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Our review seeks to elucidate the current state-of-the-art in studies of 
70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative 
diseases (NDs). The family has already been shown to play a crucial role in 
pathological aggregation for a wide spectrum of brain pathologies. However, a 
slender boundary between a big body of fundamental data and its implementation 
has only recently been crossed. Currently, we  are witnessing an anticipated 
advancement in the domain with dozens of studies published every month. In 
this review, we briefly summarize scattered results regarding the role of Hsp70 in 
the most common NDs including Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies 
and clinical trials to portray the output for medical practice. Available options to 
regulate Hsp70 activity in NDs are outlined, too.
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1. Introduction

Although neurodegenerative diseases (NDs) are rather widespread while their course is 
severe and prone to progression with increasing cognitive dysfunction and fatal outcomes, 
we still possess no effective tools to achieve a critical improvement in incidence and mortality. 
The problem is not only medical and not uniquely longevity is affected. Since senescence is 
actually a principal risk factor (Turturici et al., 2011), NDs impair person’s ability, shrinking 
working life. As the clinical and socioeconomic impacts remain relevant, studies of pathogenetic 
mechanisms in neurodegeneration are needed to develop novel approaches for its detection and 
treatment. The most important pathogenic links of NDs involve oxidative stress, mitochondrial 
dysfunction, neuroinflammation, excitotoxicity, and defects of autophagy. Finally, the hallmark 
is accumulation of protein aggregate deposits, reflecting critical imbalance in 
neuronal homeostasis.

In neurodegenerative brain, the cells tend to synthesize misfolded proteins and lose an 
ability to properly utilize them (Campanella et al., 2018). Because neurons form sophistic 
anatomically and functionally interconnected networks, each cell may serve a crucial link in 

OPEN ACCESS

EDITED BY

Eva Zerovnik,  
Institut Jožef Stefan (IJS), Slovenia

REVIEWED BY

Boris A. Margulis,  
Russian Academy of Sciences (RAS), Russia  
Xabier Bengoetxea,  
Achucarro Basque Center for Neuroscience, 
Spain

*CORRESPONDENCE

Gennadii A. Piavchenko  
 gennadii.piavchenko@staff.sechenov.ru  

Igor Meglinski  
 i.meglinski@aston.ac.uk  

Anna Baldycheva  
 a.baldycheva@exeter.ac.uk

RECEIVED 28 May 2023
ACCEPTED 18 August 2023
PUBLISHED 19 September 2023

CITATION

Venediktov AA, Bushueva OY, Kudryavtseva VA, 
Kuzmin EA, Moiseeva AV, Baldycheva A, 
Meglinski I and Piavchenko GA (2023) Closest 
horizons of Hsp70 engagement to manage 
neurodegeneration.
Front. Mol. Neurosci. 16:1230436.
doi: 10.3389/fnmol.2023.1230436

COPYRIGHT

© 2023 Venediktov, Bushueva, Kudryavtseva, 
Kuzmin, Moiseeva, Baldycheva, Meglinski and 
Piavchenko. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 19 September 2023
DOI 10.3389/fnmol.2023.1230436

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2023.1230436﻿&domain=pdf&date_stamp=2023-09-19
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1230436/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1230436/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1230436/full
mailto:gennadii.piavchenko@staff.sechenov.ru
mailto:i.meglinski@aston.ac.uk
mailto:a.baldycheva@exeter.ac.uk
https://doi.org/10.3389/fnmol.2023.1230436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2023.1230436


Venediktov et al. 10.3389/fnmol.2023.1230436

Frontiers in Molecular Neuroscience 02 frontiersin.org

numerous different circuits. Thus, for neurons it is dramatically 
important to stay alive as long as possible, and this is one of the 
reasons for the longest neuronal lifetime (Kole et al., 2013). The last 
feature, together with highest complexity and diversity of brain’s 
proteome (Mauger and Scheiffele, 2017; Negi and Guda, 2017; 
Korovesi et al., 2020; Sinitcyn et al., 2023) determines a need for very 
thorough quality control of cerebral polypeptides.

Maintaining healthy proteome requires control over newly 
synthesized proteins as well as clearance/cleavage or refolding of 
unstable mature ones. All these functions are naturally provided by 
highly conservative molecular machinery called chaperones. Among 
the others, the family of heat shock proteins with a molecular weight 
of 70 kDa (Hsp70) is considered the most important in terms of 
neurological disorders. Hsp70 represent one of the chief groups 
among the protectors, being phylogenetically very old and preserved 
(Koren et  al., 2009). These facts invite us to study the potential 
pharmacological benefit of Hsp70 in NDs.

Numerous studies have revealed the contribution of Hsp70  in 
degenerative and age-associated anomalies of the brain. However, some 
of the positive roles of Hsp70 in brain pathology remain difficult to 
estimate in terms of its significance for translational medicine. Herein, 
we summarize the state-of-the-art and previous advances disclosing 
the clinical potential of the strategies based on Hsp70 management. 
Especially important focus in this review is given to clinical trials, 
which bring Hsp70 closer to the nearest practical application.

2. Essentials of Hsp70

2.1. Hsp70 family

The family of Hsp70 includes more than 10 members (Table 1). 
Generally, they enable adequate folding for both newly synthesized or 
mature proteins as well as refolding for denaturated/aggregated 
proteins (Hartl and Hayer-Hartl, 2002). In addition, some constitutively 
expressed or induced members of the family possess relatively specific 
functions, such as regulation of apoptosis, mitochondrial function 
(mtHsp70), and metabolic pathways (Lackie et al., 2017). However, 
Hsp70 are specified to ensure folding via ATP-dependent machinery, 
preventing denatured proteins from aggregating (Jores et al., 2018).

Heat shock proteins are found in almost all cellular compartments, 
including the nucleus and cytoplasm (Hsc70), as well as in 
mitochondria (Wentink et al., 2020). Moreover, Hsc70 may be found 
in a lysosome-specific isoform (Ciechanover and Kwon, 2017). 
General protective properties of Hsp70 determine both pro- and 
eukaryotic biology, and even plants express their own Hsp70 analogs 
(Chaudhary et  al., 2019). However, some features are shared by 
principal chaperones of the group for mammals, including humans, 
mice, and rats (Figure 1). Hsc70, which is the most common one 
among the Hsp70 in healthy and undamaged state, has the largest 
number of unique interacting proteins among all the Hsp70 family 
members (Rai et al., 2021).

2.2. Cellular regulation of Hsp70

Hsp70 expression is controlled by heat shock factor 1 (HSF-1), 
which receives downstream signals from a number of stimuli, such as 

pathway of extracellular signal-regulated kinases and mitogen-
activated protein-kinases (ERK/MAPK), highly influenced by 
increased air pressure and temperature (Matsathit et al., 2016). HSF-1 
is also a thermosensor whose leucin zipper domains change in 
temperature bounces. Moreover, Hsp70-induced feedback permits to 
monomerize trimers of HSF-1 and separate it from DNA molecules 
(Kmiecik and Mayer, 2022).

The activity of Hsp70 is driven by small Hsp with a molecular 
weight of 40 kDa (Hsp40/DnaJ family), especially DnaJB11 and 
DnaJC5 (Braun, 2023), which are relevant for some types of 
tauopathies (Kampinga and Craig, 2010; Zhang et  al., 2023, M). 
Although the activity of Hsp70 is firstly dependent on its expression, 
some enzymes also may introduce modifications, regulating Hsp70 in 
kinase dependent manner. For instance, it has been reported that 
cyclin-dependent kinase 1 (Cdk1) is able to temporarily downregulate 
chaperonic functions of Hsp70 by phosphorylation of serine in a 
region between ATP- and substrate-binding domains (Kao et  al., 
2020). Interestingly, in addition to de novo synthesis of Hsp70, neurons 
tend to uptake it from neighboring astrocytes (Tytell et  al., 1986; 
Hightower and Guidon, 1989; Guzhova et al., 1998, 2001; Kalmar and 
Greensmith, 2017).

3. Hsp70 in NDs

3.1. Hsp70 and aging

Hsp70 play an important role in the nervous system in health and 
in disease. It is especially remarkable for aging brain. The aging itself 
is a crucial risk factor as any senescent cell exhibits a lower chaperone 
protein translation while its markers for labeling of misfolded proteins 
are not expressed well (Llewellyn et al., 2023). For instance, Hsp70 
production falls by 50% in aged rat liver cells in stress (Heydari et al., 
1994). Basal Hsp70 content in cells stays higher in long-living animals 
(de Toda et al., 2016). Furthermore, co-chaperones of Hsp70 in mice 
are expressed less in development of age-dependent neurodegeneration 
(Lackie et  al., 2020). Higher levels of oxidant and lower ones of 
antioxidant actors may aggravate the state of chaperone action in aged 
individuals (Martínez de Toda and De la Fuente, 2015).

Despite these facts, not all the heat shock proteins decrease at the 
same rate as Hsp70 do in aging. Specifically, ATP-recruiting Hsp 
(foldases) experience a strong hypoexpression, while ATP-independent 
(holdases) continue to be actively synthesized (de Graff et al., 2020). 
As a result, proteostasis and preventing of aggregation suffers less than 
the protection of nascent proteins. Sirtuins, which are well-known for 
their controlling role in aging regulation, are probably responsible for 
proper Hsp70 expression after the stimulation by HSF-1. Common in 
young age, sirtuin 1 has been evidenced to potentiate binding of 
HSF-1 to DNA, thereby modifying levels of Hsp70 synthesis (Karvinen 
et al., 2016).

3.2. Hsp70 in Alzheimer’s disease

Alzheimer’s disease (AD), known as the most widespread ND, 
mainly affects memory and other cognitive functions related to the 
synaptic loss and deposition of neurofibrillary tangles (NFT) and 
peptide plaques (Lane et  al., 2018). The plaques are principally 

https://doi.org/10.3389/fnmol.2023.1230436
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Venediktov et al. 10.3389/fnmol.2023.1230436

Frontiers in Molecular Neuroscience 03 frontiersin.org

TABLE 1 Key Hsp70 ambassadors.

HSP70 member 
and its alias

Typical localization Features and arguable facts References

Hsp70, or heat shock 

protein proper, or 

Hsp72, or HspA1

Mainly cytoplasm; nucleus, plasma 

membrane

Reveals chaperone properties; its expression is 

principally induced by stress stimuli like 

hyperthermia, oxidation, and hypoxia (HspA1A is 

the most common version, while HspA1B and 

HspA1L homologs almost do not differ); a 

recruitment to the plasma membrane is mediated 

via phosphatidylinositol

Turturici et al. (2011), Radons et al. 

(2016), and Smulders et al. (2022)

HspA2 Extracellular vesicles No obvious found action; the levels are increased in 

proteotoxicity

Sojka et al. (2023)

HspA3 Cytosol Assumed as not fulfilling Hsp70 definition Gabriele et al. (1996)

HspA4 and HspA4L, or 

Grp110

Cytosol Selection of anti-apoptotic options in the relevant 

cascades; sometimes is regarded as Hsp110

Kaneko et al. (1997)

Grp78, or HspA5 Endoplasmic reticulum; plasma membrane Present in any normal growth, appear inside 

extracellular exosomes; contribution to the 

development of ER-associated apoptotic 

infrastructure; sometimes may be found on cell 

membranes but with no steady attachment

Zhang et al. (2010), Turturici et al. 

(2011), and Radons et al. (2016)

HspA6 Cytosol, may be extracellular Enhances proliferation via Salvador-Warts-Hippo 

metabolic pathway

Zhang L. et al. (2023)

HspA7 Cytosol, may be extracellular Takes part in oncogenesis by an unclear machinery, 

although acting like a molecular pattern for toll-like 

receptors, TLR-2 especially

Feng et al. (2022)

Hsc70 (heat shock 

protein cognate), or 

Hsp73, or HspA8, or 

HspA10

Cytosol (basic cytosol form), traces in the 

nuclei

Chaperoning, ubiquitination, aggregate prevention, 

normal cellular functioning; a keystone of CMA in 

Hsp70 (sometimes in modifications)

Turturici et al. (2011), Lizama et al. 

(2018), Rai et al. (2021), and Rai and 

Tapadia (2022)

lysHsc70 Lysosomes Lysosomal modification of the cytosolic isoform; 

binds KFERQ-patterns in polypeptide chains 

recognizing them as degrons

Ciechanover and Kwon (2017)

Grp75, or HspA9, or 

MtHsp70, or mortalin

Mitochondria, nucleus Present in any normal growth; binds p53 preventing 

its antioncogenic shield; enables protein transfer 

through mitochondrial membranes (crucial for 

Bcl-2-based transfer of glucocorticoid receptors)

Mizukoshi et al. (1999), Wadhwa et al. 

(2002), and Havalová et al. (2021)

HspA11 No data applicable No data applicable Few evidence, which are not serious 

enough to consider

HspA12 subfamily: 

HspA12a and HspA12b 

mainly

Cytoskeletal structures, cytosol, exosomes Principally found in brutal environmental 

fluctuations like humidity, temperature, etc.; a 

precise machinery is not completely described in 

mammals or other chordates

Hu et al. (2019) and Clark et al. (2021)

HspA13 Endoplasmic reticulum and cytosol Recently exposed to a comprehensive examination; 

seems to control a proper folding of normal nascent 

proteins

Espinoza et al. (2022)

HspA14 Nucleus and cytoplasm Most likely, inhibits viral genome transcription in 

retroviruses and thereby constitutes a frontline of 

non-immune anti-HIV-struggle

Bi et al. (2023)

SecHsp70: usually 

HspA1 of any of three 

genes coding

Extracellular matrix Defense against toxic action of protein aggregates 

outside cells; engineered form or pathological release 

with an outlined inflammatory phenotype

De Mena et al. (2017)

The list discloses cornerstone actors of the family of 70 kDa-weighed Hsp; five of them are the most common in cells and thereby interesting (HspA1, Hsc70, mtHsp70, Grp78, and lysHsc70) 
while secHsp70, that is an extracellular HspA1 alias, displays an ambivalent role.
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formed by amyloid beta (Aβ; Abeta) deriving from Aβ precursor 
(APP) after enzyme-mediated cleavage, especially under 
presenilin-1 (PS1; PSEN1) action (Russo et al., 2000; Rajesh and 
Kanneganti, 2022). Despite being debatable, this Aβ hypothesis of 
AD is still considered to be  generally accepted (Breijyeh and 
Karaman, 2020). Recent studies also claim soluble Aβ oligomers 
(AβOs) to have more harmful impact than their insoluble 
counterparts. For instance, excitotoxicity and abnormal long-term 
potentiation are already seen at very early stages of AD before 
detectable plaques (Huang and Liu, 2020). In fact, multifaceted 
pathways of AD imply numerous links described in detail in 
excellent reviews (Perrin et al., 2009).

Elevated levels of Hsp70 are found in AD, whereas the 
chaperones obviously attenuate the disease (Romi et al., 2011). For 
example, protein aggregation and neuronal death together with 
AD-like symptoms, caused by the use of paraquat, a popular 
herbicide in many countries, are accompanied by a reduced Hsp70 
expression (Moyano et al., 2021). On the other hand, an upregulation 
of Hsp70 has correlated with a decline in Aβ content (Sun 
et al., 2017).

Excessive endogenous Hsp70 increases the efficiency of 
Aβ-degrading enzymes (Hoshino et al., 2011). Rivera and coll. Have 
observed Hsp70 affecting the Aβ assembling process in vitro 
preventing oligomer formation. Moreover, the presence of Hsp70 
reduced the Aβ peptide-induced toxicity of cultured neurons (Rivera 
et al., 2018). In drosophila genetic models, hyper-expressing secreted 
Hsp70 (secHsp70) together with mutant Aβ42, reveal that the 
extracellular Hsp70 only provided a protective action (De Mena et al., 
2017). Some studies have found a similar pattern of Hsp70 impacts for 
both localizations. Thus, the potential for cognitive protection 
remained the same for both extra- and intracellular Hsp70 for 
drosophilae with Aβ accumulation regardless of their age or exposure 
(Martín-Peña et al., 2018).

Cytoskeletal instability as a result of the production of impaired 
tau protein is another important component of AD pathology (Choi 
et al., 2020). It is generally accepted that an increased activity of tau 
kinases, especially of glycogen-synthase kinase 3 (GSK-3), 
extracellular signal-regulated kinase (ERK), and p38, leads to the 
hyperphosphorylation of tau (Hartz et  al., 2023). As a result, tau 
molecules aggregate into double threads forming a net of NFT, that 
further intensifies the Aβ accumulation (Uematsu et al., 2018). It is 
shown that valosin-containing protein (p97; VCP) can eliminate the 
NFT with the help of Hsp70 (Saha et al., 2023). Overexpressed Hsp70 
enables degradation or dephosphorylation of pathological tau 
improving stability of microtubules (Lackie et al., 2017).

Despite all the positive effects, at the late stages of cellular 
pathology Hsp70 loses its protective functions and forms 
epichaperomes representing inert long-living scaffolds (Bolaender 
et al., 2021). This phenomenon enables protein connectivity-based 
dysfunction and might aggravate the neurodegeneration (Inda et al., 
2020). Additionally, Aβ and tau suppressive activity of Hsp70 has been 
shown to be abolished in the presence of ε4 isoform of apolipoprotein 
E (ApoE), one of the most recognizable factors contributing to AD 
(Osorio et al., 2007; Serrano-Pozo et al., 2021). Finally, although the 
subchronic intranasal administration of human Hsp70 has improved 
the course of disease in familial AD murine models, innate immunity 
and antigen presentation have been upregulated at the same time 
(Evgen'ev et al., 2019).

3.3. Hsp70 in Parkinson’s disease

Parkinson’s disease (PD) is a common neurodegeneration, 
clinically displayed in bradykinesia, postural instability, rigidity, and 
tremor (Ascherio and Schwarzschild, 2016). The disorder is caused by 
a progressive death of dopaminergic neurons in the substantia nigra 
(Beal, 2010). The hallmark of the disease required to confirm the 
diagnosis is intracellular inclusions called Lewy bodies (LB) 
(Spillantini et  al., 1997; Sipilä et  al., 2023). LB are composed of 
ubiquitinated abnormal protein called α-synuclein (α-Syn) (George, 
2002). In addition to α-Syn, some other causative players have been 
shown to contribute to the disease: Parkin, encoded by PARK2 gene; 
phosphatase and tensin homolog-induced kinase 1, encoded by 
PINK1 or PARK6; protein deglycase J-1 (DJ-1), encoded by PARK7; 
and leucine-rich repeat kinase 2 (LRRK2), encoded by PARK8 (Poewe 
et al., 2017).

In PD, Hsp70 overexpression is common in damaged cells, generally 
in surviving neurons (Dickson, 2018; Jellinger, 2019). Consistently, 
Drosophila models have disclosed Hsp70 to delay death of dopaminergic 
cells (Auluck and Bonini, 2002). On one hand, the benefit of Hsp70 
might be explained by its ability to enhance autophagy (Moors et al., 
2017; McKinnon et al., 2020). Nonetheless, mitophagy and elimination 
of Parkin also require HspA1 presence, and of HspA1A mainly, as 
HspA1L potential is weaker (Hasson et al., 2013). However, Hsp70 
machinery in PD is not acting alone, but strongly depends on Hsp40, 
Hsp90, and Hsp70-Hsp90-organizing protein (HOP) (Ebrahimi-
Fakhari et al., 2012; Wu et al., 2019; Hu et al., 2021). Moreover, small 
molecular chaperones, e. g. clusterin (ApoJ), are probably more 
prominent to manage α-Syn aggregation in PD (Lenzi et al., 2020).

3.4. Hsp70 in Huntington’s disease

Huntington’s disease (HD) is a complex motor (choreal signs are 
rather common), cognitive, and mental neurodegenerative disorder, 
which is inherited via an autosomal dominant pattern (Joshi et al., 
2021). HD is the most common representative of a wide range of 
polyglutamine-associated diseases (polyQ), including also 
spinocerebellar ataxias and dentatorubral-pallidoluysian atrophy 
(Carroll et al., 2018). All of them imply a translation of polyQ-chains 
forming Htt protein after posttranslational modification (Bates et al., 
2015). Htt aggregates in essentially all neuronal and astrocytic 
compartments (Joshi et al., 2021; Lange et al., 2023).

Hsp70 may promote the collapse of polyQ chains (Choudhury 
et al., 2016; Davis et al., 2020; Gupta et al., 2020). In insects, Hsc70 
is responsible for the effect (Rai and Tapadia, 2022). However, there 
is a lack of data supporting active Hsp70 engagement in the 
treatment of these disorders in mammals (Pratt et al., 2015; Reis 
et al., 2017). Maheshwari and coll. Have tried steroid hormones to 
manage Hsp70 machinery in HD, but no specific action is shown 
(Maheshwari et al., 2014). Some studies propose an anti-apoptotic 
role of Hsp70 in HD (Sabirzhanov et al., 2012). Besides, an indirect 
explanation of Hsp70 relevance in HD is given by the fact that 
progenitor nerve cells express more Hsp40 (co-chaperone of Hsp70) 
than mature neurons, whereas polyQ-associated disorders usually 
manifest in adult persons and not in childhood (Thiruvalluvan 
et  al., 2020). Perhaps, the Hsp40 is the key factor to trigger 
polyQ removal.
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3.5. Hsp70 in amyotrophic lateral sclerosis 
and frontotemporal dementia

Amyotrophic lateral sclerosis (ALS) is a progressive motor 
neuronal disorder (Amico and Antel, 1981). Despite a long history of 
studies, the interactions between its key actors are still not completely 
clear (Al-Chalabi et al., 2017). Superoxide dismutase 1 (SOD-1) is 
often considered to be  crucial in pathology (Cleveland, 1999). 
However, products of fused-in-sarcoma (FUS) gene are important 
contributors to protein aggregation, and such faulty proteins as 
transactive response DNA binding protein 43 kDa (TDP-43), C9orf72, 
and ubiquilin-2 are also involved (Thomas et al., 2013). Moreover, 
there is a second row of proteins, which are able to aggravate the 
course of the disorder. So, NF-kappa-B activator-binding kinase 1 of 
TNF receptor-associated factor’s family member (TBK1), optineurin, 

and p62 participate in impaired autophagy, while vesicle-associated 
membrane protein-associated protein B/C (VAP-B) is typical for 
proteasomal failure. Although, VCP takes part in both machineries 
(Kalmar and Greensmith, 2017).

ALS and frontotemporal dementia (FTD) may be  regarded 
together because of similar genomics, proteomics, metabolomics, and 
transcriptomics (Menéndez-González, 2023). Mandrioli et al. (2019) 
also mention that both diseases are accompanied by 
neuroinflammation with inflammasomes. FTD is a group of similar 
threatening and rapidly progressing cognitive disorders with a rather 
high mortality (Wang et al., 2022). The pathology comprises a storage 
of pathological tau, Fus, and TDP-43 with predominant harm to the 
neurons in the frontal and temporal cortex (Josephs et  al., 2011). 
Furthermore, repeated sequences of G4C2  in C9orf72 genes are 
notorious for the synthesis of dipeptide repeat proteins (DPR) or 

FIGURE 1

Toggles between crucial options: a model of intracellular pathways for common Hsp70 members (HspA1, Hsc70, Grp78, and mtHsp70) at their impact 
sites. At the center, one can see HspA1 and Hsc70, which are the two most prevalent players in the cytosol, with their active structures comprising four 
structures in large: an ABD (at the N-terminus) to engine chaperone activity, a loop (fine and folded linker) to contact many allosteric regulators, an 
SBD (beta-barrel) to capture misfolded proteins, and a lid (motile cap-like chain) to either come closer to the SBD or to align depending on ATP-ADP 
dualism. When HSF-1-upregulated transcription is completed, the cytosolic isoforms enter Fork # 1, where Hsp40 navigate a grip of a hazardous 
protein (down) via dephosphorylation and ADP inactivation by HIP, whereas the lid closes over the problematic chain; otherwise, apoptotic recruitment 
may occur (left). In apoptosis, cytochrome c-induced APAF1-driven recruitment of caspase-9 into the CARD is blocked by Hsp70. In contrast, the 
Hsp40-switched track comes into its Fork # 2 with a BAG1-associated choice of an allosteric CHIP regulation towards ubiquitin-mediated proteasomal 
degradation (below) or a BAG3-associated concurrent NEF-inhibition of the ABD up to Fork # 3 (right) with a continuous HSF-1 presence leading to 
either BAG3-overexpression and autophagic events or holding of the hazardous substance inside the beta-barrel until the BAG3 content decreases 
with NEF released and protein returned into the cytosol to refold in better conditions (up). Autophagic Fork # 4 occurs either on the ER surface for 
Grp78 modification of Hsp70 (on the right) driven into macroautophagy by p62 and NBR-1 or in the cytosol with Hsp90-recruiting HOP assistance, 
causing chaperone-mediated autophagy, which is more typical for Hsc70 immersion into lysosomes. Grp78 also acts against apoptosis, preventing 
BIM from Bcl2 elimination. In the left upper corner, mtHsp70 is found; it is anti-apoptotic, too, via an induction of Bcl-2 to transfer GR into the 
organelles. A positive impact on EGFR and FGF-1 activity as well as a negative impact on p53 chains is clear.
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poly-Gly-Ala (poly-GA), tending to aggregate (Lee et  al., 2023). 
Interestingly, DPR complexes are able to be transported to neighboring 
cells, thereby hindering their clearance (Khosravi et al., 2020).

Hsp70 is found to assist the elimination of the abnormal proteins, 
especially in the DPR-related pathology (Deng et al., 2011). Generally, 
in ALS and FTD Hsp70 act via either autophagy to prevent aggregation 
of RNA-binding proteins (Mandrioli et  al., 2019) or proteasomal 
machinery to fix DPR-induced damage. In proteasomes, ubiquilin-2 
provides a rapid Hsp70 binding to poly-GA (Renaud et al., 2019). The 
intermediate region of ubiquilin-2 molecule includes a flexible 
proline-X-X-proline (PXXP) motif, which is perhaps accessible for 
concurrent catalysis or inhibition (Zhang et al., 2021). Meanwhile, 
these RNA-binding proteins comprise TDP-43 and Fus, and may 
be  cleaved by such kinds of autophagy as chaperone-mediated 
autophagy and aggrephagy (Thomas et al., 2013). Aggrephagy implies 
a consumption of labeled stress granules from aberrant RNA (Ripin 
and Parker, 2022). Interestingly, TDP-43 and ubiquilin-2 seem to 
be  tightly interacting despite their different roles in proteasomal 
machinery and autophagy (Seelaar et al., 2007; Wang et al., 2008).

4. Hsp70 as a target to treat 
neurodegeneration

Current drug options in NDs probably lack Hsp70 usage to 
improve neuronal protein quality control (Table 2). Some medications, 
such as BGP-15 (O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic acid 
amidoxime dihydrochloride) and celastrol, have not shown a real 
positive Hsp70-mediated impact on neurodegeneration (Kalmar and 
Greensmith, 2017). New candidates should pass by a number of 
studies, and in vitro ATP-ase tests are preferred initially (Repalli and 
Meruelo, 2015). Surprisingly, in some cases Hsp70-related drugs have 
even aggravated NDs. Johnson and coll. Emphasize a positive 
correlation between spinocerebellar ataxia and elevated Hsc70 content 
in a Drosophila model (Johnson et  al., 2020), though it may 
be explained either as a harmful phenomenon or cell resistance to 
the pathology.

4.1. Hsp70 enhancers in NDs

Heat shock factors are first possible tools to rule Hsp70 in NDs 
(Verma et al., 2014). So, HSF-1 takes part in numerous pathways, 
thereby being a key point of regulation (Kim et al., 2017). In particular, 
HSF-1 is trimerized to bind a sequence called the heat shock element 
in Hsp70 gene promotors (Kondo et al., 2013). However, an excessive 
production of HSF-1 in cerebellar neurons has decreased Htt-related 
toxicity in rats not via a direct Hsp70 upregulation, but via such 
coactor as BAG-3 (Verma et al., 2014). In Hsp70-knockout (ko) mice, 
increased HSF-1 levels have also improved the number of 
dopaminergic neurons in treatment by U-133, a compound derived 
from sea urchins (Ekimova et al., 2018). Independently of direct or 
indirect Hsp70 engagement, geranylgeranyl acetone (GGA; teprenone) 
mitigates neuronal damage via HSF-1 activation through the ERK/p38 
MAPK pathway (Sun et al., 2017) (Table 3).

Multivector drugs, that affect different Hsp groups, attract a lot of 
interest. These are mainly geldanamycin and its derivatives, especially 
17-AAG, 17-DMAG, IPI-504, and radicicol, which work as 

Hsp90-inhibitors and HSF-1-mediated Hsp70 inducers at the same 
time (Alam et  al., 2017). Although, a predominance of Hsp70 or 
Hsp90 is still debatable (Rutledge et al., 2022). Several mechanisms of 
neuronal action can also be combined in a single medication. Thus, 
riluzole, which is known as anti-ALS basic treatment, is officially 
described by its producers as an antagonist of glutamate-associated 
excitotoxicity, but its effects are also provided by HSF-1 upregulation 
(Miller et  al., 2012; Petri et  al., 2023). Yang and coll. Report that 
riluzole may also enable Htt cleavage (Yang et al., 2008). Actually, 
there is no consensus on dynamics of riluzole action in literature.

Furthermore, some well-known medications may take part in the 
Hsp70-associated management of NDs. For instance, colchicine is 
actively tested together with riluzole due to its upregulation of HspB8 
expression and blocking of TDP-43 accumulation (Mandrioli et al., 
2019). Konturek et al. (2005) also studied pioglitazone and discovered 
its ability to improve Hsp70 content in the pancreas. However, a 
concomitant intake of pioglitazone and riluzole exhibits no clinical 
benefit in trials for ALS (Dupuis et al., 2012). In addition, fenofibrate 
causes a synchronous decrease in Hsp90 levels and elevation of Hsp70 
levels, and cognitive dysfunction regresses in a rat model of dementia 
(Rizk et al., 2022). However, valproic acid enhances Hsp70 levels with 
no impact on Hsp90-machinery. Finally, carbenoxolone is efficient in 
proteasomal cleavage of aggregates via HSF-1 upregulation in PD rat 
models in the presence of rotenone (Thakur and Nehru, 2014).

Some Hsp70 enhancers with no clear mechanism found are 
suggested. For example, sleep deprivation-induced learning/
memory impairment has been shown to recover after 
intracerebroventricular luteolin administration, while an increase 
in Hsp70 levels have accompanied the treatment (Rahimpour 
et  al., 2023). Then, FLZ or phenlarmide alleviates motor 
dysfunction in animal PD models with an overexpression of 
Hsp70 (Kong et al., 2011; Bao et al., 2017). Additionally, some 
mechanisms are being developed with no pharmaceutical 
compounds proposed yet. Thus, cysteine string protein α (CSPα) 
phosphorylation by protein kinase C-γ promotes Hsp70 activity 
(Shirafuji et al., 2018).

Surprisingly, relative rare NDs tend to be more easily managed 
by Hsp70-recruiting drug options. So, arimoclomol (BRX-220), 
which is a low-molecular-weight hydroxylamine derivative Hsp70 
enhancer, is tested in animal models of Fabry, Sandhoff, and 
Niemann-Pick type C (NPC) diseases (Kirkegaard et al., 2016). Mice 
of Gla−/− (Fabry), Hexb−/− (Sandhoff), and Npc1−/− (NPC) lines 
have shown a clinical improvement after arimoclomol intake. Hsp70 
inducers/coinducers are generally convincing for ALS treatment 
(Kalmar et  al., 2014; Kalmar and Greensmith, 2017), and it is 
especially true for arimoclomol (Phukan, 2010). Interestingly, that 
arimoclomol alone is effective but not efficient. It requires a 
preliminary heat shock induction to exhibit its potential (Kalmar 
et al., 2008).

Hsp70 inducers, mentioned above, are however very different by 
their biochemical features. This diversity has to be  respected in 
practical implementation. For example, the compounds of 
geldanamycin group, in addition to their initial Hsp-related activity in 
cells, are able to prevent a transfer of receptors to steroid hormones 
into the nucleus, thereby providing a longer immune association (Czar 
et al., 1997). Geranyl geranylacetone acts via NF-κB-COX-2 axis to 
rule gene promoters, so cyclooxygenase-related adverse effects may 
be provoked (Nishida et al., 2007).

https://doi.org/10.3389/fnmol.2023.1230436
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Venediktov et al. 10.3389/fnmol.2023.1230436

Frontiers in Molecular Neuroscience 07 frontiersin.org

4.2. Recombinant Hsp70 and 
Hsp70-related genetic therapy

Exogenous recombinant Hsp70 (rHsp70ex) is a direct form of the 
chaperones that can be  easily delivered into the body. It seems to 
be  beneficial in NPC and AD models, particularly in familial AD 
(Kakimura et al., 2002; Mengel et al., 2021). For instance, rHsp70ex 
enhances memory and learning in AD models in vivo (Zatsepina et al., 
2021). Then, cerebral and hippocampal cortex accumulates labeled 
rHsp70ex after intranasal administration (Yurinskaya et  al., 2015). 
Further, mice with familial AD display declined Aβ levels and partial 
cognitive recovery after rHsp70ex administration (Bobkova et al., 2014; 
Evgen'ev et  al., 2017). In addition, murine models of AD reflect a 
downregulation of neuroinflammatory markers after rHsp70ex in 
transcriptomic analysis of hippocampal neurons (Heppner et al., 2015; 
Yurinskaya et  al., 2016). Moreover, neuroblasts proliferate and 
differentiate after intranasal rHSP70ex administration, perhaps due to 

the activation of cAMP 26 responsive element binding protein (CREB) 
cascade (Kwon et al., 2019). The treatment by rHsp70ex results in 
resistance to oxidative stress via mature endosomes and lysosomes 
with decreased apoptotic activity (Subrizi et al., 2015).

In a gene therapy study, rHsp70 has reached impaired 
dopaminergic neurons via an adenoviral vector with further 
decrease of neuronal loss (Dong et al., 2005). A similar effect is 
seen in Drosophila models for Hsp70 boosts both via gene therapy 
and induction by tanespimycin, a geldanamycin derivative (Zhang 
et  al., 2016). Severity of PD signs has mitigated in sirtuin-1-
transgenic mice due to the activation of HspA4 (Yang et al., 2022). 
However, HspA4 is not traditionally considered to belong to 
Hsp70 (Kaneko et al., 1997), although many controversial data 
appear recently (Shang et al., 2021; Abd El-Fadeal et al., 2023). A 
separate field of study includes epigenetic modifications of the 
chaperome, but it still remains weakly studied (Taldone 
et al., 2014).

TABLE 2 Core set of Hsp70-mediated medications in NDDs.

Factor Hsp70 Scenario References

Arimoclomol Induction Downregulation of glycosphingolipid storage; prolongation of 

HSF-1 activation with a stress-resistance maintained

Kalmar et al. (2014), Kirkegaard et al. 

(2016), and Kalmar and Greensmith (2017)

Cannabidiol Induction Grp78 overexpression with a reversal of the apoptotic 

watershed in ER

Patel et al. (2023)

Carbenoxolone Induction HSF-1 activation in rotenone presence Thakur and Nehru (2014)

Colchicine Induction Upregulation of HspB8 expression and blocking TDP-43 

accumulation

Mandrioli et al. (2019)

Fenofibrate Induction Abundant cytokine cascades with a synchronous Hsp90 decline 

and Hsp70 elevation

Rizk et al. (2022)

Phenlarmide Induction Hsp70-mediated α-synuclein disaggregation Bao et al. (2017)

GGA/geranyl geranylacetone Induction Activation of ERK/p38 MAPK signaling pathway and 

retardation of inflammatory reactions

Sun et al. (2017)

HSF-1 proper Induction Upregulation of Hsp70 transcription; selective toxicity blocking 

with no trimerization or modification of signaling pathways

Kondo et al. (2013) and Verma et al. (2014)

J147 Inhibition Prevention of synaptic protein loss and thus of cognitive 

dysfunction in a diminished Hsp70 expression; an 

overexpression of Hsp90

Chen et al. (2011)

Luteolin Induction Mechanism and causation are not clear yet Rahimpour et al. (2023)

Myricetin Induction Proteasome-mediated cleavage Joshi et al. (2019)

Neferine Induction Hsp70-mediated tolerance to hypoxia Sengking et al. (2022)

Phenothiazines: methylene blue or 

leucomethylene blue dimesylate 

(TRx0237) and azure C

Inhibition ATP-ase activity inhibition Lo Cascio and Kayed (2018)

Pioglitazone Induction Induction of Hsp70 in the pancreas Konturek et al. (2005)

Rhodacyanine-derived compounds: 

MKT-077, YM-01, YM-08, and JG-23

Inhibition Binding allosteric Hsp70 regions to provide tight interaction 

with misfolded proteins with no return in ATP-binding state 

and no protein release into the cytosol

Abisambra et al. (2013)

Riluzole Induction Stimulation via HSF-1 dependent upregulation Yang et al. (2008)

Tetracarpidium conophorum Induction Credible results with an unclear machinery Tokunbo et al. (2023)

U-133 Induction HSF-1 transcription enhanced Ekimova et al. (2018)

The medications here include all novel options mentioned in PubMed-indexed publications for two recent years as well as any option cited at least twice for previous years.
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TABLE 3 Some recent noteworthy clinical trials of Hsp70-driven 
medications in NDDs.

Medication Model for 
trial

Results References

Arimoclomol Adults 

diagnosed 

with probable/

definite ALS

Controversial 

results; no data 

about benefits in 

finals with good 

intermediate 

endpoints 

passing as for 

Year 2016

NCT03491462; 

NCT00706147; 

NCT00244244 

(Kalmar and 

Greensmith, 2017)

Arimoclomol Patients of 

2–18 years 

with NPC

Arimoclomol 

showed a 65% 

retardation of 

annual disease 

progression

NCT02612129 

(Mengel et al., 2021)

Colchicine + 

riluzole

Adults 

diagnosed 

with probable/

definite ALS

Ongoing NCT03693781 

(Mandrioli et al., 

2019)

J147 Healthy 

subjects 

(Phase I only)

No results found 

yet to be posted

NCT03838185

Leucomethylene 

blue dimesylate

Adults with 

diagnosis of 

all cause 

dementia and 

probable AD

Results revealed 

no benefit of the 

medication to 

treat patients 

with mild to 

moderate AD

NCT01689246 

(Gauthier et al., 

2016)

Phenlarmide Parkinson’s 

disease

No results found 

yet to be posted

NCT04693039; 

NCT04164121

Pioglitazone + 

riluzole

Adults 

diagnosed 

with probable/

definite ALS

A clinical 

improvement 

was shown with 

no distinct role 

of Hsp70 

elucidated 

although it is 

theorized

NCT00690118, 

NCT00919555 

(Dupuis et al., 2012)

Riluzole Adults 

diagnosed 

with probable/

definite ALS

Riluzole 100 mg 

daily was found 

prone to 

improve median 

survival by 

2–3 months

Several trials with 

similar results; 

we mention the 

most detailed one [a 

retrospective 

integration of 

results by Miller 

et al. (2012)]

We included clinical trials that are already completed independently of the fact if the results 
have been or not been published yet as well as ongoing searches for tag combinations of 
“Hsp70” with “neurodegeneration,” “neurodegenerative,” “AD,” “PD,” “HD,” “ALS,” “FTD” in 
all free and open accessible databases.

4.3. Allosteric modulators of Hsp70

Allosteric modification represents an alternative way to control 
Hsp70 function. Surprisingly, practically all modulators can behave as 

Hsp inhibitors, although their overall impact depends on many 
factors. Avoiding concurrence, allosteric binding stays selective, 
supporting a comprehensive understanding of Hsp70-involving 
cascades (Ekimova and Plaksina, 2016; Gleixner et al., 2016; Ferraro 
et al., 2019). First, rhodacyanine-derived compounds are found to 
modify Hsp70 cooperation with its coactors in an allosteric site, 
inhibiting a reversive transformation of the chaperone’s molecule from 
ADP- into ATP-binding state and thereby improving protein holding 
(Li et al., 2016). The group includes MKT-077 and YM-01, which have 
been investigated for anti-AD activity as they may provoke Hsp70-
mediated decline in pathological tau content in vitro (Abisambra et al., 
2013; Martin et al., 2016). Furthermore, YM-08 is the next generation 
with a milder but also a less toxic action (Miyata et al., 2013), whereas 
its halogen-recruiting modification (JG-23) is even more chemically 
stable (Chang et al., 2021; Shao et al., 2021).

Allosteric Hsp70 regulation has been also proposed for some 
other pharmacological groups. For instance, phenothiazines such as 
methylene blue and azure C decrease total tau and phospho-tau levels 
due to the anti-ATP-ase activity, while the benefit of this effect is 
debatable (Martin et al., 2016; Lo Cascio and Kayed, 2018). Also, the 
neurotrophic compound J147 prevents synaptic loss in a transgenic 
murine AD model (Chen et al., 2011). However, J147 directly affects 
ATP-synthase, thereby triggering a bounce in intracellular calcium 
levels with a launch of 5′-adenosine monophosphate-activated protein 
kinase and mammalian target of rapamycin (AMPK/mTOR) pathway 
by kinase β of calcium/calmodulin-dependent protein kinase 
(CAMKK2) affecting mitochondrial metabolism (Goldberg et  al., 
2018). There is no proven Hsp70-involving action for J147.

Despite the new horizons of Hsp70 usage, current clinical trials 
focus mainly on Hsp90-modifiers or nonselective Hsp-controllers 
because of a better understanding of Hsp90 machinery (Thirstrup 
et  al., 2016). Even more, pridopidine has been studied for HD 
treatment with a profound search on the impact of S1R chaperones 
and few data about Hsp engagement (Shenkman et  al., 2021). 
However, chemical and biological modifications of Hsp70-involving 
pathways is a mighty impact spot in future management of NDs 
(Fontaine et al., 2016).

Perhaps, combining chemically different medications would 
provide additional options. So, Hsp70 overexpression strengthens in 
concomitant administration of Hsp90 inhibitors together with histone 
deacetylase inhibitors (Kuta et  al., 2020). Some drugs are slightly 
effective with no strict pathway clear yet. That is, for example, the 
phenomenon of myricetin, bortezomib, and MG-132, counterparts 
that affect proteasome-mediated Hsp70 action (Joshi et al., 2019). 
Generally, these proteasome modulators (or JG substances) are 
studied for tumor cell management, as Grp78 and mtHsp70 
machinery suffers in their presence (Cagala et al., 2020; Ferguson 
et al., 2022).

4.4. Nontrivial approaches for Hsp70 
management in NDs

Curiously, physical methods might also contribute to Hsp70 
machinery. For example, near-infrared irradiation tends to 
improve Hsp70 activity in the splenic and hepatic regions of mice 
(Escudero-Duch et al., 2023). The idea has also been developed for 
sauna heating inducing Hsp70 activation (Hunt et  al., 2020). 
Hsp70 levels are generally elevated in increased physical activity 
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(Kim et  al., 2022). Phytotherapy also may represent a feasible 
approach. So, an extract of African walnut, or Tetracarpidium 
conophorum, is recently shown to improve the PD-like signs in 
rats, probably via Hsp70 modulation (Tokunbo et  al., 2023). 
Neferine, derived from seeds of lotus plants, seems to increase 
neuronal tolerance to ischemia via Hsp70-induction machinery 
(Sengking et al., 2022).

5. Discussion

Molecular chaperones, mainly Hsp70 and Hsp90, play one of 
central biochemical roles providing structural volatility of proteins 
(Gupta et al., 2020). Hsp70 content should change rapidly to answer 
challenges of constantly transforming environment, and that is 
especially true for neurons as there are almost no proliferative or 
reconstructive machinery. In NDs, neuronal chaperome is usually 
impaired, so Hsp70 has a great potential to manage the pathology 
(Kim et al., 2021).

The challenge is that Hsp70 content in NDs shows no strict linear 
relation with the development of disease. For example, a decrease in 
plasma Hsp levels is observed at initial stages of AD and FTD, but 
changed into a recovery in moderate and severe cases (Chanteloup 
et al., 2019). It might be explained by gradual Hsp70 accumulation in 
the brain to repair neurons. However, the clinical implementation of 
this theoretical basis is more complex, because the state-of-the-art in 
Hsp70 studies for NDs still demonstrates a lot of white spots.

Nevertheless, Hsp70 have generally been found to be useful in 
neuronal functional and/or structural damage (Beretta and Shala, 
2022). For instance, geranylgeranyl acetone induces Hsp70 expression 
in mice via HSF-1 with proven cognitive improvement (Sun et al., 
2017). However, we  still have no certain concept about principal 
differences between extra- and intracellular effects of Hsp70 in NDs. 
Theoretically, an intrinsic Hsp70 in NDs is responsible for aggregate 
cleavage, whereas an extrinsic Hsp70 joins immune interactions.

We consider Hsp70 to be a large field of studies in cellular and 
molecular biology for the upcoming years. For instance, we  lack 
comprehensive research of Hsp70 potential in transgenic animals. 
Additionally, it seems that a well-known practice of physiological 
experiments with moderate exposure to high temperatures in humans 

and rats would obtain a second wind for testing the issue of Hsp70-
modifying medications and transgenic Hsp70 for NDs. In a recent 
work, we have already tried an approach to synchronize physiological 
and morphological findings by laser speckle contrast imaging 
(Piavchenko et al., 2021; Konovalov et al., 2023).
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