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Introduction:Age-relatedmacular degeneration (AMD), an ever-increasing ocular

disease, has become one of the leading causes of irreversible blindness.

Recent advances in single-cell genomics are improving our understanding of

the molecular mechanisms of AMD. However, the pathophysiology of this

multifactorial disease is complicated and still an ongoing challenge. To better

understand disease pathogenesis and identify e�ective targets, we conducted an

in-depth analysis of the single-cell transcriptome of AMD.

Methods: The cell expression specificity of the gene (CESG) was selected as an

index to identify the novel cell markers. A computational framework was designed

to explore the cell-specific TF regulatory loops, containing the interaction

of gene pattern signatures, transcription factors regulons, and di�erentially

expressed genes.

Results: Three potential novel cell markers were DNASE1L3 for endothelial

cells, ABCB5 for melanocytes, and SLC39A12 for RPE cells detected. We

observed a notable change in the cell abundance and crosstalk of fibroblasts

cells, melanocytes, schwann cells, and T/NK cells between AMD and controls,

representing a complex cellular ecosystem in disease status. Finally, we identified

six cell type related and three disease-associated ternary loops and elaborated on

the robust association between key immune-pathway and AMD.

Discussion: In conclusion, this study facilitates the optimization of screening

for AMD-related receptor ligand pathways and proposes to further improve the

interpretability of disease associations from single-cell data. It illuminated that

immune-related regulation paths could be used as potential diagnostic markers

for AMD, and in the future, also as therapeutic targets, providing insights into AMD

diagnosis and potential interventions.

KEYWORDS

age-related macular degeneration (AMD), single cell transcriptome sequencing (scRNA-

seq), cell communication, regulon, regulation loops

1. Introduction

Age-related macular degeneration (AMD) is one of the most critical eye diseases that

cause age-related blindness. It is estimated that, by 2040, the number of people with AMD

globally is expected to be ∼300 million, thus posing a significant public health problem

with substantial socioeconomic implications (Wong et al., 2014). AMD is a multifactorial

disease. Previous reports inferred that genetic factors, environmental influences, congenital
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disabilities, nutritional disorders, inflammation, metabolic

disorders, and other factors may be involved in AMD progression

(Schmidl et al., 2015; Mitchell et al., 2018; Jin et al., 2019;

Fleckenstein et al., 2021; Guymer and Campbell, 2023). However,

until now, the specific expression characteristics and pathogenesis

of macular degeneration have not been fully studied, and it is still a

great challenge to further understand the pathogenesis of AMD.

At present, prophylactic therapies have little effect, and

the treatment strategies mainly focus on the restraint of

neovascularization (Chakravarthy and Peto, 2020). Although

currently some medicines (laser thermal photocoagulation,

photodynamic therapy with verteporfin, and drug therapy with

anti-vascular endothelial growth factor) may slow the progression

of vision loss, or improve vision in some cases, none of these

therapies prevent the recurrence of neovascularization and each of

these must be reapplied to prevent the symptom from worsening

(Stahl, 2020). Moreover, clinical data show that there are extensive

individual differences in the effect of anti-VEGF therapy, and the

underlying reason is still unclear (Thomas et al., 2021). Therefore,

developing individual differential diagnoses and effective precise

therapies for AMD is imperative. Recently, the development of

single-cell RNA sequencing (scRNA-seq) provided the opportunity

for high-throughput sequencing of the transcriptome at the single-

cell level, which can investigate gene expression within a single

cell while solving the complex problems of cell heterogeneity. It

is possible to parse individual cells’ behavior, mechanisms, and

relationships to each other.

For now, scRNA-seq has been widely used in various

disease research fields, including eye diseases such as AMD,

retinal degeneration, and ocular tumors. For instance, Lehmann

et al. revealed the cellular and molecular landscape of adult

RPE/choroid and uncovered a Hedgehog-regulated choroidal

immunomodulatory signaling circuit, opening up a new way

to study retinal vascular diseases and choroidal-associated

inflammatory disorders causing blindness (Lehmann et al., 2020).

Voigt et al. explored the molecular mechanism of choroid vascular

disease and its influence on AMD, providing potential ideas for

treating it (Voigt et al., 2019). Menon et al. performed massively

parallel single-cell RNA sequencing of human retinas, and

GWAS-based enrichment analysis identified glia, vascular cells,

and cone photoreceptors associated with AMD risk (Menon et al.,

2019). Although previous studies have explained some molecular

mechanisms of AMD, the specific molecular regulatory processes

in AMD still require further exploration.

In the present study, six single-cell RNA-sequencing samples

from the macula and periphery of three human donor eyes

were selected, and in-depth analysis was conducted to explore

the novel potential markers, change in cell–cell crosstalk, unique

gene expression patterns, and transcription factor regulons of the

primary cell types in AMD patients and controls.

2. Methods

2.1. Data collection

Processed single-cell transcriptomic datasets of three donors,

including two controls (donors 1 and 2) and one AMD (donor 3),

were obtained from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) database with the following accession

numbers: GSE135922. The single-cell transcriptomic data of the

macula and periphery were obtained for each donor. Two external

datasets were used as validation data: external dataset 1. Eye data

of Tabula Sapiens Consortium study (Tabula Sapiens et al., 2022),

including 10,650 cells from 3 donors, external dataset 2. GSE188280

(Supplementary Table S1), including 8 samples taken from two

early-stage AMD patients with macula choroid, macula retina,

peripheral choroid, and peripheral retina. The analysis steps are

consistent across the three data sets.

2.2. Clustering of the single-cell data matrix

The clustering analysis was performed by the R package

“Seurat” (Hao et al., 2021). The “SCTransform” function was

selected to remove the inherent variation caused by mitochondrial

gene expression. The highly variable genes were identified with

the “FindVariableFeatures” function. Genes with higher variation

were used to perform principle component analysis (PCA).

The ’ElbowPlot’ function determined the number of significant

principle components (PCs). The k-nearest neighbor algorithm-

based clustering was then performed to generate cell clusters, using

the “FindNeighbors” and “FindClusters” functions with optimized

“resolution” values for analysis. Finally, the clustering results

were visualized using Uniform Manifold Approximation and

Projection (UMAP).

2.3. Di�erential expression analysis

The differentially expressed genes (DEGs) were calculated using

the R package “Seurat” “FindAllMarkers” function (Hao et al.,

2021). We separately analyzed the heterogeneity of expression

between various cells and between AMD and control samples.

Statistical significance was determined using an adjusted p-value

(p_val_adj) of <0.05 and the Seurat default threshold of average

log2 fold change (avg_log2FC) ≥0.25.

2.4. Cell type annotation and enrichment

Major cell clusters were manually annotated based on the cell-

specific markers obtained from the CellMarker database (Zhang

et al., 2019) and publicly published literature. The abundance of

cell types (ACTs) across different conditions (i.e., AMD, control,

macula, and periphery) was quantified to adjust the influence of

the differences in samples. It assumes that one cell type is enriched

under a specific condition k if ACT > 1 (Zhang et al., 2021).

2.5. Novel cell marker identification

The expression of genes with an avg_log2FC larger than 1 and

p_val_adj<0.05 was reserved for further study. The cell expression

specificity of the gene (CESG) was selected as an index to identify
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the novel cell markers and calculated as follows:

CESGi =
pct.1i
pct.2i

=

mij

Mj

Ki−j

(N−Mj)

where pct.1i and pct.2i represent the percentage of cells expressing i

gene in one cell type and the others, respectively.mij is the number

of expressing i gene in j cell type. Mj is the total number of cells

in j cell type. Ki−j represents the number of expressing i gene in

other cell types except j cells.N is the total number of cells in all cell

types. The gene with CESG greater than the known markers of the

cell type is recognized as the candidate cell marker. After literature

mining, the candidate novel cell markers are regarded as novel cell

markers if there are no records in the previous reports.

2.6. Cell–cell communication analysis

The R package “Cellchat” (Jin et al., 2021) was used to

analyze crosstalk among all cell types. The interactions between

gene expression, signaling from ligands and receptors, and

their cofactors were integrated to establish the probability

of cell–cell communication. The “computeCommunProb”

and “filterCommunication” functions were used to infer the

communication network at the ligand–receptor level. The cellular

communication network at the signaling pathway level was

established by the “computeCommunProbPathway” function.

2.7. Gene expression pattern identification

We identified cell type-specific gene expression patterns by

the R package “scCoGAPS” (Stein-O’brien et al., 2019). Using the

non-negative matrix factorization (NMF) algorithm, scCoGAPS

decomposes a matrix M of G genes (rows) and S samples (columns)

into twomatrices containing gene weights, the amplitude (A?RG×k)

matrix, and sample weights, the pattern (P?Rk×S) matrix. The

predictive power was calculated to assess the relationship between

the pattern and each cell type using “ProjectR” (Sharma et al., 2020)

and the “aucMat” function. The predictive power ranged from 0 to

1, and the closer the value is to 1, the stronger predictive power of

the pattern for each cell type annotation. The “pheatmap” function

was used to visualize blue-red scale heatmaps.

2.8. Transcription factor regulon
identification

Transcription factor regulons were inferred using the R package

“SCENIC” (Aibar et al., 2017). The function “runGenie3” was

used to calculate the weight of correlation between each TF

and gene, and the function ’runSCENIC_1_coexNetwork2modules’

was used to identify gene sets that were co-expressed with TF.

“runSCENIC_2_createRegulons” function was used to prune the

obtained co-expression modules based on the cisTarget database

(Imrichova et al., 2015) (https://resources.aertslab.org/cistarget/).

Only genes with significant enrichment of the regulator’s binding

motif are retained. Finally, we used the “runSCENIC_3_scoreCells”

function to calculate regulon activity scores (RAS) in each cell with

AUCell, and the regulon specificity score (RSS) was calculated by

the “calcRSS” function to evaluate the activities associated with

each cell type (Suo et al., 2018). The RSS is defined by converting

Jensen–Shannon divergence (JSD) to a similarity score:

RSS (R,C) = 1−
√

JSD(PR, PC)

where the vector PR =
(

pR1 , . . . , p
R
n

)

represents the distribution of

RAS in the cell population (n is the total number of cells). Here,

the RAS are normalized so that
∑n

i p
R
i = 1. The vector PC =

(

pC1 , . . . , p
C
n

)

indicates whether a cell belongs to a specific cell type

(pCi = 1) or not (pCi = 0). This vector is also normalized so that
∑n

i p
C
i = 1.

2.9. Cell-specific TF regulatory loop
construction

We defined Ploop by considering the principle of the

hypergeometric algorithm to quantitatively evaluate the regulatory

relationship between gene expression pattern, regulon, and DEGs

in AMD progression. Here, we only focused on the gene expression

patterns with high predictive power (≥ 0.7), regulons with

significantly specific RSS (RSS ≥ 0.1 and normalization of RAS

(Z score) ≥ 2 in all cell types or RSS with |log2FC|>1 between

AMD and controls), and DEGs (p_val_adj < 0.05) in each cell

type without and with disease properties. In each of the three types

of gene sets, we calculated Ploop between pairs (gene expression

pattern, regulon, and DEGs) separately. Only pairs with Ploop <

0.05 were selected to construct the cell-specific TF regulatory loops.

Ploop =
CMk ∗ ∁n−k

N−M

∁nN

where k is the number of intersecting genes between node_1 (i.e.,

a gene expression pattern, a regulon, or DEGs) and node_2 (i.e.,

a gene expression pattern, a regulon, or DEGs), where node_1 is

different from node_2. N is the total number of genes in single-cell

transcriptomic datasets (used in the present analysis). M and n are

the numbers of genes in node_1 and node_2, respectively.

3. Results

3.1. Identification of cell types and novel
cell markers

To explore the heterogeneity, cellular diversity, and

transcriptome changes between patients with AMD and

controls, we performed an in-depth analysis of single-cell

transcriptomic data. A summary of three donors is shown in

Supplementary Table S2. Cells from RPE/choroid regions were

extracted for single-cell RNA sequencing (scRNA-seq), including

the macula and periphery. In total, 4,335 cells (2,167 cells from the

macula and 2,168 cells from the periphery) and 21,040 genes were

detected. The first 15 PCs were used to cluster cells with similar
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gene expression profiles (Supplementary Figure S1). Finally, 12

distinct clusters were identified, ranging in size from 40 cells

to 1,245 cells. Through principal component analysis of cell

types (Supplementary Figure S2), we found that cell types for

re-annotation were well-classified and delimited. All clusters were

composed of cells from each donor, except for cluster 11, the

smallest cluster, which did not contain any cells from donor 2

(Supplementary Table S3).

Annotation of cell types was based on the published cell

markers and specifically highly expressed genes of each cluster

(Figure 1A). Detailed markers used for cell types are shown in

Figure 1B (labeled with “known”) and visualized over the violin plot

in Figures 1C–J. The 12 distinct clusters were interpreted as eight

cell types, including endothelial cells, fibroblasts, macrophages,

mast cells, melanocytes, RPE cells, Schwann cells, and T/NK

cells. For each cluster, the reproducibility of gene expression was

validated in an external dataset 1 (Supplementary Figure S3A).

We observed that the top five highly expressed genes in each

detected cluster showed 75% (9/12 clusters) expression identity in

the external dataset 1. Two clusters (2/12) failed to repeat because

of the absence of Schwann cells in external dataset 1. It largely

corroborates the results of our cell type annotation.

In addition, we identified three novel potential cell-specific

markers by enrolling the score ofCESG (Figure 1B, details shown in

Methods). Compared to the knownmarker above, all novelmarkers

were differentially expressed with a higher specificity (indicated

as a higher CESG and an average log2FC > 1). This specific

expression trend was completely repeated in external dataset

1 (Supplementary Figure S3B). There are two novel potential

markers in endothelial cells. DNASE1L3 encodes a member of

the deoxyribonuclease I family and acts in internucleosomal DNA

fragmentation (INDF) during apoptosis and necrosis (Mizuta

et al., 2013). In addition, ABCB5 is the novel potential marker

of melanocytes, which could promote melanoma metastasis by

activating the NF-?B signaling pathway (Wang et al., 2017).

SLC39A12 is regarded as the novel potential marker of RPE cells.

It is involved in protein, nucleic acid, carbohydrate, and lipid

metabolism, as well as in the control of gene transcription, growth,

development, and differentiation (Taylor, 2023).

3.2. Heterogeneity of cell types

Next, we counted the proportion and abundance of each cell

type. We observed a significant difference in the cell fraction

between the patients with AMD and controls, as well as in the

macular and peripheral regions (Figure 1K). The populations of

Schwann cells (337/191) and melanocytes (437/430) in the AMD

patients were greater than those in the controls. To remove the

effects of influencing factors from the uneven sampling of tissue

or un-clarity number of cells, we calculated the abundance of cell

types (ACT, details in Methods). The abundance of Schwann cells

in AMD patients (ACT = 1.63) was 2.7 times larger than that of

controls (ACT = 0.60), and in the macula (ACT = 1.79) was 8.5

times greater than that of peripheral (ACT = 0.21). In contrast,

the abundance of endothelial cells, fibroblasts, macrophages, mast

cells, RPE cells, and T/NK cell populations decreased AMD

patients (Figure 1L). These observations indicate AMD patients

with cellular heterogeneity and diversity. It may be one of the

influencing factors in AMD onset and worsening. Decreasing key

cells could alter the relevant signal transduction, leading to an

imbalance in the cellular ecosystem.

3.3. Cell-to-cell Communications

To further understand how cells in patients cooperate and

contribute to AMD pathogenesis, we detected communication

between cells via ligand and receptor interactions. Figure 2A

illustrates the integrated cell–cell communication network,

illustrating the interaction strength of the eight primary cell types.

We found that the strongest interactions occurred in fibroblasts.

Then, statistics on the signal strength of each ligand–receptor

pathway in each cell type also presented that fibroblasts were

involved in most of the pathways with the strongest signals,

followed by melanocytes, Schwann cells, and T/NK cells (the top

sub-plot in Figure 2D and Supplementary Figure S4).

To further determine whether the change existed in cellular

crosstalk between AMD patients and controls, we calculated the

strength of signals sent and received by each cell type in the

two groups of samples (Figure 2B), and further compared the cell

communication under different disease states (Figure 2C). The red

links between cell types represent the enhanced communication in

the AMD group, while the blue links were the decreased signals.

It is worth noting that the most significant changes were observed

in fibroblast cells, followed by melanocyte and Schwann cells. In

AMD patients, the interactions of fibroblasts with melanocytes

and Schwann significantly enhanced, while the interactions of

fibroblasts with the other cells weakened (Figure 2C). We suspect

that the changed signals may associate with the increased counts

of melanocytes and Schwann cells in AMD patients compared with

controls (Figure 1K and Supplementary Table S4). In addition, we

found that the signal strength of the ligand–receptor pathway in

melanocyte and Schwann cells decreased in controls (Figure 2D,

bottom, Supplementary Table S4). We inferred that the number of

melanocyte and Schwann cells is reduced, weakening the relevant

signals, which may be one of the factors leading to an imbalance

in the immune response in the fundus area, but the detailed

relationship needs more biological evidence to further quantify.

To further explore signal changes in the ligand–receptor

pathway in AMD and controls, we calculated the relative

information flow of signaling pathways, which was defined by

the overall communication probability among cell types in each

disease status (two bottom plots in Figure 2D). Figure 2E shows

that 52.5% (63/120) pathways, such as ANNEXIN, EPHA, HSPG,

SEMA3, and TWEAK maintain a similar flow between AMD and

controls (black label in the horizontal axis). While the prominently

changed pathways (47.5% (57/120), Wilcoxon test p < 0.05)

were defined as four types according to the direction and the

extent of information gain: (i) turn off (10 pathways, namely,

ALCAM, CD6, CD34, CD46, CD70, CX3C, RELN, SELL, SELE, and

TNF), (ii) turn on (four pathways, namely, GH, GP1BA, MSTN,

WNT), (iii) decrease (34 pathways, including CD22, IL2, IL10,

and TGFb), and (iv) increase (nine pathways, namely, AGT, BAFF,
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FIGURE 1

Cell composition and distribution. (A) UMAP dimensionality reduction for the 4,335 cells with eight cell types. The green triangles represent known

cell markers, and the red stars represent the novel cell markers. (B) Summary of the cell type annotation. “Inf” indicates that the gene is only

specifically expressed in one cell type and is not expressed in the other cell types. (C–J) Violin plots illustrating the identity of each cluster through

well-known cell type-specific markers. (K) Cell abundant in AMD, control, macula, and peripheral. (L) ACT of each cell type.

CADM, CSF3, LT, NEGR, NRXN, PARs, and SPP1). We did the

same analysis in external dataset 2 and showed some repetition

(Supplementary Figure S5). Although there were some differences,

these differences might be due to differences between early and

late AMD. Then, the trends in the changes in the four groups of

information flows were also been validated by external dataset 2.
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FIGURE 2

scRNA-seq presents the obvious changes in cell communication during AMD progression. (A) The interaction strength between cells in all samples.

The thicker link indicates stronger strength. (B) The intensity of the signals sent and received by each cell in AMD and control. The horizontal axis

indicates the interaction strength. (C) The di�erence in the interaction strength of cells between AMD and control. The red links indicate the

interaction strength in AMD is stronger than that in control, while the blue lines are the opposite. (D) The overall signaling patterns in all samples,

AMD, and control. The bar graph above shows the total strength of each signal of all cells, and the bar graph on the right shows the total strength of

each cell of all signals. The darker the color of the heat map, the stronger the signal strength. (E) The information flow in AMD and control. Turn o�

represents the closed path in AMD, “Decrease” represents the reduced path in AMD, “Increase” represents the increased path in AMD, and “Turn on”

represents the open path only in AMD.

The finding of the repeated tests indicated that 78.6% (11/14) of the

specific change pathways in “turn off” and “turn on” were validated

(Supplementary Figure S6). These results also suggest that some

signals, such as TNF and CD46, change dynamically as the disease

progresses from early to late stages. Meanwhile, functional of

the remarkably altered pathway involved in a series of critical

biological functions: immunity and inflammatory processes (e.g.,

ALCAM, CD6, CD34, CD46, CD70, CX3C, IL2, and IL10, etc.),

nervous system (e.g., CSF, EPHB, GDNF, MSTN, NEGR, NOTCH,

and NRXN, etc.), angiogenesis (e.g., EGF, PDGF, PROS, SPP1,
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TGFb, etc.), and cell survival (e.g., CXCL, PDGF, SPP1, SELE, and

WNT, etc.).

Moreover, the non-negative matrix factorization was applied to

identify the collaborative communication patterns of different cell

types and their related key signal pathways. The communication

patterns revealed four outgoing signaling flows and three

incoming signaling flows in AMD (Supplementary Figures S7A,

B), compared to six outgoing signaling flows and two incoming

signaling flows in controls (Supplementary Figures S7C, D). It

is further demonstrated that there is a clear difference in cell

communication between AMD patients and controls. The output

of AMD reveals that a large portion of outgoing fibroblast signaling

is characterized by Pattern #1, which represents multiple pathways,

including but not limited to AGT, BAFF, CSF3, CXCL, GH, IL1,

LT, MK, MSTN, PDGF, andWNT (Supplementary Figure S7A). All

of the outgoing endothelial cells, macrophages, melanocytes, and

RPE cell signaling were characterized by Pattern #4, representing

pathways such as BTLA, CD137, GRN, HGF, SEMA7, and SPP1.

In contrast, the incoming communication patterns of AMD

(Supplementary Figure S7B) show that endothelial cells, fibroblasts,

and RPE cells were dominated by Pattern #1, which includes

signaling pathways such as AGT, BAFF, CSF3, GH, GP1BA,

LT, MSNT, NRXN, PARs, SPP1, and WNT, as well as CD46,

CDH5, EGF, IFN–II, JAM, LIGHT, PDGF, TGFb, and VCAM

among others. Macrophages, mast cells, and T/NK cell signaling

were characterized by Pattern #3, driven by CCL, CD22, CD96,

CXCL, IL2, and IL10 pathways. All the above results show that:

(1) distinct cell types can rely on largely overlapping signaling

networks; (2) one certain cell type, it activates different counts

of signaling pathways, and the number of its involvement in

cell communication and signaling pathways may be related to

disease state; and (3) the same cell types in diverse disease states

with different communication patterns and signaling pathways,

which forms a specific cellular environment and participates in the

biology process.

3.4. Di�erentially expressed genes between
AMD and controls

In order to explore whether changes in cell communication

are related to gene expression, the differential expression

analysis within each cell population was additionally completed

between cells originating from the AMD patients vs. the

controls (Figures 3A–H). In total, 419 significantly differentially

expressed genes (|avg_log2FC| > 0.25, p_val_adj < 0.05)

were detected, which are listed in Supplementary Table S5. We

performed GO and KEGG pathway enrichment analyses by

DAVID (Supplementary Table S6). The annotation reported that

the DEGs were consistently enriched in numerous important

eye disease-associated functions, containing the retinol metabolic

process, apoptotic process, immune response, vasculogenesis, and

circadian regulation.

Then we conducted gene mapping to explore whether the

genes differentially expressed in each cell type were involved

in the significantly changed ligand–receptor pathway between

AMD patients and controls. We found that only fibroblasts [AGT

pathway (AGT) and CXCL (ACKR3)], melanocytes [SPP1 pathway

(SPP1)], Schwann cells [MPZ pathway (MPZ), NEGR pathway

(NEGR1)], and T/NK cells [CXCL pathway (CXCR4), ICAM, and

JAMpathway (ITGAL)] were involved. It suggests that differentially

expressed genes may be related to cell communication. However,

the differential status of gene expression explained only 12.3%

(7/57) of the information flow gain (or loss) between AMD and

control samples; additional influencing factors of transcriptional

regulation still need to be further explored.

3.5. Patterns of gene expression

As we all know, molecules do not act alone but interact with

each other and form individual patterns to reflect cell specification

and capture key developmental transitions in the biological system.

Focusing on finding gene signatures specific to the cell populations

across AMD states, we extracted 85 independent patterns of

genes across all cells by scCoGAPS. Figure 3I shows the patterns

that were maximally correlated with an individual cell type.

Pattern_8, Pattern_40, Pattern_54, Pattern_59, and Pattern_60

are closely associated with endothelial cells. The genes in these

patterns were enriched in endothelial cell-associated functions,

including vasculogenesis, regulation of vascular permeability,

branching involved in blood vessel morphogenesis, establishment

of endothelial barrier, and endothelial cell proliferation. Pattern_6,

Pattern_7, Pattern_9, Pattern_28, Pattern_36, Pattern_38,

Pattern_39, Pattern_57, and Pattern_58 are strongly correlated with

Schwann cells, mainly involving neuron projection development,

neurotransmitter receptor transport, t regulation of cell cycle,

Golgi to plasma membrane protein transport, and pathways of

neurodegeneration diseases.

We further characterized the patterns between AMD patients

and controls. Figure 3J shows some patterns with broadly similar

expression patterns highly correlated with individual cell types

while displaying discordance between AMD patients and controls.

For example, Pattern_6, Pattern_7, Pattern_38, and Pattern_39 are

strongly correlated with T/NK cells in both AMDand control, while

Pattern_27, Pattern_28, Pattern_36, Pattern_57, and Pattern_58

mark Schwann cells but highlight patients with AMD only. These

findings indicated that combinations of gene expression could

extract identical corporate models with the ability to effectively

distinguish between cell types and disease states of AMD.

3.6. Unique transcriptional regulons active
across cell types

Cellular identity and how that identity is developed and

maintained are critical questions in single-cell experiments. This

cell identity major emerges from an underlying gene regulatory

network (GRN), in which the coordinated regulation of specific

combinations of transcription factors (TFs) drives the expression

of their target genes. To better characterize the regulatory networks

(regulons) among cell types and disease states, we adopted

SCENIC to systematically detect the regulons and assess their

cell-type specificity. The unique regulons for each cell type are

Frontiers inMolecularNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1173123
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2023.1173123

FIGURE 3

Gene expression pattern. (A–H) Volcano plot for the DEG of each cell type between AMD and control. (I) Heatmap of predictive power for gene

patterns result by scCoGAPS in di�erent celltypes. A higher value indicates greater specificity. (J) Heatmap of predictive power for gene patterns

result by scCoGAPS in di�erent celltypes between AMD and Control. A higher value indicates greater specificity. (K) Transcription factor specificity in

each cell type. (L) Heatmap of fold change (FC) for TF’s RSS between AMD and control.

Frontiers inMolecularNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1173123
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2023.1173123

FIGURE 4

Cell-specific TF regulatory loop without disease properties. (A) Endothelial cells-specific TF regulatory loop. (B) Macrophages-specific TF regulatory

loop. (C) Mast cells and T/NK cells-specific TF regulatory loop. (D) Melanocytes-specific TF regulatory loop. (E) RPE cells-specific TF regulatory loop.

(F) Schwann cells-specific TF regulatory loop. TFs, gene expression patterns, and DEGSs were marked by pink circles, yellow hexagons, and cells. The

yellow hexagons or pink circles, which are marked by a red star indicated that the novel cell marker was contained in the gene expression patterns or

the target gene of TF. The yellow hexagon-connected box indicates that the gene expression pattern is directly involved in the signaling pathway of

the cell in cell communication, and the box which is connected by pink circles indicates that the TF directly regulates the signaling pathway of

cell-in-cell communication. Edges with dots indicate directed targets by TFs.
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FIGURE 5

Cell-specific TF regulatory loop with disease properties. (A) Fibroblasts-specific TF regulatory loop. (B) Mast cells-specific TF regulatory loop. (C)

Schwann cells-specific TF regulatory loop. TFs, gene expression patterns, and DEGSs were marked by pink circles, yellow hexagons, and cells. The

yellow hexagon-connected box indicates that the gene expression pattern is directly involved in the prominently changed pathways of the

cell-in-cell communication between AMD and controls (pathway marked in red fonts indicate increased intensity in AMD, and those marked blue

fonts indicate decreased intensity in AMD), and the box which connected by pink circles indicates that the TF directly regulates the prominently

changed pathways of the cell-in-cell communication between AMD and controls. Edges with dots indicate directed targets by TFs.

shown in Figure 3K. Most regulons that only activate in one

cell type, such as PAX3 and ALX1 exhibited regulation effects

on melanocytes only. While two regulons, BATF and MEF2C,

were active in two of the cell types (BATF activates T/NK and

mast cells MEF2C activates endothelial cells and macrophages).

We also found this expression specificity in external dataset 2

(Supplementary Figure S8), where PAX3 and ALX1 were shown to

be specifically expressed in Melanocytes.

We found that the main difference in regulon also existed

among cell populations of AMD and controls (Figure 3L). Obvious

changes in the specific regulator when disease state differences

were taken into account. NFYB regulon was more activating in

endothelial cells (fold change = 7.44), fibroblasts (fold change

=3.27), macrophages (fold change =2.31), and mast cells (fold

change =3.49), while relatively silent in T/NK cells (fold change

< −10) in AMD than controls. TCF7 regulon was more activating

in mast cells (fold change = 2.14) and Schwann cells (fold

change = 2.05) but also relatively silent in endothelial cells

(fold change < −10). Seven key TF regulons, including BATF,

IRF9, KLF3, PRDM1, RUNX1, STAT1, and STAT2, were shown

morn activating merely in Schwann cells. These results were also

reproduced in external dataset 2 (Supplementary Figure S9). The

above findings indicate that the regulon difference was not merely

affected by inter-cell heterogeneity but also by inter-disease states.

The regulons would affect disease development through multiple

signal paths and could contribute to potential target mining

and evaluation.

3.7. Cell-specific transcription factor
regulatory loops

Although it is widely accepted that gene regulation is variable

between AMD patients and controls, the detailed regulation

paths and factors that cause the variation are poorly understood.

By selecting DEGs, gene expression patterns, and TF regulons

mentioned above, we aim to explore whether there are intrinsic

conduction relationships and correlations between them. Here,

we used the hypergeometric test and found that cell-specific TF

can regulate DEGs and related gene expression patterns, forming

cell-specific TF regulatory loops (Figure 4). Interestingly, we found

that the patterns highly associated with cells tended to be enriched

by differentially expressed genes and were associated with signals

found in cell communication analysis. The same situation was also

discovered in cell-specific TFs. For instance, in Schwann cells, the

DEGs, Pattern_7, Pattern_36, and Pattern_39 are enriched by three

key TFs’ targets, including DLX2, GLIS3, and GLIS3. These three

TF regulons were shown specifically activating only in Schwann

cells. Consistently, we also found that these TF and cell-specific
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gene expression patterns were involved in the multiple signaling

pathways for cell communication of endothelial cells, including

ACTIVIN, BMP, CXCL, GDF, GDNF, LIFR, MK, MIF, MSTN,

NGF, NRG, PDGF, PTN, SEMA3, TGFb, and VISFATINIGF

(Figure 4F). Similar results were also seen in endothelial cells,

macrophages, mast cells, melanocytes, RPE cells, and T/NK cells

(Figures 4A–F). Miraculously, we found that BATF was related

to both Mast cells and T/NK cells and was enriched with DEGs

from both types of cells. Therefore, BATF may affect bridging and

contribute to the corporation in the expression of regulation of

mast cells and T/NK cells.
We further identified cell-specific TF regulatory loops with

disease properties, as shown in Figure 5. There were three

specific regulatory loops in the AMD than controls, including

fibroblasts, mast cells, and Schwann cells. NFYB, which is more

activating in fibroblasts in AMD, could target the genes specific

to fibroblasts that were differentially expressed, and Pattern_82

which is significantly associated with fibroblasts in AMD

(Figure 5A). Meanwhile, Pattern_82 was significantly enriched by

DEGs and involved in one enhanced cellular communication

signaling pathway (LT pathway) and two diminished pathways

(PDGF and SELE pathway) in AMD patients. LT pathway

mediates a large variety of inflammatory, immunostimulatory,

and antiviral responses. PDGF pathway plays an essential role in

the regulation of embryonic development, cell proliferation, and

survival. Meanwhile, SELE pathway has roles in cell proliferation,

differentiation, motility, trafficking, apoptosis, tissue architecture,

and capillary morphogenesis. Therefore, we speculated that NFYB

could disrupt the normal function of fibroblasts by changing

gene expression and further regulating cell communication in the

progress of AMD.
Mast cells and Schwann cells also formed the corresponding

TF regulatory loops (Figures 5B, C). Interestingly, Schwann cell-

related loops could precisely screen the key regulatory molecules

involved in disease states. The key role units Pattern_7, Pattern_36,

and Pattern_39 were preserved from all the related patterns

obtained in the above finding. In addition, the interpretation of the

differential change pathways between AMD and control increased

from the original two (2/57, 3.5%) pathways to 18 (31.6%, 18/57)

pathways (Figure 5C). We also found that they may be directly or

indirectly involved in the regulation of the immune and nervous

systems (ANGPT, BAFF, CADM, CSF, EGF, EPHB, GFRA1, MSTN,

NEGR, NOTCH, PROS, and RELN). Similarly, for mast cells,

we detected the essential TFs, MAF and TCF7, which can target

DEGs and Pattern_22. The corporation of the regulation loop

could break the interaction balance between cells by interfering

with the functions of CD molecules (CD22, CD45, CD86, and

CD96), CXCL, FN1, IL2, TGFb, SPP1, and VCAM pathway. These

pathways participate in the mutual recognition of immune cells

during the immune response. They also affect the recognition of

antigens, activation, proliferation, and differentiation of immune

cells, thus affecting the play of immune efficacy and the occurrence

of inflammation. These results demonstrated that the extracted

key TFs, including NFYB, MAF, TCF7, FOXO1, IRF9, STAT1, and

STAT2, may play a considerable corporation regulation role in the

combining of gene patterns and DEGs. The forming cell-specific

loops would provide new insight into the potential molecular

mechanism and therapeutic targets for AMD.

4. Discussion

In this study, we identified the most predominant cell

types in RPE-choroid, including endothelial cells, fibroblast,

macrophages, mast cells, melanocytes, RPE cells, Schwann cells,

and T/NK cells, with their heterogeneities deciphered between

AMD patients and controls. In addition, three novel cell markers

were discovered, and cell communication, specific signaling

pathways, gene expression, and regulators were compared in

the case–control group. In addition, computational strategies are

developed to construct cell-specific regulatory loops, providing

adding evidence for systematic exploring of regulatory modes and

molecular mechanisms involved in cell functions in the course

of AMD.
We conduct in-depth mining on the single-cell data of

transcriptome to identify how different cell types contribute to

key biological functions in the progression of AMD. We found

that the ACT of Schwann cells in AMD patients (1.63) was 2.7

times greater than that of controls (0.60), and that the ACT of

Schwann cells in the macula (1.79) was 8.5 times larger than that

of peripheral (0.21), implying that most Schwann cells derived

from the macula of the donor with neovascular AMD. Voigt

et al. also got a similar finding (Voigt et al., 2019). Schwann

cells were demonstrated to significantly increase the expression of

complement factor D (CFD) in AMD patients. CFD is a pivotal

regulator of the alternative complement pathway and mainly acts

early in the alternative complement pathway, which plays an

essential role in AMD (Yaspan et al., 2017; Acar et al., 2020).

Our report would provide further information on CFD, whose

potential therapeutic target is the alternative complement pathway

in the AMD.
The ACT of melanocytes in AMD patients (1.28) was

1.56 times larger than that of controls (0.82). SPP1 was the

most upregulated gene in the AMD-donor melanocytes, which

acts as a cytokine involved in enhancing the production of

interferon-gamma and interleukin-12 and reducing the production

of interleukin-10. It is essential in the pathway that leads to

type I immunity. Schlecht et al. identified SPP1 as one of

the most highly expressed genes in retinal microglia in the

course of CNV formation and investigated the role of SPP1 in

CNV formation by local intraocular application of an antibody

directed against SPP1. These results underline the importance of

SPP1 in the formation of CNV, thus paving the way for new

interventions by modulating the SPP1 pathway (Schlecht et al.,

2020).

In the survey of the variant cell–cell communications in

AMD and controls, numerous interactional pairs were identified

between cell types, indicating that these cells participate in

the maintenance of RPE/choroid homeostasis. However, a

large number of ligand–receptor pairs related to multiple vital

signaling pathways were erased in AMD patients. We spotted

that CD70-CD27 (CD70 pathway), CX3CL1-CX3CR1 (CX3C

pathway), SELE-CD44 (SELE pathway), and TNF-TNFRSF1A

(TNF pathway), which have been reported to play critical roles

in inflammatory and immune response, were erased in AMD

patients, implying their impact on the inflammation and immune

response in AMD. In addition, GH1-GHR (GH pathway), GP1BA-

(ITGAM+ITGB2) (GP1BA pathway),MSTN-(TGFBR1+ACVR2B)
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(MSTN pathway), and WNT3A-(FZD1+LRP5) (WNT pathway)

were disappeared in controls, indicating that its deficiency might

be one of the underlying causes for the onset or deterioration

of AMD.

We used the scCoGAPS algorithm to identify gene patterns

specific to the cell type without and with disease state properties.

In investigating gene expression patterns with disease states

properties, some patterns were specific to cell types that conserved

across disease states (AMD or controls), but some were not.

Looking at some of these patterns, we understood how the major

cells in AMD patients differ from controls. Beyond that, we

also investigated cell-specific transcription factor regulons and

compared their activity in AMD patients with controls. Integrated

DEGs, gene expression patterns, and transcriptional regulons

results, we found that the perturbation of 7 transcription factors,

including NFYB, MAF, TCF7, FOXO1, IRF9, STAT1, and STAT2

between AMD patients and controls, might play momentous

parts in the development of AMD. Among them, FOXO1, IRF9,

STAT1, and STAT2 can affect the pathogenesis of AMD at both

the transcriptional expression and cell communication levels.

Although there is no evidence that they are directly related

to AMD, studies link them to eye development. For example,

Anand et al. showed that MAF had a vital function in eye

development and was related to cataracts, among other defects,

in human patients (Anand et al., 2018). Cui et al. found that

TCF7 mediates the function of canonical WNT signaling, plays

a pivotal part in the control of ESC-RPC differentiation and

proliferation, and is closely associated with the mouse retina’s

early development (Wang et al., 2019). FOXO1 regulates apoptosis,

autophagy, anti-oxidative stress, cell cycle arrest, metabolism,

and other physiological and pathophysiological processes. MiR-

27a-FOXO1 axis plays a prominent role in modulating reactive

oxygen species-mediated retinal injury and RPE cell death,

which has long been considered a contributor to the onset

of AMD (Ren et al., 2021). It is also known that STAT1-

deficient mice are highly susceptible to autoimmune disorders,

and given that AMD may be considered an autoimmune

disease, preserving STAT1 activation may be necessary for

mitigating AMD progression (Jiang et al., 2013). All of these

findings suggest that key TFs may be of the essence to the

pathogenesis of AMD. However, their direct association with

AMD requires further investigation of the integers, which can

be used as potential targets for the research and treatment

of AMD.

Collectively, we observed altered cell–cell communication

in patients with AMD, which might result in the

disorder of normal cellular function. Our study delivered

a comprehensive single-cell transcriptomic in-depth

analysis framework for deciphering gene expression

landscapes of heterogeneous cell types in AMD patients

and controls.
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SUPPLEMENTARY FIGURE S1

ElbowPlot. Horizontal axis shows the number of principal components, and

the vertical axis shows the standard deviation. The smaller the standard

deviation, the more representative the principal component.

SUPPLEMENTARY FIGURE S2

Three-dimensional spatial distribution of principal components 1, 2, 3 of

cell types. (A) Three-dimensional spatial distribution of principal

components 1, 2, 3 of cell types in this study. (B) Three-dimensional spatial

distribution of principal components 1, 2, 3 of cell types in data source’s

study. Di�erent colors represent di�erent cell types.

SUPPLEMENTARY FIGURE S3

Repetition was performed in the external validation set. (A) Expression of the

top five genes of each cluster in external dataset 1. (B) The expression of the

novel cell marker in external dataset 1.

SUPPLEMENTARY FIGURE S4

Interaction strength of each cell with other cells. A thicker line indicates a

stronger interaction strength between cells.

SUPPLEMENTARY FIGURE S5

Information flow in EAMD and control in external dataset 2. “Turn o�”

represents the closed path in AMD, “Decrease” represents the reduced path

in AMD, “Increase” represents the increased path in AMD, and “Turn on”

represents the open path only in AMD.

SUPPLEMENTARY FIGURE S6

Overall signal patterns in control, early AMD (EAMD), and AMD. The bar

graph above shows the total strength of each signal of all cells, and the bar

graph on the right shows the total strength of each cell of all signals. The

darker the color of the heat map, the stronger the signal

strength.

SUPPLEMENTARY FIGURE S7

Cell communication patterns. (A) Inferred outgoing communication

patterns of secreting cells in AMD show the correspondence between the

inferred latent patterns and cell groups, as well as signaling pathways. The

thickness of the flow indicates the contribution of the cell group or

signaling pathway to each latent pattern. (B) The inferred incoming

communication patterns of target cells in AMD. (C) The inferred outgoing

communication patterns of secreting cells in control. (D) The inferred

incoming communication patterns of target cells in control.

SUPPLEMENTARY FIGURE S8

Transcription factor specificity in each cell type in external dataset 2.

SUPPLEMENTARY FIGURE S9

Heatmap of fold change (FC) for TF between AMD and control in external

dataset 2.

SUPPLEMENTARY TABLE S1

Information of the three donors in external dataset 2.

SUPPLEMENTARY TABLE S2

Information about the three donors included in the single-cell

transcriptomic datasets.

SUPPLEMENTARY TABLE S3

Summary of the extracted clusters in the single-cell transcriptomic datasets.

SUPPLEMENTARY TABLE S4

Summary of interaction strength.

SUPPLEMENTARY TABLE S5

A total of 419 significantly di�erentially expressed genes.

SUPPLEMENTARY TABLE S6

GO and KEGG enrichment results of di�erentially expressed genes in

di�erent cell types.
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