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The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic 
process of Alzheimer’s disease (AD). However, with the failure of clinical drug 
development and the increasing understanding of the disease, the Aβ hypothesis 
has been challenged. Numerous recent investigations have demonstrated that the 
vascular system plays a significant role in the course of AD, with vascular damage 
occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The 
question of how Aβ relates to neurovascular function and which is the trigger for AD 
has recently come into sharp focus. In this review, we outline the various vascular 
dysfunctions associated with AD, including changes in vascular hemodynamics, 
vascular cell function, vascular coverage, and blood–brain barrier (BBB) permeability. 
We  reviewed the most recent findings about the complicated Aβ-neurovascular 
unit (NVU) interaction and highlighted its vital importance to understanding disease 
pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial 
cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can 
aggravate vascular damage, forming a vicious cycle loop.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disease. The most common clinical 
symptom is progressive memory impairment, along with changes in temperament and behavior, 
and loss of self-care ability. Amyloid-β (Aβ) protein deposition and neurofibrillary tangles 
(NFTs) are the two main pathologic hallmarks within the brain (Alzheimer, 1907). The Aβ 
hypothesis is the earliest and most traditional pathological hypothesis for AD (Hardy and 
Selkoe, 2002; Selkoe and Hardy, 2016; Hampel et al., 2021). However, numerous clinical trials 
aimed at reducing Aβ did not significantly change clinical symptoms or the course of the disease, 
and plaque removal alone was not enough to definitively improve brain performance and 
enhance cognitive ability, nor was it enough to slow the progression of AD (Evin and Barakat, 
2014; Panza et al., 2019; Haass and Selkoe, 2022).

Growing attention has been given to the role played by vascular factors in the pathological 
mechanisms of AD. Diabetes and hypertension increase the risk for AD (Silva et al., 2019; 
Cortes-Canteli and Iadecola, 2020; Abdulrahman et al., 2022). In early AD, impaired vascular 
function has been noted (Iadecola, 2004; Toledo et  al., 2013; Sweeney et  al., 2019). Our 
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previous study also found that in naturally aging rats, alterations in 
spatial cognition are preceded by degradation of the hippocampal 
NVU (Wang N. et al., 2022). Another study in APP/PS1 mice of 
different ages found that capillary hypofunction preceded Aβ 
deposition and memory impairment (Wang et al., 2021). Age-related 
vascular alterations occur concurrently with or even before the 
pathology of AD, suggesting that they may have a pathogenic role. 
The two-hit vascular hypothesis for AD, put forth by Zlokovic BV, 
contends that vascular risk factors (hit 1) result in disruption of the 
blood–brain barrier (BBB) and decreased cerebral blood flow (CBF), 
which set off a series of events that precede dementia. Early neuronal 
dysfunction is caused by the buildup of toxins and capillary 
hypoperfusion, both of which act independently of the Aβ pathway. 
Additionally, vascular injury increases Aβ production and decreases 
Aβ clearance at the BBB, resulting in Aβ accumulation. A rise in Aβ 
(hit 2) enhances neuronal dysfunction, hastens dementia and 
neurodegeneration, and aids in the disease’s self-transmission. Tau 
hyperphosphorylation (p-tau) caused by Aβ protein or 
hypoperfusion can result in NFTs development (Zlokovic, 2011). The 
question of how Aβ relate to neurovascular function and which is the 
trigger for AD has recently come into sharp focus. In this review, 
we  discuss neurovascular changes in AD and their interaction 
with Aβ.

2. Amyloid hypothesis

The Aβ hypothesis was proposed by Hardy and Higgins (1992). 
They claimed that the primary pathogenic element of AD is the Aβ 
protein, which is the predominant component of senile plaques. 
Human genetic investigations have demonstrated that mutations in 
amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 
2 (PSEN2) genes – all of which are involved in the generation of Aβ, 
are the cause of autosomal dominant familial Alzheimer’s disease 
(FAD) (Selkoe and Hardy, 2016; Jansen et al., 2019). The APP gene 
is located on an extra copy of chromosome 21 in about two-thirds of 
Down syndrome patients who go on to develop AD (Hardy and 
Higgins, 1992; Lott and Head, 2019). APP is a type I transmembrane 
protein, that is transported through secretion and endocytic 
pathways. Under physiological conditions, APP is related to cell 
adhesion and nutritional support, cell growth, neural differentiation, 
and synaptic function (Wilkins and Swerdlow, 2017; Zhou et al., 
2022). Rice et al. (2019) found that APP regulate neuronal signaling 
by binding to a variant of gamma-amino-butanoic acid subtype B 
receptor -GABABR1a. The processing and cleavage of APP depends 
on different secretases (α, β, γ). The released products can 
be classified into amyloid and non-amyloid routes depending on 
which enzymes are used to cleave them. In the amyloid cleavage 
process, APP is split into two fragments: the N-terminal fragment 
(sAPP), and the C-terminal fragment. The transmembrane portion 
of the C-terminal fragment is then hydrolyzed by β-secretase, 
releasing an Aβ peptide of 39–43 amino acids. The two most 
common isoforms are Aβ40 and Aβ42 (Annaert et al., 1999; O'brien 
and Wong, 2011; Selkoe and Hardy, 2016). Aβ production and 
secretion are driven by synaptic activity, which is the most unique 
yet common function of the nervous system (Cirrito et al., 2005; 
Tampellini and Gouras, 2011). Therefore, the production of a small 
amount of Aβ peptide itself is not toxic, and may even have a 

physiological function, while the imbalance of Aβ production and 
clearance and aggregation into oligomers, fibers, plaques are 
abnormal pathological lesions.

Both Aβ oligomers and fibrils are toxic and can cause tau 
aggregation, glial activation, inflammatory responses, and neuronal 
and vascular damage. Studies have found that hybridization between 
hAPP transgenic mice and hTau transgenic mice can significantly 
enhance tau deposition and have no effect on Aβ deposition (Roberson 
et al., 2007). Human Aβ42 oligomers induce tau hyperphosphorylation 
at AD-associated epitopes and neuro dystrophy in cultured rat 
neurons, which are prevented by the addition of Aβ antibodies(Jin 
et al., 2011). Aβ oligomers simultaneously impair synaptic structure 
and plasticity (Shankar et al., 2008; Sanderson et al., 2021). Oligomeric 
Aβ accumulation inhibits excitatory junction transmission, but 
conjointly triggers abnormal patterns of neural circuit activity and 
epileptic discharges at the network level. Aβ-mediated repressive 
neural pathology may increase synchrony between excitatory cells and 
lead to neural network instability (Palop and Mucke, 2010; Zott et al., 
2019). Aβ activates microglia and astrocytes, and overactivation of 
microglia and astrocytes produces a flood of inflammatory cytokines, 
which in turn cause other types of cell damage (Cuello, 2011; 
Nordengen et al., 2019).

Previous drugs targeting Aβ have failed to halt the progression of 
AD. Recently the US Food and Drug Administration (FDA) approved 
anti-Aβ antibodies: Lecanemab and Aducanumab, which have been 
shown to mediate the clearance of Aβ plaques in the brain. However, 
whether addressing Aβ deposition could cure Alzheimer’s is yet to 
be tested.

3. Neurovascular unit dysfunction in 
AD

The National Institute of Neurological Disorders and Stroke’s 2001 
Stroke Progression Conference codified the idea of the NVU, 
emphasizing the tight connection between the brain and its blood 
arteries. The NVU is mostly made up of neurons, glial cells (including 
astrocytes, microglia, and oligodendrocytes) and vascular cells 
(including endothelial cells, pericytes, or vascular smooth muscle cells 
(VSMCs)) (Iadecola, 2017). These cells interact together to control 
CBF and preserve the functionality of the BBB (Zlokovic, 2011; 
Schaeffer and Iadecola, 2021). Nutrients, oxygen, and energy 
metabolites are transported to the brain through a network of cerebral 
arteries, arterioles, and capillaries, and carbon dioxide (CO2) and 
metabolic waste are transported from the brain to the periphery for 
removal by cerebral venous reflux (Sweeney et al., 2018; Liu et al., 
2019). NVU plays an important role in maintaining brain function 
and homeostasis.

In AD, however, this delicate system is disrupted with significant 
implications for brain health (Govindpani et  al., 2019; Szu and 
Obenaus, 2021; Yang et  al., 2022). Growing evidence suggests a 
correlation between neurovascular dysfunction and memory 
deterioration in AD patients. Neurovascular function is critical for 
information processing, neural connections and synaptic function. 
Whether neurovascular dysfunction results from or causes AD 
remains unclear at this time. Currently, changes to the NVU in AD are 
outlined and summarized as follows, as seen in Figure 1. We will cover 
them in detail in the following sections.
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3.1. Pathologic changes of NVU in 
Alzheimer’s disease

3.1.1. Endothelia
Endothelial cells are the core component of the NVU. They bind 

together by tight junctions (TJs) that form selective osmotic barriers 

between the blood and the central nervous system (CNS) and through 
specific receptors to transport nutrients and remove waste (Bosseboeuf 
and Raimondi, 2020). Endothelial abnormalities in AD include 
mitochondrial damage, increased pinocytic vesicles and abnormal 
receptors (Baloyannis and Baloyannis, 2012; Bosseboeuf and 
Raimondi, 2020). Dysfunctional mitochondria release 

FIGURE 1

Changes in the neurovascular unit (NVU) between Alzheimer’s disease (AD) and a normal brain. Endothelial cells, pericytes, astrocytes, microglia, and 
neurons make up the majority of the NVU. The NVU experiences morphological and structural alterations in the AD brain, such as microglia and 
astrocytes activation and cytokine release, enlarged astrocytic end-feet, pericyte loss, aberrant Aβ transport receptors, and damaged TJs. CBF 
reduction and BBB dysfunction may result from changes to the NVU. Created with Medpeer.com.
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danger-associated molecular patterns were found in cerebral 
endothelial cells in AD, including: loss of mitochondrial membrane 
potential, increased production of mitochondrial reactive oxygen 
species (ROS), and permeability of mitochondrial membrane lead to 
the release of cytochrome C and mitochondrial DNA (mtDNA) into 
the cytoplasm of endothelial cells (Parodi-Rullán et  al., 2021). 
Pinocytotic vesicles are thought to be  a reserve of endothelial 
membranes that can be used to repair damaged endothelial cells, the 
number of pinocytotic vesicles in the cerebral capillary endothelium 
increased significantly in AD patients (Baloyannis, 2015; Levine et al., 
2019). Expression of receptor for advanced glycation end products 
(RAGE) is upregulated, which is responsible for the transfer of Aβ 
from the periphery to the brain parenchyma; and the transfer of Aβ 
from the brain into peripheral clearance is reduced by downregulated 
expression of the low density lipoprotein receptor associated protein 
1 (LRP-1) (Cai et al., 2016; Shinohara et al., 2017; Storck and Pietrzik, 
2017; Zhou et al., 2021). The glucose transporters GLUT1 and GLUT3 
mediate glucose transport to the brain, and early reduced glucose 
transport associated with reduced expression of GLUT1 and GLUT3 
were found in AD (Winkler et al., 2015; An et al., 2018; Kyrtata et al., 
2021). Tarawneh et  al. (2022) found that increased vascular 
endothelial-cadherin was associated with Aβ, tau, neurodegeneration 
in preclinical AD. According to research by Yamazaki et al., synaptic 
degeneration is associated with the loss of TJs proteins, which is a 
prevalent occurrence in AD (Yamazaki et al., 2019).

3.1.2. Pericytes
Pericytes wrap around endothelial cells and control capillary 

contraction to regulate CBF (Winkler et al., 2014; Dessalles et al., 
2021). They play a significant role in controlling angiogenesis, TJs, and 
inflammation in the endothelium (Fisher, 2009; Attwell et al., 2016). 
A significant reduction of the pericytes coverage of the capillaries 
within the cortex and hippocampus has been discovered in AD 
(Sengillo et al., 2013). The earliest structural alteration during AD 
progression was found to be a loss in pericellular coverage that was 
reliant on the Braak phase (Kirabali et  al., 2020). In the retina of 
patients with AD, Shi et al. revealed early pericytes loss and vascular 
amyloidosis (Shi et al., 2020). Signal transmission between pericytes 
and endothelial cells is intimately related to platelet-derived growth 
factor subunit β (PDGF-β) and platelet-derived growth factor receptor 
(PDGFR). In MCI patients, pericytes were damaged and PDGFRβ 
levels were increased in cerebrospinal fluid (CSF) (Nation et al., 2019). 
Another study also found a reduction of pericytes in white matter in 
AD and vascular dementia patients (Ding et al., 2020). In AD patients, 
capillaries contract specifically by pericytes, while there is no 
concomitant change in distal arteriole or venule diameter (Nortley 
et al., 2019; Fisher et al., 2022). Future studies should consider the 
function of pericytes in the BBB in AD, as recent studies have 
incontestably that they are crucial in the regulation of neurovascular 
function, together with BBB formation and maintenance (Armulik 
et al., 2010; Alcendor, 2020; Lee et al., 2022; Li P. et al., 2022).

3.1.3. Astrocytes
Astrocytes may control BBB function through astrocyte derived 

factors, and their end-feet surround the endothelium of capillaries, 
arterioles, and venules (Obermeier et  al., 2013; Zhao et  al., 2021). 
Astrocytes regulate arteriolar tone by regulating end-feet prostaglandin 
E2 (PGE2) expression (Rosenegger et al., 2015). An increase in astrocyte 

Ca2+ triggers the production of arachidonic acid (AA) and its metabolite 
PGE2, via the PGE2 receptor EP4R, which acts on VSMCs and pericytes 
to regulate blood flow (Kisler et al., 2017; Sweeney et al., 2018). The BBB 
is affected by astrocytes in a bidirectional manner, and they could secrete 
molecules that increase vascular permeability, such as vascular 
endothelial growth factor (VEGF), nitric oxide (NO), matrix 
metalloproteinases (MMPs), Apolipoprotein E (APOE), hypoxia 
inducible factor-1(HIF-1), and endothelin 1 (ET1). These molecules 
accelerate the breakdown of the BBB. Instead, astrocytes release 
inhibitors of BBB disintegration, such as hedgehog (Shh), Angiopoietin-1 
(ANG-1), and insulin-like growth factor-1 (IGF-1) (Michinaga and 
Koyama, 2019; Guérit et al., 2021; Lan et al., 2022). Astrocytes express 
the potassium channels Kir4.1 and Aquaporin-4 (AQP4), which support 
BBB function by controlling ion and water balance (Jukkola and Gu, 
2015). The disruption of the BBB can be caused by astrocytes that carry 
the APOE4 gene, according to a recent study (Jackson et al., 2022). 
Reactive astrocytes, which may be caused by Aβ deposits, have been 
found in the brains of AD patients and in mouse models of AD. Activated 
astrocytes showed hypertrophy, thickening of processes, and increased 
expression of intermediate filament protein, glial fibrillary acidic protein 
(GFAP), vimentin, nestin, and synemin (Preman et al., 2021). A single 
cell sequencing study found that there was a population of disease 
associated astrocytes, that expressed a unique set of genes, including 
genes involved in endocytosis, the complement cascade, and senescence 
in an AD mouse model (Habib et al., 2020). In AD, reactive perivascular 
astrocytes display cytoplasmic vacuolization, atrophy, swelling end-feet, 
decreased astrocytic coverage around endothelial cells and reduced 
expression of glutamate and lactate transporters (Price et al., 2021; Nehra 
et al., 2022). These abnormalities may contribute to BBB dysfunction, 
however, the exact process is still unknown.

3.1.4. Microglia
The majority of the resident immune cells in the CNS are 

mononuclear phagocytes known as microglia (Lawson et al., 1990). 
Microglia, the primary element of the NVU, are crucial for controlling 
CBF and maintaining BBB functionality (Ronaldson and Davis, 2020; 
Császár et  al., 2022; Huang et  al., 2023). There are many activated 
microglia cells close to Aβ plaques in the brains of AD patients and 
animal models (Itagaki et al., 1989). These microglial cells can polarize 
into various pro- or anti-inflammatory (M1) or (M2) phenotypes. 
Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 
(IL-6), interleukin-12 (IL-12), C-C motif chemokine ligand 2 (CCL-2), 
C-X-C motif chemokine 10 (CXCL-10), ROS and NO are inflammatory 
cytokines and chemokines secreted by M1 proinflammatory microglia 
that cause vascular leakage and BBB dysfunction. M2 anti-inflammatory 
microglia contribute to BBB repair and protection. Haruwaka et al. 
discovered that systemic inflammation triggers CCR5-dependent 
migration of resident microglia into the cerebral vessels, where they 
initially protect BBB integrity before switching to a reactive phenotype 
and phagocytosing BBB components to start systemic leakage into the 
parenchyma and cause generalized neuroinflammation (Haruwaka 
et  al., 2019). Additionally, microglia are involved in controlling 
CBF. According to certain studies, microglia regulate neurovascular 
coupling through the P2Y12 receptor (P2Y12R) under physiological 
circumstances. P2Y12R expression on microglia is greatly decreased in 
AD, which affects cell communication and the cerebrovascular ability to 
respond to neuronal activity (Kenkhuis et al., 2022). Another study 
discovered that MCI patients’ microglia and neurons had much higher 
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levels of the catalytic subunit of NADPH oxidase (NOX)- gp91phox 
(Bruce-Keller et  al., 2010; Ansari and Scheff, 2011), and that ROS 
produced by NOX are crucial for neurovascular decoupling (Park et al., 
2005). Microglia mediated NVU dysfunction mainly through 
inflammatory factors, and most current studies support the Aβ  - 
microglia activation - NVU dysfunction route. However, it may be that 
with the aging process, inflammation occurs in the brain, leading to 
abnormal NVU and thus the pathological generation of AD.

3.2. Functional changes in the NVU in 
Alzheimer’s disease

3.2.1. Reduced cerebral blood flow
People with higher CBF rates are less likely to develop dementia 

or hippocampal and amygdala atrophy, according to early studies 
using transcranial Doppler measurements of the middle cerebral 
artery (Ruitenberg et al., 2005; Austin et al., 2011). There is a reduction 
in CBF in the posterior dentate gyrus and protrusion in patients with 
MCI or early AD (Austin et al., 2011; Chen et al., 2011).  In older 
people at high risk for AD, CBF abnormalities develop prior to 
cognitive decline, brain atrophy, and amyloid buildup (Ruitenberg 
et al., 2005; Knopman and Roberts, 2010; Steinman et al., 2020). While 
individuals with MCI systematically showed reduced CBF within the 
posterior cingulate, the results were less consistent in alternative 
regions, significantly in the cortex (Duan et al., 2021; Swinford et al., 
2022). Data in humans show that capillary hypoperfusion occurs 
before Aβ deposition. A multifactorial data-driven analysis of more 
than 7,700 brain images and dozens of plasma and CSF biomarkers 
suggested that cerebrovascular abnormalities are early pathological 
events in the development of AD (Iturria-Medina et al., 2016). In the 
hippocampus of AD mice, Zhang et al. discovered a general decrease 
in mean vessel diameter, volume fraction, and branch angle as well as 
irregular morphology (Zhang et al., 2019). Our previous research also 
found that cerebral blood flow in APP/PS1 mice was significantly 
reduced by using laser speckle contrast image(Wang et al., 2021). The 
key genetic risk gene for vascular disease and AD is APOE. In 
transgenic mice designed to target mouse with human APOE4 gene, 
decreased CBF and vascular dysfunction were similarly observed, and 
vascular abnormalities in animals expressing APOE4 occurred before 
neural and synaptic problems (Bell et al., 2012).

The cause and mechanism of decreased CBF are unclear, and 
could result from the decline of cholinergic neurons that regulate 
abnormal neurovascular coupling, leading to decreased CBF (Van 
Beek and Claassen, 2011). Nortley et  al. demonstrated limited 
capillary flow in AD patients due to capillary constrictions caused by 
pericytes via the ROS-ET1 pathway by analyzing brain biopsy images 
of patients (Nortley et al., 2019). The inflammatory response also plays 
an important role in the regulation of CBF, and the release of 
inflammatory mediators such as IL1β may also help reduce the 
occurrence of CBF. Mutation of microglia TREM2 receptor increases 
the production of inflammatory mediators and leads to a decrease in 
CBF. The capture of neutrophils in capillaries and the formation of 
clots may also reduce CBF (Cruz Hernández et al., 2019; Korte et al., 
2020). Disease-related structural changes in blood vessels and 
differences in the anatomy of large blood vessels may be important 
factors for changes in CBF associated with neurodegeneration. 
Vascular anomalies such as twisted arterioles, reduced capillary 

density, and enlarged string vessels may also contribute to decreased 
CBF, in addition to the disruption of neurovascular connections 
(Baloyannis and Baloyannis, 2012; Yu et al., 2020; Bracko et al., 2021). 
Reduced capillary density in transgenic AD mouse models with 
APP23 and APP/PS1, and decreased capillary density near Aβ plaques 
in Tg2576 models were found. Several studies have reported impaired 
neurovascular coupling and abnormal CBF in Tg2576 mouse models, 
prior to the appearance of Aβ deposition, early in disease progression 
(Niwa et al., 2002). However, other studies have reported no difference 
in neurovascular regulation between Tg2576 and age-matched wild-
type mice at a young age, with abnormal blood vessel function later in 
disease progression, when Aβ is deposited along blood vessels. There 
is no clear conclusion as to whether CBF abnormalities predate and 
are independent of Aβ deposition or are caused by Aβ, which is still 
controversial and will be discussed further in the following sections.

Neuropathological alterations and neuronal dysfunction 
resembling those of AD can be brought on by or made worse by 
hypoperfusion. A 50% reduction in chronic blood flow will lead to 
significant cognitive changes, a sustained decrease in human CBF of 
more than 20% will lead to loss of attention, and a decrease in rat CBF 
of more than 30% will impair spatial memory (Marshall et al., 2001). 
A decrease in CBF reduces the activity of the Na/K pump and all the 
processes that depend on it, such as resting potential maintenance and 
glutamate uptake, and it also leads to the production of adenosine, 
which inhibits the release of glutamic acid, which in turn affects the 
function of neurons (Attwell and Laughlin, 2001; Korte et al., 2020). 
Memory loss, neural dysfunction, synaptic alterations, and the 
formation of neurotoxic Aβ oligomers are all caused by carotid artery 
constriction in rats (Wang et al., 2010). Cerebral ischemia, hypoxia 
and Aβ deposition affect each other. Hypoperfusion can trigger 
accelerated deposition of Aβ (Thomas et al., 1996; Sun et al., 2006). In 
rodents, ischemia also causes to accumulate p-Tau and develop 
filaments (Gordon-Krajcer et al., 2007; Koike et al., 2010). Many of the 
obvious pathological changes in AD, including Aβ plaque deposition 
and persistent low-grade inflammation, can be  linked to hypoxia 
caused by reduced blood flow (Park et al., 2019; Salminen, 2021). 
Hypoperfusion has an impact on structural and functional alterations 
in the brain and may provide promising indicators that might be used 
to detect and diagnose AD in its preclinical stage.

3.2.2. Blood–brain barrier disruption
The CNS is isolated from the blood circulation around it by the BBB, 

a multicellular structure that is specific to the brain. In addition to serving 
as a barrier, it also actively controls influx and outflow. The influx and 
outflow of chemicals and ions through certain receptors can be tightly 
regulated, delivering nutrients and oxygen, and discharging harmful 
substances such as metabolic wastes and toxins. The BBB maintains brain 
homeostasis and enables the normal operation of neurons (Obermeier 
et al., 2013; Uchida et al., 2023). Both histopathological and brain imaging 
evidence indicated BBB dysfunction in AD. BBB disruption has frequently 
been identified using measurements of molecules from plasma or serum 
in the brain parenchyma. Blood-derived components such as plasma 
proteins, albumin, and IgG have been found in the microvascular regions 
of the AD brain connected to senile plaques and cerebral amyloid 
angiopathy (CAA) (Wisniewski et al., 1997; Kurz et al., 2022). Another 
study found plasma proteins (including prothrombin) in postmortem 
cortical tissue from Alzheimer’s patients and that protein leakage was 
more prevalent in patients with at least one APOE4 allele (Zenaro et al., 
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2017). A frequent sign of BBB breakdown is an elevated CSF/serum or 
CSF/plasma albumin ratio, which is present in patients with AD (Lin 
et al., 2021). High spatial and temporal resolution MRI was utilized by 
Montagne et al. (2015) to examine BBB permeability in the human brain. 
They discovered age-dependent BBB leakage in the hippocampus, which 
may cause cognitive impairment. In addition, vascular permeability 
increases with age in patients with Alzheimer’s or vascular dementia 
(Farrall and Wardlaw, 2009).

APOE, a significant cholesterol transporter, aids in the transport 
of lipids and brain injury repair. In addition to influencing the risk of 
cardiovascular disease, stroke, and other neurological illnesses, the 
APOE4 allele is thought to be the most prevalent genetic risk factor 
for late-onset AD (Belloy et al., 2019). While those with the APOE 2 
allele had a lower risk of developing AD, homozygous APOE4 carriers 
were approximately 15 times more likely to do so (Corder et al., 1993; 
Bown et al., 2007). APOE4 is closely associated with vascular injury 
(Mielke et  al., 2011), Recent studies have found that APOE4 can 
directly cause damage to the BBB independent of Aβ and 
phosphorylated tau protein. People who carry one or two copies of 
APOE4 have leakage in the hippocampus and parahippocampal 
gyrus, which is more severe in APOE4 carriers who exhibit mild 
cognitive decline, these effects precede the atrophy of the hippocampus 
and parahippocampal gyrus (Montagne et al., 2020). Overexpression 
of ApoE4 usually causes TJ tightness reduction and BBB integrity 
(Nishitsuji et  al., 2011). APOE4 can induce pericytes damage by 
activating the CypA-MMP9 pathway, leading to BBB disruption 
(Montagne et al., 2020). Another study found ApoE4 affects pericytes-
mediated basement membrane formation, leading to dysfunction of 
BBB (Yamazaki et al., 2020). Animal experiments have found that the 
BBB leaks in APOE4 mice, which may be caused by the abnormal 
expression of MMP9 caused by APOE4 produced by astrocytes, thus 
affecting the TJs. Selective elimination of ApoE4 in astrocytes restores 
the integrity of the BBB (Jackson et al., 2022). APOE also plays A 
crucial role in the metabolism of Aβ protein. APOE2, APOE3 and 
APOE4 proteins can directly bind to Aβ to form the APOE /Aβ 
complex, which can alter Aβ clearance, aggregation and deposition 
(Kanekiyo et al., 2014). The danger of AD and CAA is increased by the 
APOE 4 allele. APOE4 is one of the major risk genes for AD, and is 
one with a long history in vascular disease, ApoE4 is a key protein to 
reveal the relationship between AD and BBB destruction and is also 
one of the important targets of AD research.

4. Aβ and neurovascular dysfunction: 
causality or causative interaction?

The two-hit concept of AD evolved from the current neurovascular 
hypothesis, which combines vascular damage and excessive Aβ buildup. 
However, it is difficult to address which is the primary priming factor. 
Researchers have long sought the answer to the question, “What is the 
earliest pathogenic factor of AD?” However, the causal relationship 
between these factors is unclear, as will be explored below.

4.1. Neurovascular dysfunction contribute 
abnormal Aβ production and clearance

Neurovascular dysfunction contributes to increased production 
and reduced clearance of Aβ. Hypoxia or low blood flow leads to the 

production or increased production of Aβ. Reduced blood flow could 
exacerbate Aβ pathology by causing β or γ-secretases to become active 
and cause APP cleavage (Sun et al., 2006). Alexander et al. discovered 
that in hypoxic and ischemic conditions, Hif-1α transcriptionally 
upregulates BACE1 and non-transcriptionally activates γ-secretase to 
generate Aβ (Alexander et al., 2022). A twofold imbalance of Aβ efflux 
and internal transport-related proteins was observed in the cortical 
arteries of AD mice in animal model studies that found that chronic 
cerebral hypoperfusion significantly worsened initial AD pathology 
(Shang et al., 2019). Austin and Katusic (2020) used endothelial nitric 
oxide synthase (eNOS) heterozygotic knockout (+/−) mice, 
demonstrating that increased cerebrovascular Aβ is caused by a partial 
decrease of endothelial nitric oxide. According to Cao et al. (2019) loss 
of a disintegrin and metalloprotease with thrombospondin type 
I motif, member 13 (ADAMTS13) led to greater cognitive decline in 
APP/PS1 mice by speeding up CAA by blocking BBB-mediated Aβ 
clearance from the brain.

Aβ is cleared by the BBB, which does this by moving Aβ from the 
interstitial fluid (ISF) into the blood. LRP1 and P-glycoprotein (P-gp), 
an ATP-binding box (ABC) transporter also known as ABCB1, are the 
two transport-clearing proteins that have been the subject of most 
research (Storck et al., 2022). Many of these receptors, transporters, 
and vectors fluctuate in aging and disease states, leading to abnormal 
Aβ clearance (Storck et al., 2018; Yang et al., 2020). Inhibition of P-gp 
and BCRP damaged the BBB and exacerbated AD pathology in a 
study using AD mouse models (Abdallah et al., 2021). Alzheimer’s 
patients exhibit low expression of LRP1 and P-gp, which are important 
transporters of Aβ across the BBB (Van Gool et al., 2019). Decreased 
expression leads to decreased Aβ transport from the brain to the 
periphery. However, the increased RAGE expression increased the 
transfer of blood Aβ into the brain (Yamazaki and Kanekiyo, 2017; 
Cockerill et al., 2018).

Hypoperfusion caused by abnormal NVU increases 
amyloidogenic APP processing and promotes the production of Aβ; 
meanwhile, abnormal BBB leads to reduced Aβ clearance. This 
eventually led to the aggregation of Aβ deposits. Rescue of the NVU 
dysfunction not only improves brain homeostasis and neuronal 
function, but also reduces Aβ deposition, which may be critical for the 
development of effective therapeutics.

4.2. Aβ drives neurovascular dysfunction

Aβ deposition around cerebral vessels is one of the main causes of 
vascular dysfunction in AD, also called CAA (Shin et  al., 2007; 
Apátiga-Pérez et al., 2022). CAA is a common comorbidity of AD, and 
is confirmed at autopsy in 75 to 98% of AD patients, CAA gradually 
reduces vascular reactivity and increases the risk of cerebral 
hemorrhage and ischemic brain injury (Cupino and Zabel, 2014). 
Neuroinflammation, chronic hypoperfusion, ischemia, and bleeding 
injury are all attributed to the Aβ deposits in the blood vessel wall of 
AD patients, which results in reduced internal diameter and vessel 
thickness, CAA induced vascular dysfunction reduces perivascular Aβ 
clearance, creating a vicious cycle of vascular and parenchymal Aβ 
accumulation (Corovic et al., 2018; Bourassa et al., 2019; Greenberg 
et al., 2020). Aβ generation, metabolism, and convective clearance of 
interstitial fluid by perivascular channels are the key similarities 
between CAA and AD, although clinically, CAA is thought to 
be distinct from AD (Charidimou et al., 2017; Greenberg et al., 2020). 

https://doi.org/10.3389/fnmol.2023.1227493
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2023.1227493

Frontiers in Molecular Neuroscience 07 frontiersin.org

Take et  al. used quantum dot nanoprobes and found that Aβ 
accumulates around human primary cerebral microvascular 
endothelial cells, the Aβ aggregates hold the cells firmly to the surface 
of the plate, eventually inhibiting cell movement and causing cell 
death (Take et al., 2022). Medin amyloid, a fragment of the protein 
MFG-E8 also known as lactadherin, was recently shown to directly 
interact with Aβ to increase its aggregation. Medin may be  a 
therapeutic target for reducing vascular damage and cognitive 
impairment in AD (Wagner et al., 2022).

The Aβ is associated with endothelia and pericytes loss and 
dysfunction, leading to the NVU dysfunction (Soto-Rojas et al., 2021). 
Studies have shown that the loss of pericytes in the brains of AD 
patients and AD mice is associated with increased Aβ deposition, In 
vitro studies have shown that pericytes survival is decreased and NG2 
proteoglycan is lost after exposure to Aβ42 and Aβ42 fibrils (Alcendor, 
2020). ROS are produced under the influence of Aβ, which causes 
vasoconstriction and improves some constrictor responses (Niwa 
et al., 2000, 2001). Recently, Nortley et al. discovered that Aβ constricts 
human capillaries by communicating with pericytes through ET1 
(Nortley et al., 2019). Li found that Aβ1-40 causes BBB dysfunction  
via the CD36/PINK1/Parkin pathway in pericytes (Li J. et al., 2022). 
Another study found that Aβ causes BBB dysfunction through the 
Wnt/β-catenin pathway in brain endothelial cells (Wang Q. et  al., 
2022). Aβ40 affects neurovascular regulation via a significant and 
prolonged increase in intracellular Ca2+ through TRPM2 channels in 
brain endothelial cells (Park et al., 2014). Through oxidative stress 
pathways, Aβ may negatively impact blood vessels. It encourages brain 
endothelial cells to produce ROS, while ROS scavengers counteract 
the effects of Aβ on endothelial dysfunction and functional congestion 
(Park et al., 2008; Leyane et al., 2022).

Although it does not mediate platelet aggregation, APP selectively 
mediates platelet adhesion to Aβ and works with Aβ to encourage 
thrombosis in flow-related situations (Visconte et al., 2018). Another 
study discovered that Aβ42 causes activation of NOXs and integrin 
IIb-3, platelet adhesion, and thrombosis (Abubaker et al., 2019). Aβ 
upregulates the endogenous inhibitor plasminogen inhibitor-1 
(PAI-1) causing a decrease in tissue plasminogen activator (tPA), 

resulting in a blockage of increased blood flow due to nerve activation 
(Park et al., 2020). Experiments with primary endothelial cells from 
isolated blood vessels and human microvessels have shown that 
patient-derived Aβ binds to Na + /K + -ATPase α3 subunit (NAKα3) 
in endothelial cell vesicles to inhibit vasodilation (Sasahara et  al., 
2021). By activating factor XII (FXII) and interacting with fibrinogen, 
Aβ may support inflammatory and thrombogenic processes (García-
Mejía et al., 2021). Through the intrinsic clotting pathway, Aβ causes 
FXI activation, the production of thrombin and fibrin. The slow 
hormones gravikinin (HMWK) and plasma prokallikin (PPK) are 
both released molecularly as a result of FXII activation, which also 
activates plasma PPK. Aβ bind to fibrin in addition to its interaction 
with FXII, strengthening the clot’s resistance to deterioration 
(Zamolodchikov and Strickland, 2016).

The majority of studies indicate that Aβ triggers NVU disruption, 
the possible mechanisms include: the deposition of blood vessel wall 
leads to CAA, damages endothelial cells and pericytes, activates glial 
cells to produce inflammation, promotes thrombosis, and eventually 
leads to abnormal CBF and BBB leakage.

5. Conclusion and directions

In this review, we provide an overview of the various vascular 
dysfunctions associated with AD, including changes in vascular 
hemodynamics, vascular cell function, vascular coverage, and BBB 
permeability. These vascular defects may contribute to Aβ deposition, 
neurotoxicity, glial activation, and metabolic dysfunction. Instead, 
vascular damage is made worse by Aβ toxicity and oxidative stress, 
creating a vicious cycle loop (Figure 2). Thus, a deeper comprehension 
of the significance of vascular dysfunction in AD may open up new 
directions for investigation and therapy. We reviewed the most recent 
findings about the complicated Aβ-NVU interaction and highlighted 
its vital importance to understanding disease pathophysiology, 
drawing on comprehensive human and disease model data. Given the 
relationship between Aβ and neurovascular changes, it is possible to 
comprehend why early prevention of vascular risk factors in the 

FIGURE 2

Cooperation between neurovascular dysfunction and Aβ in Alzheimer’s disease. NVU defects may lead to amyloid deposition, in contrast, amyloid 
toxicity and oxidative stress aggravate vascular damage, resulting in a vicious feedback cycle.
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elderly population may be a successful strategy for the prevention of 
AD and why current investigational drugs targeting Aβ clearance do 
not work well. Precision medicine strategies for the early diagnosis, 
treatment, and prevention of AD may have a physiologically informed 
aim in cerebrovascular interactions with Aβ and structural 
brain pathology.
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