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Obstructive sleep apnea (OSA) is one of the most common sleep disorders, 
which is characterized by recurrent apneas and/or hypopneas occurring during 
sleep due to upper airway obstruction. Among a variety of health consequences, 
OSA patients are particularly susceptible to developing metabolic complications, 
such as metabolic syndrome and diabetes mellitus type 2. MicroRNAs (miRNAs) 
as epigenetic modulators are promising particles in both understanding the 
pathophysiology of OSA and the prediction of OSA complications. This review 
describes the role of miRNAs in the development of OSA-associated metabolic 
complications. Moreover, it summarizes the usefulness of miRNAs as biomarkers 
in predicting the aforementioned OSA complications.
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1. Introduction

Obstructive sleep apnea (OSA) is a chronic breathing disorder, which presents with recurrent 
apneas and/or hypopneas during sleep (Arnold et al., 2017). As the result of neuromuscular 
factors (e.g., hypoglossal nerve and genioglossus muscle) and negative airway pressure the tongue 
falls backward leading to occlusion in the upper airway (Pham and Schwartz, 2015). Apnea is a 
cessation of breathing for at least 10 s, while hypopnea means a reduction in the airflow by at least 
50% associated with a drop in arterial blood oxygen saturation of at least 3% or reduction of the 
airflow by 30% and desaturation by 4% (Krawczyk et al., 2013). The gold standard in diagnosing 
and assessing the severity of OSA is the nocturnal polysomnography (PSG) examination. 
Although PSG is a prominent diagnostic tool for detecting OSA, the study can be aggravating 
for patients and does not inform about the risk of metabolic complications. During the PSG 
examination, apnea-hypopnea index (AHI) defined as the number of apneas and hypopneas per 
hour of effective sleep, is calculated. This index shows the severity of the disease: 5 > AHI – no 
OSA, 15 > AHI ≥ 5 – mild, 30 > AHI ≥ 15 – moderate, and AHI ≥ 30 – severe OSA (Kapur et al., 
2017). It is estimated that 14% of men and 5% of women experience mild, moderate, or severe 
forms of this condition in their lifetime, however, in some populations, the percentage can reach 
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up to 80% (Patil et al., 2019). Unfortunately, a large proportion of 
moderate and severe OSA, remain undiagnosed (Young et al., 1993; 
Fleming et al., 2018). Obesity is considered the most prominent risk 
factor for developing OSA, followed by male sex, and older age (Liu 
et al., 2016). A higher prevalence of OSA is observed in patients who 
have hypertension (30–83%) (Logan et al., 2001), diabetes mellitus 
(40–69%) (Fallahi et  al., 2019), or metabolic syndrome (55–81%) 
(Drager et al., 2009). Dominant symptoms of OSA are non-specific: 
snoring, drowsiness, excessive daytime sleepiness, and fatigue. OSA is 
dangerous not only because of chronically occurring hypoxia but also 
because of its possible complications, such as diabetes mellitus type 2 
(T2DM), metabolic syndrome (MetS), cardiovascular diseases, asthma, 
idiopathic pulmonary fibrosis, cancer (Kong et al., 2016; Cao et al., 
2022; Karuga et al., 2022; Salari et al., 2022; Wang C. et al., 2022; Wang 
et  al., 2023). Continuous positive airway pressure (CPAP), a gold 
standard treatment in OSA, might delay or even eliminate symptoms 
and complications of this disorder (Fu et al., 2017; Bonsignore et al., 
2019; Gabryelska et  al., 2021b). However, individuals who are 
diagnosed with moderate or severe OSA might require additional 
treatment, for example, oral appliances, hypoglossal nerve stimulators, 
or upper-airway surgeries (Waters, 2019). Many papers link higher 
mortality in OSA with metabolic complications (Labarca et al., 2021; 
Su et al., 2021; Liu et al., 2022). Therefore, it is crucial to detect the early 
signs of OSA complications in order to optimize the treatment strategy 
(Kendzerska et  al., 2014). Ongoing research focuses on finding a 
satisfactory biomarker to achieve this goal. The most promising 
candidates for OSA biomarkers include as follows: miRNA levels of 
ADAM29, FLRT2, and SLC18A3 determined in peripheral blood 
mononuclear cells, serum levels of Endocan and YKL-40, as well as 
plasma levels of IL-6 and Vimentin (Gaspar et al., 2022). Contemporary 
miRNA exhibits several advantages over other molecular biomarkers. 
It has been reported that noninvasive quantification of miRNA profiles 
is highly sensitive, robust, and cost-effective for the clinical 
management of different pathological conditions such as head and 
neck squamous cell carcinoma, heart failure, or osteoporosis 
Additionally, detecting differences in gene expression rather than in 
gene content becomes an effective and practical approach for 
associating molecular markers with the patient phenotype and disease 
outcome (Bock, 2009). There are miRNAs that are involved in OSA 
and the development of its complications (Malicki et  al., 2022). 
Therefore, such miRNAs can reveal clinical value in order to specific 
OSA phenotypes diagnosis or act as a predictive factor of concrete 
complications development at an early stage of the disease (Gaspar 
et  al., 2022). In the present study, we  reviewed miRNAs that can 
be potential biomarkers of OSA metabolic consequences and should 
be investigated in the future. However, it should be mentioned that 
miRNA biomarkers have their limitations in both sensitivity and 
specificity. The blood sampling methods should be carefully considered 
as well as the selection criteria of the study group due to the influence 
of concomitant diseases miRNAs levels. In addition, each miRNA can 
have various expressions depending on the specimen (e.g., blood, 
urine, muscle tissue, exosomes).

MiRNAs are small, up to 30 bases in length, strands of ribonucleic acid, 
which are responsible for regulating the expression of many genes 
(Dutkowska et al., 2021). Based on the location miRNAs are generally 
divided into two groups – intracellular and extracellular. While intracellular 
mature miRNAs can be secreted from the cytoplasm and preserve high 
stability, extracellular molecules, e.g., packaged in exosomes or encapsulated 

in liposomes, are promising and more accessible for clinical diagnostics 
(Leung, 2015). MiRNAs can be used to detect the disease before its first 
manifestations and predict the response of the organism to the suggested 
treatment (Gabryelska et al., 2020b,c,d; Pozniak et al., 2022). The main role 
of miRNAs is cell-to-cell communication via post-transcriptional 
epigenetic mechanism leading to mRNA degradation or translation 
inhibition (Czarnecka et al., 2019). Their proper functioning is crucial for 
maintaining correct cell activity, such as apoptosis, stress response, 
proliferation, and metabolism. Any disruption in the regulatory properties 
of miRNAs can result in the pathogenesis of many disorders, including 
respiratory diseases and their complications (Dutkowska et  al., 2021). 
Therefore, analyzing miRNAs, particularly as specific subsets, may 
be considered not only important for a better diagnosis and therapy but also 
as an essential factor for understanding the pathophysiology of OSA and 
its association with other disorders (Gabryelska et al., 2020a). In the current 
review, we explain the role of miRNAs in the development of OSA-related 
metabolic complications.

2. miRNAs in metabolic complications 
of OSA

2.1. OSA

A better insight into OSA-related miRNAs may lead not only to a 
better understanding of OSA but also to the development of new 
diagnostic and therapeutic strategies, as PSG examination is a good 
tool for diagnosing OSA but is expensive and uncomfortable for 
patients – they have to spend at least one night away from home. In 
addition, miRNA expression may affect gene expression, which can 
result in the development of complications, especially metabolic. 
Santamaria-Martos et al. (2019a) performed an analysis to determine 
miRNAs that separate OSA from non-OSA patients. Initially, 14 
miRNAs (−181-a-2, −495, −451, −486, −660, −345, −340, −107, 
−486-3p, −133a, −181a, −let-7d, −199a, −199b) revealed different 
expression between these two groups. However, further validation with 
the qPCR method confirmed that only six of them might be suitable 
for clinical use (−181a, −199b, −345, −133a, −340, −486-3p). Khurana 
et al. published their cohort study where they noted the downregulation 
of miRNA-27 and let-7 in OSA patients (Khurana et  al., 2020). 
Santamaria-Martos et al. (2019b) selected eight biomarker candidates: 
miRNA-106a, miRNA-186, miRNA-29a, miRNA-21, miRNA-103, 
miRNA-27a, miRNA-140, and miRNA-145. It was observed that the 
combination miRNA-106a/miRNA-186 was the most stable among all 
the candidates (Santamaria-Martos et al., 2019b). Although some of 
the above-mentioned miRNAs have not been described as dysregulated 
particularly in diabetes mellitus or metabolic syndrome, studies are 
needed to specify their levels and potential role in patients with OSA 
and concomitant metabolic complications. Common miRNAs 
between OSA and metabolic complications can include also miRNAs: 
−17-5p, −21-5p, −22-3p, −31, −126, −130, −155, −181, and − 199; 
their involvement is further presented in this review.

2.2. Metabolic syndrome

Metabolic syndrome (MetS), initially known as syndrome X, was 
first described by Reaven in 1988 after it was noticed that insulin 
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resistance and hyperinsulinemia increase the risk of T2DM, 
hypertension, and coronary artery disease development (Reaven, 
1988). According to the most common definition, MetS is a 
co-occurrence of abdominal obesity and at least two cardiometabolic 
risk factors such as hypertension, insulin resistance, 
hypertriglyceridemia, and low concentration of high-density 
cholesterol (Saklayen, 2018). MetS increases the risk of cardiovascular 
complications occurrence 2-fold and up to 5-fold in the case of 
T2DM (Samson and Garber, 2014). The prevalence of MetS has 
increased worldwide with averaging values at 30% in adults (Engin, 
2017) and between 6 and 39% in children/teenagers (Weihe and 
Weihrauch-Blüher, 2019). MetS has a variety of anticipated miRNA 
biomarkers, which are summarized in Table 1. Furthermore, some of 
the miRNAs can have a gender-specific (Wang et al., 2013) or physical 
(Zhou et al., 2014) link in MetS patients. Obstructive sleep apnea is 
independently associated with MetS occurrence. Risk estimates are 
6–9 times higher in patients with OSA compared to the general (non-
OSA) population (Coughlin et al., 2004). It has been shown that 
CPAP reduces the risk of developing MetS in OSA patients (Phillips 
et al., 2011). Although the connection between OSA and MetS is not 
fully understood, studies are emphasizing the influence of 
intermittent hypoxia and sleep fragmentation (Khalyfa et al., 2018), 
abnormal sympathetic activation (Trombetta et  al., 2013), and 
chronic inflammation (Drager et al., 2010; Turkiewicz et al., 2021; 
Kaczmarski et al., 2022). There are no conducted studies focusing on 
the relationship between patients with MetS and OSA in the context 
of miRNAs. Nevertheless, preliminary conclusions can be  drawn 
from the available literature.

The dysregulation of miRNA-181a presented in OSA may 
exacerbate inflammation in the case of MetS as a comorbid condition 
(Santamaria-Martos et al., 2019b). Hulsmans et al. study identified 
toll-like receptor (TLR) 4 as an inflammation factor associated with 
the levels of miRNA-181a in patients with both morbid obesity and 
MetS; the downregulation contained in CD14+ monocytes enhanced 
TLR/NF-κB signaling pathway, which was associated with chronic 
low-grade inflammation development (Hulsmans et al., 2012). The 
target gene may be a TLR4-interactor with leucine-rich repeats, a 
functional component of TLR4. The knockdown of TLR4 via siTLR4 
has been shown to affect the miRNA-181a levels (Xie et al., 2013b). As 
the decreased levels of miRNA-181a in monocytes are associated with 
targeting IL-1 via binding the site of 3′-untranslated regions, the 
modulation of miRNA can alleviate systemic inflammation and 

thereupon decrease the severity of both MetS and OSA or even act as 
MetS development prevention (Xie et al., 2013a).

Altered miRNA-22-3p expression in OSA patients (Shao et al., 
2021) can contribute to greater severity of MetS since it takes part in 
the development of the main features of the disease. MiRNA-22-3p has 
been reported to be downregulated in peripheral blood mononuclear 
cells (PBMCs) in MetS patients – the study disclosed a negative 
correlation with a variety of MetS components such as blood pressure, 
plasma triglyceride, and waist circumference, and a positive 
correlation with plasma high-density lipoprotein levels (Huang et al., 
2020). Furthermore, OSA-related hypertension may arise from 
miRNA-22-3p downregulation that influences vascular smooth muscle 
cells (VSMCs) by targeting the methyl-CpG binding protein 2 gene 
(Shao et al., 2021). Excessive proliferation and migration of VSMCs 
impede the arterial intima balance, which is inherently connected 
with atherosclerosis and subsequent hypertension development, thus 
pointing at miRNA-22-3p dysregulation as a trigger for the 
development of hypertension.

The downregulation of miRNA-17-5p might be a novel biomarker 
of OSA or MetS, which is linked with obesity and impaired 
adipogenesis (Ramzan et al., 2020). Thioredoxin interacting protein 
(TXNIP) is an aspiring target of miRNA-17-5p which was described 
in metabolic disorders including obesity and insulin resistance 
(Koenen et al., 2011; Masutani et al., 2012). Exposing the genioglossus 
muscle cells to intermittent hypoxia led to a downregulation of 
miRNA-17-5p. Upregulation of miRNA-17-5p by miRNA mimics 
resulted in a strengthening of the muscle by regaining the 
mitochondrial function and cell proliferative capacity (Qin et  al., 
2019). Genioglossus plays an important role as an upper-airway 
dilator muscle, helping to maintain adequate oxygen supply during 
sleep. TXNIP may have an impact on tissue subjected to chronic 
intermittent hypoxia  via TXNIP/NLRP3/IL-1β pathway and mediate 
mitochondrial dysfunction (Yan et al., 2021). Thus, the bidirectional 
relationship can be  observed – downregulation of miRNA-17-5p 
occurring during OSA may exacerbate the likelihood of MetS 
occurrence through affecting fat accumulation, while downregulation 
happening in MetS may weaken the restoration power of genioglossus 
muscle and make the patient more susceptible to apnea development 
or cause a more severe course of coexisting OSA.

As mentioned before, some miRNAs might be used as potential 
diagnostic markers only in a specific group. Sapp et al. study revealed 
downregulation of miRNA-21-5p in postmenopausal African 

TABLE 1 The role of selected miRNAs in metabolic syndrome and obstructive sleep apnea pathogenesis.

MicroRNA Up/Downregulated in 
OSA and MetS

Predicted 
target

Implications Reference

miR-17-5p ⬇ TXNIP ⬆β-cell death Koenen et al. (2011), Masutani et al. (2012), 

and Ramzan et al. (2020)

miR-21-5p ⬇ TLR4 ⬆Low-grade inflammation Boutagy et al. (2016), Sapp et al. (2019), and 

Ali et al. (2021)

miR-22-3p ⬇ GR

IL6R

⬆Cortisol levels

⬆IL-6 levels

Huang et al. (2020)

miR-130 ⬆ PPAR-γ ⬆Production of reactive oxygen species Kim et al. (2013) and Rega-Kaun et al. (2020)

miR-181 ⬇ TLR4 ⬆Low-grade inflammation Hulsmans et al. (2012)

GR, glucocorticoid receptor; IL6R, interleukin 6 receptor; PPAR-γ, peroxisome proliferator-activated preceptor gamma; TLR4, toll-like receptor 4; TXNIP, thioredoxin-interacting protein; 
OSA, obstructive sleep apnea.
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American women with MetS compared to a healthy group (Sapp et al., 
2019). These results contrast with those found in a study by Doghish 
et al. where miRNA-21-5p levels were increased in adult Egyptian 
males with MetS (Doghish et  al., 2021). In treatment-naive OSA 
patients, miRNA-21-5p was decreased and negatively correlated with 
oxygen desaturation index and AHI. Exposure of human monocytic 
THP-1 cell lines (cell model of human monocytes) to intermittent 
hypoxia with reoxygenation resulted in decreased levels of miRNA-
21-5p, in vitro studies pointed out that miRNA-21-5p might target 
TNF-α/TLR4 pathway resulting in hypoxia-induced inflammation 
and cell apoptosis (Chen Y. C. et al., 2020). In turn, TLR4 activation 
in MetS may increase reactive oxygen species production, which has 
been related to inflammation, endothelial dysfunction, and metabolic 
impairment (Boutagy et al., 2016; Ali et al., 2021). The downregulation 
of miRNA-21-5p in OSA and MetS may indicate a self-perpetuating 
cycle of inflammation  via activation of TLR4 as a pattern recognition 
receptor, and cell dysfunction. However, this was observed only in 
specific groups, prompting the need for further investigation.

Altered expression of miRNA-130 might be relevant to MetS and 
indicate metabolic aspects of OSA. In tissue exposed to chronic 
intermittent hypoxia, the major harmful factor of OSA, the miRNA-
130 levels were upregulated (Zhang X. B. et al., 2020). The study of 
Rega-Kaun et al. (2020) showed that Roux-en-Y-Bariatric Surgery 
significantly reduced upregulated miRNA-130 levels in MetS patients, 
which exhibited clinical improvement of the disorder. Elevated 
miRNA-130 can especially affect islets of Langerhans via modulation 
of ATP/ADP concentration, thereby impairing the leading pancreatic 
function relying on glucose homeostasis regulation (Ofori et al., 2017). 
Additionally, in obese schoolchildren aged 12–18 miRNA-130 
positively correlated with MetS risk factors (Al-Rawaf, 2019). 
Peroxisome proliferator-activated receptor gamma (PPAR-γ) was 
found to be a possible target of miRNA-130 – PPAR-γ might regulate 
adipocyte differentiation and promote both oxidative stress injury and 
proinflammatory response (Kim et al., 2013; Zhang Y. et al., 2017). 
Especially in a chronic intermittent hypoxic environment, PPAR-γ is 
in charge of neuroinflammation development and cognitive 
performance (Dong et al., 2018; Wang H. et al., 2021), endothelial cell 
regulation (Lian et al., 2021), and defense from the kidney (Zhang 
et al., 2019) or cardiac (Pai et al., 2022) injury. Nocturnal hypercapnia, 
another hallmark of OSA, can contribute to obesity and metabolic 
impairment through PPAR-γ dysregulation (Kikuchi et al., 2017). 
Overall, miRNA-130 can be  a valuable predictor in children/
adolescents of subsequent MetS and OSA development and a 
biomarker of treatment response in adults.

The role of chosen miRNAs in the development of OSA-related 
metabolic complications is presented in Figure 1.

2.3. Diabetes mellitus

Diabetes mellitus is a group of metabolic disorders characterized 
by chronic hyperglycemia resulting from defects in insulin action, 
insulin secretion, or both. T2DM is the most common type of 
diabetes mellitus. In 2017, approximately 6.28% of the world’s 
population was affected by T2DM and around 1 million deaths 
yearly can be attributed to T2DM alone(Khan et al., 2020). The risk 
factors for T2DM include both nonmodifiable factors (e.g., genetic 
predisposition, family history), and modifiable factors (e.g., obesity, 

unhealthy diet, and low physical activity) (Galicia-Garcia et  al., 
2020). There are many miRNAs that may have an impact on T2DM 
(see Table 2). They can inhibit insulin signaling, inhibit glucose 
uptake, promote insulin signaling, and reduce insulin 
secretion(Sekar et al., 2016; Szweda and Łaczmański, 2016; Rovira-
Llopis et al., 2018; Deng and Guo, 2019; Kim and Zhang, 2019; 
Jankauskas et al., 2021). OSA is recognized as an independent risk 
factor for metabolic diseases, including T2DM (Gabryelska et al., 
2020a). In the study of Mahmood et  al., it was found that the 
prevalence of T2DM in OSA patients was 30.1%, while in the group 
without OSA only 18.6% (Mahmood et  al., 2009). Moreover, 
Gabryelska et al. (2021a) showed that higher oxygen saturation in 
OSA patients is associated with the later onset of T2DM. As it was 
mentioned before the most effective form of treatment for OSA is 
CPAP, which generates air pressure in the upper airways preventing 
their collapse and eliminating the recurrent periods of hypoxia. 
Unfortunately, CPAP treatment might be ineffective in patients with 
T2DM (Labarca et  al., 2018), however, it may slow down the 
progression of T2DM (Reutrakul and Mokhlesi, 2020). The 
coexistence of these two diseases is the subject of numerous 
scientific papers, which investigate possible mechanisms of this 
interaction, for example, mechanisms mediated via HIF-1α or 
sirtuin1 (SIRT1) (Reutrakul and Mokhlesi, 2017; Song et al., 2018; 
Gabryelska et al., 2020a). Nevertheless, the relationship between 
these two diseases is not fully understood. Some studies postulate 
the role of certain miRNAs in T2DM among OSA patients.

The study of Ren et  al. (2018) disclosed the upregulation of 
miRNA-31 emerging from intermittent hypoxia that resulted in 
cardiac hypertrophy. As predicted, myocardial remodeling was 
affected by the miRNA-31/PKC-ε signaling pathway to some extent. 
In turn, in a separate study, the downregulation of miRNA-31 elicited 
a protective cardiac performance via miRNA-31/PKC-ε/NF-κB 
pathway (Wang et al., 2015). Despite being engaged in detrimental 
cardiac changes, the impact of miRNA-31 dysregulation on hypoxia-
subjected tissues seems to be variable. Hypoxic diabetic adipose stem 
cells (ADSCs) engaged in soft tissue repair processes showed better 
responses to damage in comparison to non-hypoxic ADSCs (Wang 
J. et al., 2021). Upregulation of miRNA-31 in hypoxic ADSCs may 
account for accelerated wound healing via targeting factor-inhibiting 
HIF-1 (FIH-1) and epithelial membrane protein-1 (EMP-1) (Huang 
et  al., 2021). Exosomic miRNA-31 overexpression in recalcitrant 
diabetic wounds contributed to augmented healing due to its 
proangiogenic and proliferative features. Likewise, FIH-1 was the 
estimated target gene (Yan et al., 2022). The study of Han et al. (2021) 
carried out on healthy skin samples showed a positive impact of 
overexpressed miRNA-31 on the cell migration as well. Although the 
upregulation of miRNA-31 in diabetic foot skin did not achieve 
statistical significance due to the variability of samples and the 
absence of severity-related group division, there is a strong 
presumption of the influence of miRNA-31 on skin dysfunction in the 
course of diabetes mellitus (Ramirez et al., 2015). Given the fact that 
OSA patients generally have worse progress in diabetic ulcer 
treatment, the protective effect of upregulated miRNA-31 on wound 
healing may work only in some cases or be a part of a specific subset 
responsible for the repair (Maltese et al., 2018). The same miRNA was 
upregulated in the retina (Kovacs et  al., 2011) and periodontal 
ligament (Zhen et  al., 2017) of diabetic rats, and in endothelial 
progenitor cells obtained from T2DM patients (Lian et al., 2018). 
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Looking at the last two examples, a plausible common target of 
miRNA-31 is a special AT-rich sequence-binding protein 2 (Satb2), 
which has been reported to trigger vascular endothelial dysfunction 
and suppression of osteogenic differentiation in DM. Increased levels 
of transforming growth factor β (TGF-β) occurring in OSA 

(Hernández-Jiménez et al., 2017) can downregulate Satb2, thereby 
decreasing bone density via promoting osteoblast dysfunction 
(Freude et  al., 2012). Upregulation of miRNA-31 and TGF-β 
demonstrated in OSA coupled with DM may be responsible for the 
higher incidence of vascular malfunction and poor bone remodeling.

FIGURE 1

Potential role of microRNAs in the pathophysiology of metabolic syndrome in obstructive sleep apnea patients. Obstructive sleep apnea in general 
affects miR -181a, -22-3p, -17-5p, and via chronic intermittent hypoxia miR-21-5p and -130. Downregulation of miR-181a causes upregulation of TRIL 
and leads to abdominal obesity. Downregulation of miRNA-22-3p is associated with high blood pressure due to targeting MECP2. Downregulation of 
miR-17-5p triggers abdominal obesity and insulin resistance via TXNIP upregulation. miR-21-5p downregulation leads to the upregulation of TLR4, 
thereby contributing to abdominal obesity. Upregulation of miRNA-130 stimulates PPAR-γ, predisposing to abdominal obesity, dyslipidemia, and insulin 
resistance. miR, microRNA; TRIL, TLR4 interactor with leucine-rich repeats; MECP2, methyl-CpG binding protein 2; TXNIP, thioredoxin interacting 
protein; TLR4, toll-like receptor 4; PPAR- γ, peroxisome proliferator-activated receptor gamma.

TABLE 2 The role of selected miRNAs in diabetes mellitus and obstructive sleep apnea pathogenesis.

MicroRNA Up/Downregulated 
in OSA and T2DM

Predicted target: Implications Reference

miR-31 ⬆ SATB2 Endothelial dysfunction Lian et al. (2018)

Impaired bone remodeling Zhen et al. (2017)

miR-126 ⬇ SPRED1 Endothelial dysfunction Meng et al. (2012) and Rezk et al. (2016)

CASP3 Diabetic retinopathy Chen X. et al. (2020)

VEGF Ye et al. (2013)

miR-155 ⬆ FOXO1 Diabetic nephropathy Wang G. et al. (2020)

PTEN Guo et al. (2020)

BDNF Gao et al. (2022)

SIRT1 Wang et al. (2018) and Wang X. et al. (2021)

TP53 Diabetic cardiomyopathy Raut et al. (2016)

PDCD4 Zhao S. F. et al. (2021)

KLF6 Diabetic nephropathy Liang and Xu (2020)

EGR1 Xu et al. (2017) and Zha et al. (2019)

miR-181a ⬇ PDCD4 TP53 Diabetic cardiomyopathy Raut et al. (2016) and Zhao S. F. et al. (2021)

EGR1 KLF6 Diabetic nephropathy Zha et al. (2019b) and Liang and Xu (2020)

miR-199a ⬇ SP1 Diabetic cataract Liu et al. (2020)

VEGF Diabetic retinopathy Wang L. et al. (2020)

FGF7 Zhou et al. (2021)

IKKβ Diabetic nephropathy Zhang R. et al. (2020)

AKT1, AKT2, VEGF, IGF1, FGF1 Diabetic cardiomyopathy Ahmed et al. (2021)

AKT1, AKT serine/threonine kinase 1; AKT2, AKT serine/threonine kinase 2; BDNF, brain derived neurotrophic factor; CASP3, caspase 3; EGR1, early growth response 1; FGF1, fibroblast 
growth factor 1; FGF7, fibroblast growth factor 7; FOXO1, forkhead box O1; IGF1, insulin-like growth factor 1; IKKβ, inhibitor of nuclear factor kappa B kinase subunit beta; KLF6, KLF 
transcription factor 6; OSA, obstructive sleep apnea; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homolog; SATB2, SATB homeobox 2; SIRT1, sirtuin 1; SP1, Sp1 
transcription factor; SPRED1, sprouty related EVH1 domain containing 1; TP53, tumor protein P53; VEGF, vascular endothelial growth factor.
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Dysregulation of miRNA-155, which has been broadly described 
in the literature about diabetes and its complications, might be linked 
with OSA-related kidney deterioration. In renal tissue exposed to 
chronic intermittent hypoxia, the activation of the NLRP3 
inflammasome pathway led to miRNA-155 upregulation. A prompt 
response to stimuli triggered hypoxia-induced renal injury due to the 
exacerbation of the inflammatory process (Wu et al., 2018). miRNA-
155 upregulation was detected both in urine and renal tissue, 
indicating a possible application for this biomarker, albeit the direction 
of dysregulation may be  dependent on the location of miRNA 
(Akhbari et al., 2019). miRNA-155 deficiency can favor the acetylation 
of nephrin, thus ameliorating diabetes-induced perturbation via 
restoring podocyte function(Lin et al., 2015). Potential corresponding 
targets in hyperglycemia-injured renal tissue comprise brain-derived 
neurotrophic factor (BDNF), which has been proven to contribute to 
kidney deterioration through autophagy attenuation, fibrosis 
progression, oxidative stress imbalance, and microinflammation (Gao 
et al., 2022). In several studies dysregulation of BDNF was observed 
among OSA patients (Arslan et al., 2021; Gabryelska et al., 2022, 2023; 
Gabryelska and Sochal, 2022). Furthermore, patients suffering from 
both OSA and T2DM may be more prone to develop impairment of 
kidney function as a long-term complication; however, this link has 
not been proven yet and shows the need for further research.

Alteration of miRNA-126 expression detected in OSA patients 
(Yang et  al., 2018) might be  involved in diabetes mellitus 
development and dysglycemia-related complications as well. In the 
foreseeable future, miRNA-126 dysregulation may serve as an 
accurate diagnostic biomarker of prediabetes (Liu et al., 2014) and 
T2DM (Dehghani et al., 2020) due to its close correlation. Except 
the potential ethnic variability (Weale et al., 2021), the progressive 
decline of miRNA can reflect the advancement of the disease and 
predict long-term all-cause mortality (Pordzik et al., 2021). Thus, 
miRNA-126 downregulation, occurring secondary to OSA, may 
exacerbate T2DM or even contribute to the onset of the disease. 
miRNA-126 downregulation has been reported to impair vascular 
performance in T2DM (Jansen et al., 2016). It plays an especially 
important role in the development of retinopathy through the 
enhancement of neovascularization; targeting vascular endothelial 
growth factor (VEGF), which in turn promotes migration and 
sprouting in retinal vascular endothelial cells via VEGF/PI3K/AKT 
signaling pathway. Additionally, in hypoxia-treated cells, miRNA-
126 is a negative regulator of VEGF expression (Ye et al., 2013). It 
may partly explain why OSA subjects exhibit repercussions linked 
with eyes, such as increased retinal vessel tortuosity, declined 
vascular density, or pathological changes in the choroid (Nakayama 
et al., 2021). miRNA-126 downregulation is likewise associated with 
diabetic nephropathy (Al-Kafaji et al., 2016) and worse diabetic foot 
ulcer healing (Zhang J. et al., 2017). As diabetic patients with OSA 
are generally more vulnerable to developing diabetic retinopathy 
(Chang et al., 2018) and nephropathy (Misra and Shrivastava, 2016) 
or have impaired wound healing (Ramirez et  al., 2015), these 
dependencies are of great importance.

miRNA-181a is one of the most hypoxia-sensitive miRNAs 
which is best illustrated by the example of tumor progression 
(Agrawal et al., 2014; Sun et al., 2015a; Macharia et al., 2021). Under 
these circumstances, the main mechanism of action is presumably 
aimed at angiogenesis promotion via targeting VEGF, which then 
induces tumor growth and subsequent metastasis development 

(Sun et al., 2015b; Silvestris et al., 2017). Dysregulation of miRNA-
181a in response to hypoxia may participate in cardiovascular 
damage where the possible interplay between miRNA-181a, VEGF, 
and HIF1α seems to be  important (Cuevas et  al., 2014). The 
underlying role of miRNA-181a in cell damage and apoptosis via 
SIRT1 regulation can also be observed in injured cardiomyocytes 
(Qi et al., 2020; Song et al., 2021). miRNA-181a also plays a role in 
the development of cerebral ischemia, having a neuroprotective 
effect when upregulated. What is more, in OSA patients the 
expression of miRNA-181a is decreased and correlates with the AHI 
and arousal index. Among diabetic patients, the expression of 
miRNA-181a in the adipose tissue is reduced as well and a higher 
level of this is known to prevent insulin resistance induced via 
TNFα (Lozano-Bartolomé et al., 2018). The exact impact of miRNA-
181a on diabetes mellitus development is not fully explored, 
presenting different data. In Gok et  al. (2019) study the 
downregulation of miRNA-181a and simultaneous upregulation of 
SIRT1 were connected with the development of T2DM. However, 
Zhou et al. (2012) showed that the downregulation of miRNA-181a 
improves hepatic sensitivity via SIRT1 upregulation; SIRT1, as a 
gene with a positive therapeutic effect on glucose metabolism (Sun 
et al., 2007), may play a compensative role during diabetes mellitus 
development. Decreased levels of miRNA-181a were also noticed in 
diabetic complications including cardiomyopathy (Raut et al., 2016; 
Zhao S. F. et al., 2021) and nephropathy (Zha et al., 2019; Liang and 
Xu, 2020). As the case may be, in diabetic hearts miRNA-181 targets 
programmed cell death 4 (PDCD4), or TP53. Cardiomyocytes with 
decreased miRNA-181a levels are more prone to develop 
hypertrophy, inflammation, impaired angiogenesis, and undergo 
apoptosis. In diabetic kidney tissue, miRNA-181a targets may be a 
Kruppel-like factor 6 (KLF6) and early growth response factor-1 
(EGR-1), which are involved in the disordered proliferation of the 
glomerular mesangial cells, tubulointerstitial fibrosis, and enhanced 
cell apoptosis. Overall, the downregulation of miRNA-181a 
observed in OSA may mean that non-OSA patients are more 
resistant to developing diabetic-related cardiomyopathy or 
nephropathy, but have less expanded compensatory mechanisms 
against impaired insulin sensitivity. In regard to other diabetic 
complications, it was discovered that the upregulation of miRNA-
181a may be responsible for diabetic corneal nerve neuropathy in 
mice (Hu et al., 2020). Upregulated levels of miRNA-181a were also 
noticed in patients with gestational diabetes mellitus 
(Hromadnikova et al., 2020, 2022) and animal diabetic models with 
impaired wound and fracture healing (Takahara et al., 2018; He 
et al., 2019).

Another promising hypoxia-regulated molecule is miRNA-
199a, its activity mainly focuses on the co-expression of two target 
genes, HIF-1α and SIRT1. HIF-1α compensation permits the cells 
to adapt to low oxygen conditions. In a hypoxic preconditioning 
miRNA-199a downregulation was associated with the upregulation 
of HIF-1α and SIRT1, resulting in the adaptation to external 
stimulus (Rane et al., 2009). A similar outcome was obtained after 
stimulation of the insulin receptor, which regulates the AKT 
pathway (Rane et al., 2010). SIRT1, besides maintaining metabolic 
homeostasis, acts as a regulator of HIF-1α. SIRT1 binds to the 
protein and deacetylates lysine 674, resulting in the suppression of 
HIF-1α transcriptional activity (Lim et al., 2010). Some authors 
describe SIRT1 as an indispensable element of HIF-1α activity due 
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to its role in the positive regulation of the protein (Laemmle et al., 
2012). In OSA patients Santamaria-Martos et al. (2019b) revealed 
downregulation of miRNA-199a. It was also seen that induction of 
miRNA-199a and ensuing HIF-1α downregulation can relieve 
OSA-related hypertension via oxidative stress injury reduction and 
suppression of inflammation (Guo et al., 2022). In diabetic subjects, 
a downregulation of miRNA-199a was observed in nephropathy and 
the inhibitor of nuclear factor kappa b kinase subunit beta (IKKβ) 
was identified as a potential target (Zhang R. et  al., 2020). 
Additionally, IKKβ can play an important role in developing insulin 
resistance (Zhao L. et al., 2021) and atherosclerosis (Imamura et al., 
2016) in OSA patients. Decreased levels of miRNA-199a were 
similarly present in diabetic-induced cardiomyopathy via targeting 
protein kinase B (AKT) and growth factors: vascular (VEGF), 
insulin-like (IGF), and acidic fibroblast (FGF-1) (Ahmed et  al., 
2021). Diabetic cataract was associated with miRNA-199a 
downregulation and its influence on the specific protein 1 (SP1) 
gene (Liu et al., 2020). In turn, diabetic retinopathy can partially 
result from miRNA-199a dysregulation associated with VEGF or 
FGF7 signaling (Wang L. et al., 2020; Zhou et al., 2021). In contrast, 
Yan et al. (2014) found out that miRNA-199a levels were upregulated 
in T2DM patients and due to the influence on GLUT4 expression 
might be  involved in insulin resistance development. 
Overexpression of TNF-α presented in OSA may additionally 
enhance DM development by suppressing GLUT-4 expression and 
promoting insulin resistance through TNF-α/IKKβ/IKβ/NF-κB 
signaling pathway (Swaroop et al., 2012; Ji et al., 2021). Upregulation 
of miRNA-199a might be connected with decreased cell viability 
and enhanced apoptosis in pancreatic beta cells through the 
downregulation of SIRT1 (Lin et  al., 2017). In accordance with 
other articles, a high level of miRNA-199a was observed in the 

placenta of gestational diabetes mellitus patients(Guan et al., 2022) 
and tissues obtained from patients with a diabetic foot ulcer (Wang 
H. et al., 2022). miRNA-199a expression in patients with diabetic 
neuropathy showed inconsistent results; the downregulation was 
associated with increased binding immunoglobulin protein 
expression levels (Hassani et  al., 2023), while upregulation 
decreased the levels of SerpinE2 (Li et al., 2017).

Detection of described miRNAs with an altered expression profile 
in OSA patients may provide valuable info about a high risk of T2DM 
development as an OSA complication in such patients (Figure 2).

3. Conclusion

OSA is associated with metabolic complications such as metabolic 
syndrome and T2DM. Many of the possible molecular pathways 
involved in the relationship between OSA and metabolic complications 
have been described in the literature. In this review, we summarized 
the available data about the role of miRNAs in OSA-related metabolic 
disorders development. The literature suggests that OSA alters the 
expression of miRNAs in the organism. It results in altered gene 
expression. The most important examples include miRNA-181a and 
miRNA-199a, which play an important role in the metabolic 
consequences of OSA development. Future miRNA investigations in 
the context of hypoxia should focus on the above-mentioned miRNAs. 
They can act not only as cheaper and more reliable OSA diagnostic 
markers but also valuable prognostic factors in patients suffering from 
OSA. For a better understanding of the relationship between OSA and 
metabolic complications, studies should also focus on the possible 
change in miRNA levels in response to implemented treatment of 
T2DM and MetS, and their mechanisms of action.

FIGURE 2

Possible role of microRNAs in the pathophysiology of diabetes mellitus and diabetic complications. Chronic intermittent hypoxia as the main 
consequence of obstructive sleep apnea affects miR-31 and -155, resulting in their downregulation, and miR-126, -181a, and -199a, leading to their 
upregulation. Dysregulation of microRNAs can predispose patients suffering both from OSA and DM to particular complications. Decreased level of 
SATB2 contributes to impaired bone remodeling and endothelial dysfunction. In turn, BDNF dysregulation is associated with diabetic nephropathy. 
Downregulation of the VEGF gene results in diabetic retinopathy development. Increased TP53 and PDCD4 lead to diabetic cardiomyopathy. Targeting 
EGR-1 and KLF6 can trigger diabetic nephropathy. An increase in SP1 is responsible for diabetic cataract. Another upregulated target, FGF7, can 
contribute to diabetic retinopathy development. Downregulation of AKT, IGF, and FGF-1 play important role in diabetic cardiomyopathy development. 
miR, microRNA; SATB2, special AT-rich sequence-binding protein 2; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth 
factor; PDCD4, programmed cell death 4; TP53, tumor protein 53; EGR1, early growth response 1; KLF6, Kruppel-like factor 6; SP1, specific protein 1; 
FGF7, fibroblast growth factor 7; AKT, protein kinase B; IGF, insulin-like growth factor 1; FGF1, fibroblast growth factor 1.
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