1 levels are significantly increased in the brain of AD 
patients and NLRP1 genetic variants are associated with increased risk 
of AD (Pontillo et al., 2012). NLRP1 is expressed in neurons, where it 
activates caspase 1, which in turn activates caspase 6, leading to IL-1b 
production (Kaushal et al., 2015). In the APP/PS1 AD mice model, 
NLRP1 is upregulated and NLRP1 silencing in this AD model reduces 
neuronal pyroptosis and cognitive impairment (Tan et al., 2014). An 
in vitro model of AD is obtained by treating astrocytes with palmitate, 
which activates a pro-inflammatory response and IL-1β production, 
which in turn leads to enhanced Aβ production in neurons (Liu and 
Chan, 2014). In this AD model, palmitate induces the activation of ice 
protease-activating factor (IPAF)-which interact with ASC, leading to 
IL-1β production. Silencing of IPAF in astrocytes decreases IL-1β 
secretion and diminishes Aβ production in neurons (Liu and 
Chan, 2014).

5. Role of Drp1 in AD inflammation

5.1. Structure and function of Drp1

The Dynamin-related protein 1 (Drp1), is a dynamin-like GTPase 
protein required to modulate the dynamics of fusion and fission of 
mitochondria, in particular it is required for the fission of 
mitochondria (Kandimalla and Reddy, 2016). Drp1 shows various 

FIGURE 1

Mechanism of activation of NLRP3 inflammasome. Priming: activation of plasma-membrane receptors induces NFkB activation and subsequent 
expression of genes involved in NLRP3 cascade. Activation: a second activation of different plasma-membrane receptors promotes the assembly of 
NLRP3 complex, leading to activation of caspase 1 and subsequent cleavage pf pro-IL1β and GSMD, promoting IL1β secretion and pyroptosis.
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subcellular localizations: cytoplasm, mitochondria, Golgi and 
peroxisomes. It is encoded by the Dnm1 gene, which is located on 
12p11.21 chromosome in mice and on 11q23 in human (Oliver and 
Reddy, 2019). The RNA transcribed from the Dnm1 gene can 
be subjected to alternative splicing, which give rise to various isoforms 
of Drp1 (Oliver and Reddy, 2019). The largest isoform (variant 1) is 
constituted by 736 amino acids and its calculated molecular mass is 
81.6 kDa. Exon 15 is spliced out in variant 2 isoform, producing a 
protein with 710 amino acids; both exons 15 and 16 are spliced out in 
variant 3, resulting in a protein with 699 amino acids; variant 4 has 
725 amino acids; variant 5 is constituted by 710 amino acids and 
variant 6-which is present only in neurons-is formed by 749 amino 
acids (Reddy et al., 2011).

Dynamin Related Protein 1 is characterized by the presence of 
highly conserved domains. It contains four GTPase domains: the 
N-terminal GTPase domain, the middle domain, a variable or B 
domain, and the C-terminal GTPase effector domain. Drp1 has two 
major phosphorylation sites: CDK phosphorylates in S579, a PKA site 
is located at S600 in Drp1 isoform 3 (Kandimalla and Reddy, 2016; 
Oliver and Reddy, 2019).

The mitochondrial fusion and fission processes are controlled 
during cellular activation by several proteins and not yet fully 
elucidated mechanisms (Sharma et al., 2019). Current research has 
demonstrated that Drp1, Fis1, Miro, Opa1, Mfn1, Mfn2, Mid49, 
Mid51, and Mff are associated with mitochondrial dynamics, 
morphology, distribution, and function (Kandimalla and Reddy, 2016; 
Oliver and Reddy, 2019). Drp1 is a key regulator of mitochondrial 
fission. Drp1 activation induces its translocation from cytoplasm to 
the mitochondria outer membrane, where it interacts with the fission 
protein 1 (Fis1), promoting a contraction and a split of the 
mitochondria. Ramonett et al. (2022), based on proteomic interactome 
analysis, reported that Drp1 interacts with GAIP/RGS19-interacting 
protein (GIPC) through its atypical C-terminal PDZ-binding motif. 
Next, GIPC mediates the actin-based retrograde transport of Drp1 
toward the perinuclear mitochondria to enhance their fission. GIPC 
(Ramonett et al., 2022).

Notably, the balance between mitochondrial fusion and fission is 
crucial to maintaining a physiological dynamic regulation of 
mitochondrial function. Downregulation of Drp1 promotes fusion. 
Loss of Drp1 triggers genome instability, cell cycle arrest and initiates 
the DNA damage response by disrupting the mitochondrial dynamics 
and distribution (Qian et al., 2012). Drp1 is enriched at neuronal 
terminals and involved in synapse formation and synaptic sprouting. 
Drp1 can be phosphorylated at different sites, which play opposite 
functions, leading to either increased fragmentation or enhanced 
fusion of mitochondria (Oliver and Reddy, 2019).

Dynamin Related Protein 1 is involved in the mechanisms 
underlying various diseases, such as myocardial ischemia/reperfusion 
injury, heart failure, and cancer. Indeed, tumor progression can 
be affected by Drp1 mediated regulation of mitochondrial metabolism. 
In agreement, in vitro studies indicate that phosphorylation of Drp1 
promoting mitochondrial fission inhibits mitochondrial oxidative 
phosphorylation and enhances aerobic glycolysis, which promotes 
growth and metastasis in cancer cells. Drp1 silencing causes 
mitochondrial elongation and significantly suppresses the metastatic 
abilities of breast cancer cells (Rodrigues and Ferraz, 2020).

Moreover, Drp1 modulates the production of the cytokine IL-1β, 
IL-6, and IFN-β in response to immune stimulation and infection 

(Tiku et al., 2020). Indeed, swine influenza virus (SIV) infection leads 
to Drp1 phosphorylation at serine 579 and subsequent mitochondrial 
fission and IL-1β production in alveolar macrophages (Park et al., 
2018). In particular, SIV infection induces ROS formation as well as 
the activation of the receptor-interacting protein kinase 1 (RIPK1), 
which in turn phosphorylates Drp1. RIPK1-dependent Drp1 
phosphorylation is necessary for mitochondrial fission and ROS 
release, which in turn activate the NLRP3 inflammasome and 
subsequent IL-1β production (Park et al., 2018).

In agreement, it is emerging a role of Drp1 in modulating NLRP3 
activation (Park et al., 2015). Parkin et al. provide a molecular insight 
into the relevance of mitochondrial dynamics in potentiating NLRP3 
inflammasome activation, leading to aberrant inflammation. 
Knockdown of dynamin-related protein 1 (Drp1) induces aberrant 
mitochondrial elongation, promoting a marked increase in NLRP3-
dependent caspase-1 activation and IL-1β secretion in mouse bone 
marrow-derived macrophages (Park et  al., 2015). Several studies 
highlight the importance of Drp1 for mitochondrial balance between 
fission and fusion, which is modulated in response to infection to 
enhance macrophage effector function. Indeed, infection with bacteria 
commonly results in mitochondrial fragmentation, whereas viral 
infection often leads to mitochondrial fusion in macrophages (Tiku 
et  al., 2020). Surprisingly, both enhanced fission and fusion can 
promote NLRP3 activation through different pathways. It seems that 
mitochondrial fission is implicated in IL-1β production following 
bacterial infection. Indeed, mitochondrial fission results in an 
increased cytosolic level of mitochondrial DAMPs, such as mitoDNA 
or mitoROS, inducing NLRP3 inflammasome activation (Park et al., 
2015). On the other hands, the cellular response to cytosolic viral RNA 
promotes mitochondrial fusion and the activation of the mitochondrial 
antiviral-signaling (MAVS) protein, which in turn activates the 
NLRP3 inflammasome (Park et al., 2013; Figure 2).

5.2. Role of Drp1 in AD

Alzheimer Disease is characterized by a diminished expression of 
genes involved in mitochondrial biogenesis, affecting the 
mitochondrial homeostasis and producing defective mitochondria 
biogenesis (Kandimalla et al., 2018; Manczak et al., 2018). Recent data 
show that Drp1 expression is significantly enhanced in the brain of 
AD patients and AD mice compared to healthy human controls and 
wild type mice, as well as Drp1 expression increases in neurons 
exposed to Aβ peptides in vitro (Medala et al., 2021; Bera et al., 2022). 
Moreover, a study carried out in an in vitro AD model revealed an 
enhanced expression of genes involved in mitochondrial fission (such 
as Drp1 and Fis1) and a decreased expression of those related to 
mitochondrial fusion (such as Mfn1 and Mfn2), altering the 
mitochondria dynamics and affecting the synaptic function (see 
below). These observations are corroborated by the analysis of post-
mortem brains of AD patients, where the expression levels of Opa-1, 
Mfn1, and Mfn2 are decreased, while Fis1 is significantly increased. 
Notably, Aβ induces the S-nitrosylation of Drp1, leading to its 
hyperactivation and subsequent excessive mitochondrial 
fragmentation, which in turn generates ROS, leading to synaptic 
damage (Nakamura et  al., 2010). Notably, AD is characterized by 
enhanced mitochondrial fission, suggesting that Drp1 plays a role in 
AD (Baek et al., 2017). In agreement, treatment of hemizygous APP/
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PS1 mice with mitochondrial division inhibitor 1 (Mdivi-1), an 
indirect inhibitor of Drp1, ameliorates anterograde mitochondrial 
transport, oxidative stress, and synaptic damage (Baek et al., 2017). 
Mdivi-1 ameliorates mitochondria fragmentation, distribution, and 
function also in CRND8 mice (APP strain; Wang et al., 2017). Double 
transgenic mice obtained crossing heterozygote Drp1 (+/−) mice with 
AD mice (Tg2576 strain) reveals that partial reduction of Drp1 is 
beneficial by ameliorating mitochondrial dysfunction, reducing Aβ 
production, increasing mitochondrial biogenesis and enhancing 
synaptic activity (Manczak et  al., 2016). Reduction of Drp1 is 
protective also against mutant Tau-induced neuronal dysfunction in 
AD. A double transgenic mice obtained by crossing Drp1 (+/−) mice 
with Tau mice (P301L strain) show reduced mitochondrial 
dysfunction, decreased Tau phosphorylation, enhanced mitochondrial 
biogenesis and synaptic activity (Kandimalla et  al., 2016). Drp1 
interacts directly with Aβ in neurons of AD patients, in AD transgenic 
mice, and also in vitro in neurons derived from AD transgenic mice, 
leading to mitochondrial dysfunction and synaptic damage (Manczak 
et al., 2011). Tau plays a critical role in the assembly, stabilization, and 
modulation of microtubules, which are important for the normal 
function of neurons and the brain. Drp1 interacts directly also with 
phosphorylated Tau, further inducing neuronal dysfunction (Manczak 
and Reddy, 2012).

Many researchers have demonstrated that mitochondrial 
dysfunction can promote energy impairment in AD. Thus, Drp1-
induced excessive mitochondrial fragmentation and defective 
transport of mitochondria to synapses, leads also to reduced synaptic 
ATP production and subsequent synaptic dysfunction (Pradeepkiran 
and Reddy, 2020). Aβ accumulation affects mitochondrial dynamics 
also in astrocytes, inducing a shift in the metabolic pathways (Zyśk 
et  al., 2023). In human induced pluripotent cell (hiPSC)-derived 
astrocytes treated with Aβ it is observed an increased Drp1 
phosphorylation, which localizes in lipid droplets and is secreted in 

extracellular vesicles (EV) and transported in the surrounding 
astrocytes through tunneling nanotubes (TNTs), enhancing the 
mitochondrial OXPHOX and increasing the glycolysis, switching 
toward fatty acid β oxidation for energy production (Zyśk et al., 2023). 
Astrocytic EVs (called astrosomes) derived from AD mice (5xFAD) 
contain Aβ (Elsherbini et al., 2020). 5xFAD-derived astrosomes are 
transported to mitochondria when added to neuronal cells in vitro, 
leading to enhanced Drp1 expression, altering the mitochondria 
dynamics and promoting caspase 3 activation, which in turn induces 
neuronal cell death (Elsherbini et al., 2020).

Oligodendrocytes are required for the myelination process, which 
is strongly dependent on glycolysis, which requires an efficient 
mitochondrial function. Thus, hyperactivated Drp1 can affect 
myelination by disrupting the mitochondrial activity. Notably, mature 
oligodendrocytes both in human AD patients and AD mice show 
inflammatory injuries associated with the NLRP3 inflammasome 
(Zhang et  al., 2020). NLRP3 can be  activated by components of 
glycolytic pathway and ROS, suggesting the role of Drp1 also in 
promoting the inflammatory process in AD. In agreement, excessive 
activation of Drp1 causes a glycolytic dysfunction in AD mice, which 
in turn activates NLRP3 inflammasome and subsequent pyroptosis. 
Knock down of Dp1 in oligodendrocytes abolishes NLRP3-induced 
inflammation and ameliorates myelin loss (Zhang et al., 2020). These 
data demonstrate that Drp1-promoted mitochondrial dysfunction 
leads to inflammation, which plays a key role in myelin loss and 
neuronal dysfunction.

Reactive Oxygen Species is the major factor responsible of 
imbalance in mitochondria function. Several recent findings report 
that advanced glycation end products (AGEs) participate in 
inflammation and neurodegenerative diseases (Perrone et al., 2012). 
AGE and its receptor RAGE are over expressed in AD brain 
samples, induce ROS production and mitochondria dysfunction. 
AGEs can influence mitochondrial dynamics by impairing 

FIGURE 2

Role of Drp1 in promoting NLRP3 assembly. TXNIP-mediated recruitment of DRp1 to mitochondrial results in aberrant mitochondrial fission and ROS 
production, which in turn promote NLRP3 assembly and subsequent inflammatory cascade.
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fusion-fission balance, with a significant increment of mitochondrial 
fission in AD (Pradeepkiran and Reddy, 2020). AGEs contribute 
significantly to mitochondria dysfunction, by upregulating the 
expression of fission proteins Drp1 and Fis1 and down-regulating 
fusion proteins Mfn1, Mfn2, and Opa1. AGEs are also involved in 
abnormal APP processing and Aβ production. Indeed, AGEs 
activate RAGE, which in turn enhances the expression of BACE 1, 
a key enzyme in APP processing that initiates Aβ production 
(Perrone et al., 2012). Both AGE and Aβ trigger RAGE activation, 
which induces redox sensitive pathways by activating the 
transcription factor nuclear factor kappa B (NFkB), which promotes 
the expression of pro-inflammatory genes (Perrone et al., 2012). 
These pathological pathways promote an inflammatory cascade, 
which lower glucose consumption, decreases ATP levels, and 
downregulates mitochondrial activity, ultimately promoting 
neuronal death (Sivitz and Yorek, 2010). Oxidative stress caused by 
RAGE triggering promotes neuroinflammation and enhances Aβ 
levels into the brain by enhancing the rate of Aβ influx, leading to 
a vicious circle of RAGE activation following interaction with Aβ 
and further promoting neurodegeneration (Perrone et al., 2012). 
RAGE promotes inflammation also by inducing the expression of 
Thioredoxin-Interacting Protein (TXNIP), which is an β-arrestin-
containing protein that can bind to and inhibit the antioxidant 
protein thioredoxin (TXN), promoting oxidative stress (Perrone 
et al., 2009; Sbai et al., 2010). TXNIP is over expressed in the brain 
of AD patients and in several AD mice models and recent data 
suggest that it participates in AD pathophysiology (Melone et al., 
2018; Nasoohi et al., 2018a,b; Wang et al., 2019; Tsubaki et al., 2020; 
Perrone and Valente, 2021; Zhang M. et al., 2021). TXNIP plays a 
key role in modulating the cell and body glucose homeostasis 
(Perrone and Valente, 2021). Notably, TXNIP plays a key role in 
activating the NLRP3 inflammasome (Schroder et al., 2010) and its 
association with NLRP3 has been shown also in AD (Li et al., 2019; 
Sbai et al., 2022). Sbai et al. demonstrate that TXNIP drives the 
transport of Aβ to mitochondria in microglia both in vivo AD mice 
(5xFAD strain) and in vitro primary microglia, leading to Drp1 
translocation to mitochondria, leading to mitochondria 
dysfunction, ROS production and NLRP3 activation and subsequent 
production of cytokines and pyroptosis of microglia, showing that 
it is an early even in AD, occurring in the early phases of AD when 
the first signs of cognitive alterations occur (Sbai et al., 2022). Drp1 
appears to being transported to mitochondria in a complex together 
with TXNIP and Aβ, resulting in Drp1 activation. Silencing of 
TXNIP or blockade of RAGE reduces Aβ transport from the cellular 
surface to mitochondria in microglia, restores mitochondrial 
functionality, mitigates Aβ toxicity, inhibits NLRP3-induced 
inflammation and blocks pyroptosis in vivo AD mice and in vitro 
primary microglia (Sbai et al., 2022).

Up until now it has been demonstrated that there is a link between 
enhanced Drp1 activation and NLRP3 activation. We cannot exclude 
that Drp1 may modulate the assembly/function of other 
inflammasome complexes other than NLRP3. However, the data 
published so far in AD and other pathologies, such as cancer, report a 
link only between Drp1 and NLRP3 inflammasome. Further studies 
are needed in order to unveil the role of Drp1  in altering the 
mitochondrial function and activating inflammasome complexes 
other than NLRP3. However, the studies described above clearly show 

the relevance of Drp1 in linking the mitochondrial function to the 
induction of inflammation.

6. Conclusion

Several data are indicating a key role of Drp1  in promoting 
neurodegeneration by altering mitochondrial function in neurons. 
However, recent data are underline the role of Drp1 in promoting the 
activation of NRP3 in not neuronal cells, leading to inflammatory 
process that in turn leads to neuronal dysfunction. These data support 
the relevance of Drp1 in promoting mitochondrial dysfunction as an 
early even in AD. In addition, Drp1 links mitochondrial dysfunction 
to NLRP3 activation and the subsequent inflammatory cascade. In 
addition, these data demonstrate the pathological effect of 
inflammation as early even in AD. Indeed, inflammation occurs 
before the detection of neuronal dysfunction in all AD mice models. 
We described publications demonstrating that Drp1 promotes early 
inflammatory alterations in oligodendrocytes and microglia, further 
promoting neurodegeneration. These data are essential for the 
development of innovative strategies aimed to prevent and cure AD at 
the early stages.
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