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Analyzing alternative splicing in 
Alzheimer’s disease postmortem 
brain: a cell-level perspective
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Alzheimer’s disease (AD) is a neurodegenerative disease with no effective cure 
that attacks the brain’s cells resulting in memory loss and changes in behavior 
and language skills. Alternative splicing is a highly regulated process influenced 
by specific cell types and has been implicated in age-related disorders such as 
neurodegenerative diseases. A comprehensive detection of alternative splicing 
events (ASEs) at the cellular level in postmortem brain tissue can provide valuable 
insights into AD pathology. Here, we  provided cell-level ASEs in postmortem 
brain tissue by employing bioinformatics pipelines on a bulk RNA sequencing 
study sorted by cell types and two single-cell RNA sequencing studies from the 
prefrontal cortex. This comprehensive analysis revealed previously overlooked 
splicing and expression changes in AD patient brains. Among the observed 
alterations were changed in the splicing and expression of transcripts associated 
with chaperones, including CLU in astrocytes and excitatory neurons, PTGDS 
in astrocytes and endothelial cells, and HSP90AA1 in microglia and tauopathy-
afflicted neurons, which were associated with differential expression of the 
splicing factor DDX5. In addition, novel, unknown transcripts were altered, and 
structural changes were observed in lncRNAs such as MEG3 in neurons. This 
work provides a novel strategy to identify the notable ASEs at the cell level in 
neurodegeneration, which revealed cell type-specific splicing changes in AD. 
This finding may contribute to interpreting associations between splicing and 
neurodegenerative disease outcomes.
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1. Introduction

Alzheimer’s disease (AD), the most common cause of dementia, is a progressive 
degenerative disorder that attacks the brain’s cells resulting in loss of memory, thinking, and 
language skills, and changes in behavior with extracellular β-amyloid (Aβ) aggregation and 
neurofibrillary tangles (NFT) formed by hyperphosphorylated tau (Knopman et al., 2021). 
The global number of individuals with AD is estimated to be 32 million. At the same time, 
prodromal and preclinical AD comprised 416 million persons worldwide, or 22% of all 
people aged 50 and over (Gustavsson et al., 2023). AD is a complex and multifaceted disease, 
and much is still unknown about its causes and progression (Herrup, 2021). As a result, there 
are many hypotheses about the disease, but no single answer or successful cure (Alves 
et al., 2021).
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A single gene can create numerous proteins through alternative 
splicing (Gabut et al., 2011). It is an essential mechanism of gene 
regulation in the brain and is known to be  altered in aging and 
neurodegeneration (Chabot and Shkreta, 2016; Deschenes and 
Chabot, 2017). Alternative splicing is mediated by a ribonucleoprotein 
complex called the spliceosome, which consists of five small nuclear 
ribonucleoprotein subunits and several protein cofactors (Matera and 
Wang, 2014). Because of the short and degenerate splicing sites in 
higher eukaryotes, the spliceosome usually requires RNA binding 
proteins (RBP) called splicing factors (SF) to identify exons accurately 
(Biamonti et al., 2021). Generally, seven basic types of alternative 
splicing events (ASEs) have been identified, including alternative 
3′-splice site (A3SS), alternative 5′-splice site (A5SS), mutually 
exclusive exons (MXE), intron retention (RI), exon skipping (SE), 
alternative polyadenylation (APA), and alternative promoter (Bhadra 
et al., 2020). Recent transcriptomic studies have found several ASEs 
to be disrupted in AD, such as MBP, ABCA7, APP, CLU, PICALM, 
and PTK2B (Raj et al., 2018; Yang et al., 2021). Also, it is observed 
that the U1 snRNP deposition with NFT in postmortem brains of AD 
patients (Bai et al., 2013; Hales et al., 2014), MAPT transgenic mice 
(Vanderweyde et al., 2016; Maziuk et al., 2018), and in laboratory 
conditions (Bishof et al., 2018). As alternative splicing is a cell type-
specific process (Zhang et al., 2016), and the balance of cell types is 
disturbed in AD so that there are fewer neurons and more glia 
(Penney et al., 2020), studying ASEs at the cellular level becomes 
necessary. Sharing of RNA sequencing (scRNA-seq) data of AD 
patients and control with single cell RNA sequencing data of Allen 
brain atlas of Brodmann area 22 suggested that there is cell-type 
differential transcript usage (DTU) pattern for APP and BIN1 
(Marques-Coelho et al., 2021). ScRNA-seq data analyses a showed 
that Sipa1l1 transcripts were changed differently between the brains 
of APOE-deficient transgenic mice and control mice (Weller 
et al., 2022).

In this study, we analyzed transcripts variations at the cell level in 
the postmortem prefrontal cortex of AD patients and control patients 
without neuropathological or neuropsychiatric disorders 
(Supplementary Table S1) to identify notable ASEs in AD. To do this, 
we  took advantage of three available transcriptomics datasets 
(Figure 1A). GSE125050 results from bulk RNA sequencing of sorted 
brain cells in four groups, including astrocytes, endothelial cells, 
microglia, and neurons (Srinivasan et al., 2020). GSE157827 dataset 
consists of single nucleus RNA sequencing of neurons, glial cells, and 
endothelial cells (NGE). Individuals in the NGE dataset were grouped 
based on the Braak stage in the control group with 0, Alzheimer’s 
disease with mild severity (ADM) with 3 or 4, and Alzheimer’s 
disease with high severity (ADH) with 5 or 6 scores (Lau et al., 2020). 
GSE129308 dataset includes transcriptomic data of single soma RNA 
sequencing which is grouped based on NFT’s presence in somas 
(Otero-Garcia et al., 2022). Single-cell data allow the identification of 
ASEs in rare cell types or subpopulations that may be overlooked in 
bulk analysis, thereby contributing to a more comprehensive 
understanding of splicing patterns (Joglekar et al., 2023). Despite the 
challenges posed by the short reads and 3′ bias in the 10x Genomics’ 
scRNA-seq data (Westoby et  al., 2020), a good understanding of 
splicing changes can still be achieved due to the presence of a large 
number of junctional reads in the datasets and the application of a 
robust statistical approach (Figure  1B). Furthermore, due to the 
strong correlation between splicing changes and Braak NFT stages in 

AD (Arizaca Maquera et al., 2023), the utilization of NFT and NGE 
single-cell data can provide a broader view of ASEs in PFC neuronal 
subtypes based on NFT pathogenesis and ASEs in different brain cell 
types based on Braak stages, respectively. A broad identification of 
ASEs can be gained by analyzing splicing alterations in various cell 
populations at different stages of AD progression. We also analyzed 
differential gene expression (DGE) and revealed ontology cell 
type-specific.

2. Materials and methods

2.1. Datasets and reference genome

The raw fastq files of GSE125050 (bulk study), GSE157827 (NGE 
study), and GSE129308 (NFT study) were demultiplexed from the 
downloaded sra files on short read archive (SRA) database. The 
metadata of samples was obtained from the gene expression omnibus 
(GEO) database. The GENCODE version 39 of GRCh38 annotations 
and sequences files include gff3,1 gtf,2 bed,3 DNA fasta,4 cDNA,5 and 
protein domain annotation6 files were used for alignment 
and annotation.

2.2. Bulk RNA-seq reads QC and alignment

The raw fastq files were qualified by FastQC (v 0.11.9) and 
multiQC (v 1.13.0), then trimmed by Trim Galore (v 0.6.7) with 20 as 
a minimum Phred quality score. The trimmed fastq files were aligned 
to the reference genome by STAR (v 2.7.10a) with defaults (Dobin 
et  al., 2013). The quality of aligned bam files was controlled with 
Qualimap (v 2.2.2) and multiQC. The trimmed fastq files also were 
used to generate transcript expression matrices with the transcriptomic 
index of reference sequences by Salmon (v 1.7.0; Patro et al., 2017).

2.3. ASE analyzes of bulk RNA-seq data

Alternative splicing analyses were performed on the aligned bam 
files to measure PSI with rMATS (v 4.1.2) and were plotted with 
rmats2sashimiplot (Shen et  al., 2014). Significant ASEs in five 
categories, including A3SS, A5SS, MXE, RI, and SE, were identified 
with average coverage >5, delta PSI >10%, and p adjusted value (p.adj) 
<0.05 by maser (v 1.12.1) and rtracklayer (v 1.54.0) in R (v 4.2.1; 
Lawrence et al., 2009; Lu et al., 2022).

1 https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_39/

gencode.v39.annotation.gff3.gz

2 https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_39/

gencode.v39.annotation.gtf.gz

3 https://genome.ucsc.edu/cgi-bin/hgTables

4 https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_39/

GRCh38.p13.genome.fa.gz

5 https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_39/

gencode.v39.transcripts.fa.gz

6 https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/

ucscGenePfam.txt.gz
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2.4. DGE and DTU analyzes of bulk 
RNA-seq data

DGE analysis was performed by DESeq2 on the transcriptome 
quantification matrix in R (Love et al., 2014). Using import_counts 
function, which uses the teximport R library in the background. The 
cutoff p.adj was 0.05, and the cutoff fold change was 2. DTU analysis 
was performed using the R package DTUrtle (Tekath and Dugas, 
2021). First, the transcript to gene map was created with the one_to_
one_mapping function using the gtf file to annotate each transcript to 
a single gene and transcript id. Then the statistical analysis was done 
with DRIMseq, a DTU-specialized statistical framework using the 
Dirichlet multinomial model inside the DTUrtle package, by defining 
the groups. The minimum total gene expression must be 5 for at least 
50% of the samples of the smallest group. After the dturtle object was 

generated, to obtain important genes, a post-hoc filter with a value of 
0.1, which means more than 10 % changes between transcripts of gene 
expression, and an overall false discovery rate (OFDR) threshold of 
0.05 was used. An overview of significant transcripts was visualized 
through the Gviz package and the annotated gtf file of the reference 
genome in R.

2.5. Quality control of scRNA-seq droplets

The feature barcode matrices were downloaded from GEO and 
read by Seurat (v 4.1.0) and SingleCellExperiment (v 1.16.0) in R 
(Amezquita et  al., 2020; Hao et  al., 2021). Quality control was 
performed separately on each sample with functions of the scFlow 
library (v 0.7.1) in R (Khozoie et al., 2021). The droplets with less than 

FIGURE 1

Schematic workflow of the methodology. (A) Dataset preparation in previous studies. In GSE125050 (bulk), the prefrontal cortex (PFC) region of 
postmortem brains was sorted by FACS into four cell groups, including astrocyte (GFAP+), endothelial (CD31+), microglia (CD11+) and neuron 
(NeuN+). Then groups were sequenced with bulk RNAseq protocol. In GSE157827 (NGE), single nuclei of PFC were isolated by gradient centrifugation, 
FACS, and 10X Genomix, respectively. In GSE129308 (NFT), single PFC somas were mechanically dissociated by Potter-Elvehjem grinder without 
enzymes or detergents and gradient centrifugation. Somas were sorted to neurofibrillary tangles (NFT)_bearing neurons (AT8+) and NFT_free neurons 
(MAP2+/AT8−) by FACS and followed scRNAseq protocol. (B) Datasets obtained from GEO and SRA. GSE125050 data is used for alternative splicing 
events analysis and differential transcript usage analyses, and significant alterations are used for impacted pathway analyses. Both GSE157827 and 
GSE129308 are analyzed in the same workflow separately. GSE157827 is used for alternative splicing events and alternative polyadenylation analyzes all 
CNS cell types between two Alzheimer’s disease stages and control groups, while GSE129308 is used for ASE and APA analyzes between NFT_bearing 
neurons and NFT_free neurons in same individuals. Robust statistics tools, including STAR, SICILIAN, SpliZ, and ReadZs, were used to detect differential 
exon junctions and 3′ end peaks. A new protocol was designed to reduce biological noises in final results, which includes doublet, damaged cells, and 
empty droplets by determining true cell barcodes in a whitelist file. UMI_tools used the whitelist file for the filtration of fastq files. Finally, impacted 
pathways were analyzed.
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500 RNA molecules were excluded. Also, the droplets with less than 
200 features and genes were excluded, while for a higher feature filter 
criterion, an adaptive threshold was estimated in each sample that was 
four times the deviation of the median absolute value above the 
median feature number in each sample. The droplets with more than 
10 % of the whole transcriptome were mitochondrial genes also 
removed. Only genes with at least one count in three drops per sample 
were retained. Finally, the identification of multiple droplets was 
performed using DoubletFinder in the scFlow package using ten 
principal components (PC) based on 2000 variable features and a pK 
value of 0.005. Then, the saved barcodes of each sample were recorded 
in a text file called white list.

2.6. scRNA-seq clustering

Each study sample’s modified feature barcode matrices were 
merged into a SingleCellExperiment object using LIGER (v 1.1.0; 
Welch et al., 2019). The k value was optimized at 30, and the lambda 
value at five. Three thousand genes were used in the integration 
process. The convergence threshold was 0.0001, and the maximum 
number of block coordinate descent iterations was 100. The Leyden 
method did the clustering using the resolution parameter 0.001 for 
NGE and 0.003 for NFT, and k value 100. Seurat was used to 
determining the number of PCs required by the uniform manifold 
approximation and projection (UMAP) algorithm. This rate was 
chosen as 20 for cell-type clustering and 10 for cell-subtype clustering. 
After clustering, automatic cell type prediction was performed on cell 
clusters using a cell type enrichment weighted expression algorithm 
against previously generated Allen brain reference datasets within 
EWCE under scFlow functions in R (Hodge et al., 2019). Next, the cell 
annotation text file containing barcodes, cell type, subpopulation type, 
and group was created.

2.7. DGE analyzes of scRNA-seq

The SingleCellExperiment object was divided based on the cell 
type or subtype. Expression changes in AD samples versus controls 
were assessed separately in each cell type using a zero-inflation 
regression analysis with MAST parts of scFlow using a mixed-effects 
model. The model specification for NGE was zlm(~diagnosis + 
(1|manifest) + sex + age + PMI + APOE + pc_mito, method = “glmer,” 
ebayes = F), and for NFT was zlm(~ diagnosis + (1|manifest) + sex + 
age + PMI + RIN + pc_mito, method = “glmer,” ebayes = F). Expression 
differences more than twofold and p.adj less than 0.05 were the 
threshold for selecting significant differences.

2.8. scRNA-seq alignment

The Whitelist.txt file was provided to UMI tools (v 1.1.2) as a read 
filtering file to remove adverse droplet reads and PCR duplicates from 
the trimmed fastq files (Smith et al., 2017). he alignment was performed 
by STAR with default parameters except for chimSegmentMin = 12, 
chimJunctionOverhangMin = 10, chimScoreJunctionNonGTAG = −4, 
BAM Unsorted, and SoftClip Junctions option. The maximum intron 
length in a single read was set to one million, and the twopassMode 

option was set. In addition, the bam files were used to compute the 
counts per million of ENST00000252486 for analyzing APOE 
quantitative trait loci in NGE data.

2.9. Detection of splicing sites in 
scRNA-seq data

First, index and annotator pickle files were built based on the 
reference genome files with SICILIAN (v 1.0.0; Dehghannasiri et al., 
2021). Next, the SICILIAN pipeline was performed on bam files to 
remove false positive junctions and unbiasedly discover either 
annotated or unannotated junctions. SpliZ pipeline (v 1.0.0) with 
default parameters was used in the Nextflow (v 21.04.0) environment 
to identify notable ASEs between groups in each cell type (Ewels 
et al., 2020; Olivieri et al., 2022). In order to complete this task, the 
SICILIAN output and cell annotation text file were combined into a 
tsv file for use in SpliZ. The grouping_level_1 was set for cell types, 
while the grouping_level_2 was set for experiment groups. SpliZ is a 
scalar score that determines the splicing status of each gene in a cell 
relative to other cells. The p value of the deviation between the 
medians of the SpliZ score of each cell type was measured with the 
null distribution. p.adj less than 0.05 was considered as a selection 
threshold for significant ASEs. A modified version of SpliZ, called 
SpliZVD, using eigenvector loadings on the matrix of residues and 
their SVD decomposition, introduced three sites as the most variable 
splicing sites in each gene as SpliZsites. The data of significant scZ 
scores with p.adj < 0.05 from post-SpliZ and contributed junctions 
from post-SICILAN files were added to the SingleCellExpriment 
object to visualize plots. Pearson and Spearman correlations of ASEs 
with splicing factor expression changes in each cell were analyzed in 
R. The splicing factors were selected based on significant differentially 
expressed genes of the proteins found in GO:0000380, which indicate 
“alternative mRNA splicing via spliceosome” in the GO database. 
RPISeq, a family of machine learning classifiers for predicting 
RNA-protein interactions, was used to predict the interaction 
between the splicing factor and the transcript based on Random 
Forest (RF) or Support Vector Machine (SVM) classifiers trained 
(Muppirala et al., 2011). PRIdictor was utilized to predict the protein 
binding sites in RNA sequences (Tuvshinjargal et al., 2016).

2.10. Detection of APA in scRNA-seq data

In the Nextflow environment, the ReadZS (v 1.0.0) pipeline was 
utilized to identify APA using bam files and cell annotation text files. 
The default parameters were employed, except for the numplots, 
which was set to 40 (Meyer et al., 2022). Also, to avoid calculation time 
error, the timeout parameter in the withTimeout function in GMM_
based_peak_finder.R file of ReadZS was set to 3,000. The peak density 
plot was visualized with ggplot and Gviz in R.

2.11. Gene ontology, pathway enrichment, 
and protein–protein interaction analyzes

After collecting the important genes from each part of the analysis 
based on the cell population, the genes were compared with the 
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ontology available in Reactome, KEGG, GO, and Wikipathway 
databases through the scFlow package in R. By over-representation 
analyses at the levels of biological process, molecular function, cellular 
component and biological pathways along with the selection of the 
most shared terms with p.adj less than 0.05, the most likely affected 
pathways in AD at the cellular level and their network were displayed 
with important genes through enrich plot (v 1.14.2) and GOplot (v 
1.0.2; Walter et al., 2015). Significant ASEs of NGE and NFT, CELF2 
and DDX5 as two possible influential splicing factors, and key AD 
factors include APP, MAPT, PSEN1, PSEN2, BACE1, BACE2, and 
TREM2were imported into the online Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) database (v12.0; Szklarczyk 
et  al., 2023) for known and predicted protein–protein interaction 
(PPI). In order to minimize the rate of false positives, PPI confirmed 
by the experimental study, pathways from curated databases and 
reported in abstracts of papers published in PubMed were selected. 
The interactions comprised direct (physical) and indirect (functional) 
associations between proteins. Also, clustering was performed on the 
result with an MCL inflation parameter of 3.

3. Results

3.1. ASEs in bulk RNA-seq data

3.1.1. ASEs in astrocytes
In bulk data, we observed a total of 24,182 ASEs from astrocytes 

and identified 112 significant ASEs (Figure  2A; 
Supplementary Table S2). Over half of these events were related to 
SE. Analyzes of the difference between the percent spliced in (PSI) 
averages of the groups in each type of event showed a significant 
increase in the average PSI in AD compared to the control in RI 
(p = 0.006014) and SE (p = 0.040209) events, indicating an increase 
in intron conservation and the involvement of alternating exons in 
the structure of transcribed RNA in AD (Figure 2B). Notable ASEs 
include an increase in the upstream length of exon 26 of DEPDC5 in 
AD (P.ADJ = 6.47E-6), an increase in the downstream length of exon 
3 of SLC39A11 in AD (p.adj = 6.38E-5), MXE of MTMR14 
(p.adj = 1.97E-6), RI of intron 16 of NPAS2 (p.adj = 6.38E-9), SE of 
exon seven of RUFY1 (p.adj = 7.55E-7), and SE of exon six of 
SLC27A1 (p.adj = 6.06E-9; Figures 2C–G). Furthermore, principal 
component analyses (PCA) revealed that the 112 significant ASEs 
could cluster samples based on AD (Supplementary Figure S1B). 
We also identified seven significant differentially expressed genes 
(DEGs) in astrocytes (Supplementary Figure S1C; 
Supplementary Table S4) and observed significant DTU in 79 genes 
(Supplementary Table S3), including HDHD3 (q = 3.815E-20) and 
DGKA (q = 1.112E-37; Supplementary Figures S1D–G).

3.1.2. ASEs in endothelial
In bulk data from endothelial cells, a total of 20,690 ASEs were 

identified, out of which 215 were determined to be significant ASEs, 
primarily SEs (Figure 3A; Supplementary Table S2). No significant 
differences were observed between the PSI means of the groups in any 
event (Figure  3B). Notable ASEs included A3SS of exon 10 of 
DMTF1(p.adj = 5.95E-11), A5SS of exon 12 of PTPRZ1 (p.adj = 6.36E-
5), MXE of PILRB (p.adj = 0.000013), increasing RI of intron 5 of 
TRIP10 in AD (p.adj = 1.56E-9), and SE of exon 2 of PGS1 

(p.adj = 5.98E-10; Figures  3C–G). Based on the PCA analysis of 
significant ASEs, two distinct clusters were observed based on AD 
(Supplementary Figure S2B). Additionally, 400 significant DEG were 
identified in endothelial cells (Supplementary Figure S2C; 
Supplementary Table S4), along with 121 significant DTUs 
(Supplementary Table S3) such as ARHGEF6 (q = 5.94E-9) and DGKA 
(q = 2.015E-6; Supplementary Figures S2D–G).

3.1.3. ASEs in microglia
In microglial cells of bulk data, 19,301 ASEs were observed, out of 

which 144 ASEs were identified as significant (Figure  4A; 
Supplementary Table S2). The analysis of the difference between the 
PSI averages of the groups in each type of event revealed a significant 
increase in the average PSI in AD compared to the control group in 
MXE events (p = 0.013336; Figure 4B). Notably, some of the significant 
ASEs identified include A3SS of exon 6 of PGS1 (p.adj = 0.000867), 
A5SS of exon 2 of SLC11A1 (p.adj = 0.00028), MXE of exon 12 of 
SRGAP1 (p.adj = 7.76E-7), RI of intron 4 of TJAP1 (p.adj = 0.00086), 
and SE of exon 2 of DROSHA (p.adj = 0.00022; Figures 4C–G). The 
PCA analysis revealed that significant ASEs could distinguish AD 
from the control group (Supplementary Figure S3B). Additionally, 93 
significant DEGs were identified in microglia 
(Supplementary Figure S3C). Moreover, 303 significant DTUs in 
microglial cells were detected (Supplementary Table S3), which 
include RBM38 (q = 1.441E-4) and PARP1 (q = 1.084E-5; 
Supplementary Figures S3D–G).

3.1.4. ASEs in neurons
Out of the 22,522 ASEs observed in neurons, only 15 of them were 

identified as significant, including 12 SE events, two RI events, and 
one A5SS event. These events were not sufficient to perform 
PCA. However, 62 significant DTUs in neurons were detected, as 
shown in (Supplementary Table S3). Moreover, no DEGs were found 
for neurons.

3.2. ASEs in NGE scRNA-seq data

In NGE data, 34 distinct clusters were detected by the clustering 
algorithm in 7 major cell groups, including astrocytes, endothelial 
cells, microglia, oligodendrocytes, excitatory neurons, inhibitory 
neurons, and oligodendrocyte progenitor cells (OPC; Figures 5A,B; 
Supplementary Figure S4). The algorithm was based on the 
co-expression of genes between close cells and the main components 
of the uniform manifold approximation and projection (UMAP) 
dimension reduction algorithm. Although the relative population of 
neurons appeared to decrease with increasing disease severity, and the 
relative population of glial cells and endothelial cells appeared to 
increase with increasing disease severity, these observations were not 
statistically significant (p > 0.05; Figure 5C). Furthermore, there was 
no significant correlation between the postmortem interval (PMI) and 
the number of genes and transcripts in each sample 
(Supplementary Figures S5A,B). The metavariables, including donor, 
age, gender, PMI, and APOE gene alleles, were relatively uniformly 
distributed among the clusters (Supplementary Figures S5C–I).

A total of 3,444 cases of ASEs were observed across all three 
groups. Of these, only 130 were deemed significantly altered. 
Specifically, 1,856 ASEs were detected between ADM and control, 
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with 57 being deemed significant. Between ADH and control, 3,040 
ASEs were identified, with 105 being significantly changed. Lastly, 
1,604 ASEs were observed between ADM and ADH, of which only 60 
were deemed significant (Supplementary Table S5). Some notable 
examples of changes are outlined below. Despite PTGDS being 
relatively similarly expressed across all cell types, alternative splicing 
changes of PTGDS transcripts were significantly observed in astrocyte 
(p.adj < 1E-20) and endothelial populations (p.adj = 0.00132), affected 
by A5SS upstream of exon three (Figures  5D–F). Specifically, in 
astrocytes, the longer exon was more frequently observed in both 
ADH and ADM, while the longer exon in endothelial cells was 
increased only in ADH. ASEs of CLU transcripts were significantly 
observed in astrocyte (p.adj = 4.21E-14) and EN populations 
(p.adj = 0.00012), with regions close to the 3′ end of its transcripts in 
both astrocytes and ENs representing a model of disrupted alternative 
splicing (Figures 5G–I). Some CLU transcripts with incomplete and 

short open reading frames (ORF) were observed. This disruption in 
ADM and control astrocytes was seen in the form of abnormal 
junctions of the internal regions of exon 7, which are close to the 5′ 
splicing site, with the internal regions of the 3′UTR. Another case of 
these abnormal junctions was found in the same location of the 3′UTR 
internal regions but with different locations, including intronic regions 
in ADM astrocytes. This splicing disruption is more evident in ADH 
ENs to the extent that some transcripts lack the coding region or the 
whole alpha domain. In addition, it seems that the 3′UTR was 
shortened in both ENs and astrocytes as the severity of the 
disease increased.

The study also revealed significant APA in the transcripts of 26 
genes. Notably, in microglia, HSP90AA1 transcripts with three 
additional coding exons at the 3′ end were increased in ADH 
compared to the control (Figure  5J). MEG3, a lncRNA, showed 
decreased length at the 3′ end in ENs with increasing disease severity 

FIGURE 2

Astrocytes alternative splicing events (ASEs). (A) Summary of the raw and significant counts in each ASE. (B) The mean of PSI between AD and Control 
in each ASE. RI and SE are increased in AD with 0.006014 and 0.040209 adjusted p values, respectively. (C) Detailed sashimi plots for one of the most 
significant transcripts of A3SS, (D) A5SS, (E) MXE, (F) RI, and (G) SE alternative splicing event. Alternative 3′ splice site (A3SS), alternative 5′ splice site 
(A5SS), skipped exon (SE), retained intron (RI), and mutually exclusive exons (MXE). (C,D) In each graph, the AD group is shown at the top (red), the 
control group is at the bottom (blue), the edited exons are in the middle (purple), the fixed exons are at the sides (gray), and the introns are shown with 
arrowed lines that indicate the direction of the strand.
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(Figure 5K). In astrocytes, longer transcripts of GJA1 were increased 
in ADM but decreased in ADH compared to the control (Figure 5L). 
In microglia, the 3′ end of APOE transcripts were decreased in ADH 
compared to the control (Figure 5M). However, allelic association 
analyses of APOE rs429358 polymorphism with increased splicing of 
the longer ENST00000252486 transcript in microglia (p = 0.8624) and 
astrocytes (p = 0.1594) were not confirmed (Supplementary Figure S6).

Specific distribution patterns in some sub-population areas were 
observed in the UMAP graphs of scZ scores, prompting a more 
detailed investigation at the cluster level of each population 
(Figures  5F,I). The investigation revealed that alternative splicing 
variation of some genes in astrocytes and ENs occurred only in certain 
subtype clusters. In astrocyte clusters 1 and 2, which express synaptic 
support genes, ASEs in FTL, CLU, and MT3 genes were observed, 
similar to cluster 6. Meanwhile, PTGDS showed ASEs in almost all 
astrocyte populations (Supplementary Figures S7A–D). In neuronal 
clusters, the EN-L5-6 subtype showed expression profiles in some cells 
more similar to other subpopulations than their own. EN-L5-6 

comprised clusters 3, 11, 13, 15, and 17, with relative ratios of ADH 
and ADM being higher in clusters 15 and 17, which had the highest 
SYT1 ASEs compared to other EN-L5-6 clusters. Conversely, the 
control group showed higher relative ratios in cluster 3 than the other 
groups (Supplementary Figures S7E–I). Therefore, to understand the 
effects of tau on alternative splicing in PFC neuronal subtypes, 
we assessed ASEs between neurons with and without tau pathology.

3.3. ASEs in NFT scRNA-seq data

The clustering algorithm detected 25 distinct clusters in 15 major 
cell groups, including eight EN cell lines classified based on their 
cerebral cortex location, four IN cell lines, namely IN-PVALB, IN-SST, 
IN-LAMP5, and IN-VIP, and three non-neuronal cell types, including 
oligodendrocytes and OPC in NFT data (Figures  6A,B; 
Supplementary Figure S8). In AD, tau pathology affects EN 
populations but not IN populations (Figure 6C). The PMI showed no 

FIGURE 3

Endothelial ASEs. (A) Summary of the raw and significant counts in each ASE. (B) The mean of PSI between AD and Control in each ASE. (C) Detailed 
sashimi plots for one of the most significant transcripts of A3SS, (D) A5SS, (E) MXE, (F) RI, and (G) SE alternative splicing event. Alternative 3′ splice site 
(A3SS), alternative 5′ splice site (A5SS), skipped exon (SE), retained intron (RI), and mutually exclusive exons (MXE). (C,D) In each graph, the AD group is 
shown at the top (red), the control group is at the bottom (blue), the edited exons are in the middle (purple), the fixed exons are at the sides (gray), and 
the introns are shown with arrowed lines that indicate the direction of the strand.
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significant correlation with the number of genes and transcripts in 
each sample (Supplementary Figures S9A,B). Furthermore, 
metavariables, such as donor, age, gender, PMI, and RNA integrity 
number (RIN), were relatively uniformly distributed among the 
clusters (Supplementary Figures S9C–I).

A total of 4,704 cases of ASEs were observed between neurons 
with and without NFT, out of which only 256 ASEs were significantly 
changed (Supplementary Table S6). Additionally, significant APA was 
detected in the transcripts of 18 genes. Some of the most noteworthy 
changes are described below. In EN-L5-6 (p.adj < 1E-20), EN-L4-6 (p.
adj = 4.26E-13), EN-L4-5 (p.adj = 1.37E-12), and EN-L3-5 (p.
adj = 3.10E-9) populations, significant alternative splicing changes of 
COX7C transcripts were observed, wherein the upstream of exon one 
was subjected to A3SS. Consequently, the expression of noncoding 
transcript ENST00000511472.5 was increased in neurons with NFT 
(Figure 6D). ASE of SYT1 transcripts was significantly observed in 

EN-L4-5 (p.adj = 0.00253) and EN-L5-6 (p.adj = 0.00431) populations, 
wherein a model of alternative promoter was observed in its 5′UTR 
(Figure 6E). There was a significant increase in PLEKHA5 transcripts 
in the EN-L3-5 population, with exon 10 experiencing SE. This led to 
an increase in the expression of the ENST00000429027.7 transcript, 
which includes exon 10, in neurons with NFT (Figure 6F).

Regarding APAs, we  observed that transcripts of SYT1 in 
EN-L4-6 with shorter 3’UTR were slightly increased in neurons with 
NFT (Figure 6G). In addition, an increase in the length of the 3′ end 
of GNAS transcripts was observed in EN-L5-6 with NFT (Figure 6H). 
In IN-PVALB with NFT, MEG3 transcripts were elongated at the 3′ 
end with longer exons, such as ENST00000522771.9, which terminate 
before the range of chr14:100845000_100850000 (Figure  6I). 
However, the length was reduced at the end of 3′ transcripts with the 
transcription termination region in the range of 
chr14:100860000_100865000 (Figure 6J).

FIGURE 4

Microglia ASEs. (A) Summary of the raw and significant counts in each ASE. (B) The mean of PSI between AD and Control in each ASE. MXE is increased 
in AD with 0.013336 adjusted p value. (C) Detailed sashimi plots for one of the most significant transcripts of A3SS, (D) A5SS, (E) MXE, (F) RI, and (G) SE 
alternative splicing event. Alternative 3′ splice site (A3SS), alternative 5′ splice site (A5SS), skipped exon (SE), retained intron (RI), and mutually exclusive 
exons (MXE). (C,D) In each graph, the AD group is shown at the top (red), the control group is at the bottom (blue), the edited exons are in the middle 
(purple), the fixed exons are at the sides (gray), and the introns are shown with arrowed lines that indicate the direction of the strand.
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FIGURE 5

ASEs of NGE data. (A) UMAP plot showing the six major cell types of PFC. (B) Heatmap of each cell type’s average scaled expression of top enriched 
genes. (C) Proportions of each cell type found in ADH, ADM, and CTR of PFC. (D) The sashimi plots of PTGDS transcripts show an A5SS event with 
differential scZ median in astrocytes and endothelial cells. (E,H) The violin plots show the distribution of scZ scores in each population by the group. 
Black dots represent the median. (F,I) The UMAP plots demonstrate cells with the gene expression in purple, cells with negative scZ in green, and 
positive in pink. (G) The sashimi plots of CLU transcripts show abnormal splicing in excitatory neurons (EN) and several ASEs with differential scZ 

(Continued)
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3.4. DGE of single cell data

Several DEGs were identified in the astrocyte and EN populations 
of the NGE data (Supplementary Figure S10; Supplementary Table S7). 
When comparing ADH to control, most DEGs were down-expressed 
in astrocytes, while they were up-expressed in neurons. No significant 
expression changes were detected in the comparison of ADM 
endothelial cells with control and in OPCs. DGE analyses of different 
astrocyte clusters demonstrated significant changes depending on the 
cluster. However, genes such as GFAP were increased in all 
comparisons with the control condition, with a higher increase 
observed in ADH than in ADM. Additionally, DTU genes such as 
CLU, APOE, HSP90AA1, and AHI1 were also identified among the 
DGE results. Most DEGs were observed between neurons with and 
without NFT in ENs and IN-PVALB, while other INs had only a few 
DEGs (Supplementary Figure S11).

Furthermore, our analysis identified DGEs associated with 
alternative splicing regulation. Specifically, CELF2 exhibited a 6.3-fold 
decrease in expression in ADM astrocytes compared to control (p.
adj = 1.64E-9), a 4.2-fold decrease in ADH astrocytes compared to 
ADM (p.adj = 2.37E-15), a 9.8-fold decrease in ADM ENs compared 
to control (p.adj = 1.2E-5), and an 11.3-fold decrease in ADH ENs 
compared to ADM (p.adj = 3.15e-8; Figure 7A). Additionally, DDX5 
showed an 8.9-fold decrease in expression in ADH astrocytes 
compared to ADM (p.adj = 1.85E-17), a 2.3-fold decrease in ADH ENs 
compared to control (p.adj = 5.42E-18), a 41.6-fold decrease in ADH 
microglia compared to ADM (p.adj = 1.48E-10), and a 2.6-fold 
decrease in expression in EN-L5-6 with tau (p.adj = 0.00045; 
Figures  7B,C). Further correlation analyses revealed a correlation 
between CELF2 expression and scZ score distribution. Cells expressing 
lower levels of CELF2 exhibited more splicing disruptions in CLU 
transcripts in ENs (Figure 7D). Moreover, a direct correlation was 
observed between decreased expression of DDX5 and increased 
disrupted transcripts in CLU variants in astrocytes, FTL ASEs in 
microglia, and SYT1 in EN-L5-6 (Figures  7E–G). Algorithms 
predicting protein binding to RNA predicted that CELF2 and DDX5 
bind to CLU and DDX5 binds to SYT1, but not in the case of DDX5 
binding to FTL (Figure 7H). In the case of CLU, it is predicted that 
CELF2 and DDX5 binding sites are located in the middle and end of 
3′ transcripts, in the vicinity of the acceptor and donor regions of 
misplaced connections.

3.5. Impacted pathways in AD

Most cell types in each dataset exhibited expression changes 
related to AD pathophysiology, with microglia and EN showing 
splicing and expression changes in RNA processing and splicing 
pathways. The bulk sequencing data suggested that splicing changes 
in microglia targeted steroid hormone signaling pathways and genes 
involved in RNA processing, including splicing themselves 

(Figure 8A). Cellular components such as spliceosomal complexes, 
methyltransferase, replication, and related chemical reactions were 
also targeted. The affected pathways identified in the single-cell 
sequencing data of microglia in ADM were similar to those observed 
in the bulk sequencing data, with pathways affecting the response to 
steroid hormones and RNA processing, as well as those impacting 
neuronal death, Aβ clearance and inflammatory responses, which are 
hallmarks of AD (Figures 8B–D). In EN-L5-6 neurons with NFT, the 
axonogenesis pathway network, response to oxygen levels, cell death, 
synaptic signaling, and synaptic plasticity were targeted (Figure 8E). 
In the population of EN-L4-5 neurons with NFT, a more extensive 
network of genes was also present, including metal ions targeted in 
synaptic signaling to the cytoskeleton and homeostasis (Figure 8F).

Furthermore, STRING protein–protein interaction analysis was 
performed on significant ASEs of NGE and NFT with the addition of 
CELF2 and DDX5 as two possible influential splicing factors, and key 
AD factors include APP, MAPT, PSEN1, PSEN2, BACE1, BACE2, and 
TREM2 to discover whether the identified differentially spliced 
transcripts have potential known functional interactions with AD 
factors (Figures 9A,B). Notably, the first biggest cluster of NGE data 
and the second biggest cluster of NFT data contributed to AD 
pathogenesis and have a role in clearing amyloid and tau in the brain. 
Also, significant interactions were observed in other biological 
pathways involved in neurodegeneration, such as ion homeostasis, 
glial cell activation in immune response, regulation of reactive oxygen 
species metabolic process, cytoplasmic translation, and RNA 
processing. Each cluster has the same color bubbles.

4. Discussion

In recent years, advancements in molecular techniques such as 
GWAS and RNA-seq have facilitated the identification of potent 
molecules associated with the pathology of AD, which were previously 
overlooked (Penney et  al., 2020). However, these studies were 
frequently confined to analyzing tissues rather than individual cells 
and prioritized gene expression over transcript expression, 
representing a more functional level than gene expression. This study 
addresses these limitations by examining cell-type-specific transcripts 
alterations in AD, achieving a more comprehensive analysis of AD 
transcriptomics data than previous studies. To the best of our 
knowledge, only two studies have attempted to identify DTUs in 
Alzheimer’s disease AD brain and AD model based on cell types. 
Marques-Coelho et al. indirectly assigned genes to unique cell types 
in the medial temporal gyrus region of AD brains and compared 
DEGs/DTUs from bulk RNAseq to unique cell populations from 
previously published scRNAseq data (Marques-Coelho et al., 2021). 
In contrast, our study directly analyzed scRNAseq reads in the PFC 
of the AD brain. In a separate investigation, Weller et al. identified 
DTUs in scRNAseq data from the hippocampus of APOE null mutant 
mice using Sierra (Weller et  al., 2022), which uses pseudobulk 

median in EN and astrocyte cells; CLU beta domain (light orange) and alpha domain (green). (J–M) The Peak plots present differential polyadenylation 
sites (J) HSP90AA1 in microglia, (K) MEG3 in EN, (L) GJA1 in astrocyte, and (M) APOE in microglia, which is correlated with rs429358-C 
(Supplementary Figure S6). Cyan lines indicate CTR, yellow lines indicate ADM, and red lines indicate ADH. CTR, control; ADM, Alzheimer’s disease with 
moderate severity; ADH, Alzheimer’s disease with high severity.
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FIGURE 6

ASEs of NFT data. (A) UMAP plot showing the neuron subtypes of PFC. (B) Heatmap of the average scaled expression of top enriched genes for each 
subtype. (C) Each subtype was reported in ADH, ADM, and CTR of PFC. (D) The sashimi plots of COX7C transcripts show the A5SS event with 
differential scZ median in EN-L3-5, EN-L4-5, EN-L4-6, and EN-L5-6. (E) The sashimi plots of SYT1 transcripts show abnormal splicing in excitatory 
neuron subtypes and several ASEs with differential scZ median in EN-L4-5 and EN-L5-6. (F) The sashimi plots of PLEKHA5 transcripts show SE event 
with differential scZ median in EN-L3-5. (G–J) The Peak plots present differential polyadenylation sites (G) SYT1 in EN-L4-5, (H) GNAS in EN-L5-6, and 
(I,J) MEG3 in IN-PVALB with multiple sites. Cyan lines indicate MAP2+/AT8−, and red lines indicate AT8+. Indicated p value as less than 0.05, 0.01, and 
0.001 illustrated with one, two, and three stars, respectively.
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analyses to detect DTUs and peak calling to detect APA (Patrick et al., 
2020). Our method employed SpliZ scalar quantification to measure 
true exon junctions between cell types and detected APA using at least 
two peaks in human postmortem data. The present study highlights 
the cell type and subtype-specific alterations in splicing patterns of 
certain genes in AD, even in the absence of expression changes. 
Notably, an increase in ASEs is observed with disease progression. 
We used an annotation-free approach to scRNAseq data analysis to 
identify novel splicing ASEs and disruptions. Collectively, our 
findings offer a detailed account of cell type-specific modifications in 
gene expression in the AD brain and imply that alternative splicing 

may play a significant role in the pathological progression of 
the disease.

In order to cover the shortcomings of each technique in this study, 
the data of three different RNA sequencing approaches, including bulk 
RNA-seq, single nuclei RNA-seq, and single soma RNA-seq, were used 
to identify ACEs in AD. While bulk sequencing provides full-length 
coverage of transcripts in contrast to 10x single-cell sequencing, it is 
biased in favor of more populated subtypes. snRNA-seq is a widely 
used method to determine brain cell type complexity and is used to 
construct a comprehensive human brain cell atlas, although it relies 
on the nuclear mRNA pool (Kim et al., 2023; Pavan et al., 2023). While 

FIGURE 7

Correlation of CELF2 and DDX5 expression with ASEs in single cells. (A–C) The UMAP plots show the expression pattern of (A) CELF2 in NGE data, 
(B) DDX5 in NGE data, and (C) DDX5 in NFT data. (D–G) The scatter plots indicate the correlation between the splicing factor expression level on the 
horizontal axis and the scZ score on the vertical axis in each cell. r and p values are demonstrated on top of each plot for the Pearson correlation 
coefficient. (D) Correlation between CELF2 expression and ScZ score of CLU in EN. (E) Correlation between DDX5 expression and ScZ score of CLU in 
astrocyte. (F) Correlation between DDX5 expression and ScZ score of FTL in microglia. (G) Correlation between DDX5 expression and ScZ score of 
SYT1 in EN-L5-6. (H) The table shows the classifier prediction values of the binding probability between the splicing factor and the transcript with the 
RPISeq predictor. The colored bar chart shows prediction scores at every position of the sequence. Scores higher than 0.5 indicates the probable 
binding site and are colored blue. RF, random forest; SVM, support vector machine.

https://doi.org/10.3389/fnmol.2023.1237874
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Farhadieh and Ghaedi 10.3389/fnmol.2023.1237874

Frontiers in Molecular Neuroscience 13 frontiersin.org

FIGURE 8

Impacted pathways of PFC cells in AD. (A) The dot plots show that GO terms significantly changed in microglia. (B) the chord plot indicates that steroid 
hormone signaling and RNA splicing impact the most significant ASE (black) and DTU (grey). (C) Biological processes are changed in ADH (red) and 
ADM (yellow) microglia. (D) Cnetplot shows the relation of ASE, APA, and DGE-involved genes with GO terms in ADM microglia. (E,F) Cnet plots 
present the relation of ASE, APA, and DGE-involved genes with GO terms in (E) EN-L5-6 and (F) EN-L4-5.
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bulk RNA sequencing data shows a strong correlation between nuclei 
and whole-cell samples in differential expression analysis, at the 
single-cell or single-nucleus levels, cell-to-cell or nucleus-to-nucleus 
correlations decrease and replicate variations become larger than the 
bulk samples (Kim et al., 2023). Recent studies report that the single-
nucleus RNA sequencing technique is biased towards genes with 
longer sequence lengths and roughly >10 exons, whereas the single-
cell RNA sequencing technique captures shorter genes more efficiently 
(Gupta et al., 2022; Pavan et al., 2023). Moreover, Characterization of 
the nuclear and cytosolic transcriptomes in human brain tissue reveals 
that transcripts encoding nuclear-encoded mitochondrial proteins are 
significantly enriched in the cytosol, while lncRNAs significantly 
enriched in the nucleus (Zaghlool et al., 2021). Therefore, these studies 
suggest that examining single-cell sequencing data alongside bulk 
sequencing data is better to gain a more detailed insight. Our analysis 
showed that most of the known junctions were identified in common 
across all three studies, bulk, NGE, and NFT (Figure 10A). There were 
51,196 intersected ASEs between NGE and NFT, most including 
unannotated junctions. After we applied a threshold of 0.05 on the 
p.adj values, the number of genes with significant splicing changes in 
NGE and NFT was less than the bulk data (Figure 10B). There were 
more intersected genes with significant splicing alteration between 
NFT and NGE rather than bulk with NFT or NGE. The most 
intersected differential annotated junctions were observed between 
NFT and NGE neurons (Figure 10C). In every study, most differential 
annotated junctions were observed in neurons rather than the other 
cell types. However, more significant ASEs were observed in NFT and 
NGE neurons data than in the bulk neurons data. This highlights the 
advantage of single-cell data, which ignores the splicing variation 
between different cell subtypes by comparing diagnoses in a given 

subtype. The intronic/exonic ratio, junctional reads proportion of the 
total reads, and novel/known junction ratio was higher in NFT than 
NGE and higher in NGE than bulk data (Figures 10D–F).

This paper reports several cases of SE closely related to AD 
pathology, while the effects of others remain unclear. One such case is 
SLC27A1, expressed explicitly in astrocytic clusters four and six and 
involved in transporting fatty acids from the BBB to the brain (Ochiai 
et al., 2017). SLC27A1 plays a vital role in brain health by absorbing 
endogenous neuroprotective factors such as docosahexaenoic acid and 
biotin from the blood. However, an in vitro study shows that Aβ 
inhibits the uptake of docosahexaenoic acid by SLC27A1 from the 
environment (Ochiai et  al., 2019). Moreover, the absorption of 
substances by SLC27A1 is related to the presence of insulin in the 
environment (Ochiai et al., 2017). Our findings suggest an SE in the 
coding region of the cytoplasmic regulatory subunit of AMP-binding 
protein, which may be  related to the insulin signaling pathway. 
Another case is DROSHA, an RNase enzyme that plays a crucial role 
in the processing of microRNAs. Our results indicate that transcripts 
of DROSHA are significantly SE in exons two, six, and seven in 
microglia, resulting in a reduction in the length of the 5′ UTR region 
in AD and an increase in the presence of exon seven in the structure 
of DROSHA transcripts in AD microglia. Recent studies have reported 
different types of DROSHA transcripts that show subcellular 
localization differences, although they do not exhibit apparent 
functional differences in the processing of microRNAs. Interestingly, 
this process appears to be cell type-specific, and the presence of exon 
seven in DROSHA mRNA is essential for its cytoplasmic localization 
(Dai et al., 2016; Link et al., 2016). In addition, new evidence suggests 
that increased Aβ in postmortem brains and rat brains reduces the 
presence of DROSHA in the nucleus and increases its presence in the 

FIGURE 9

STRING Protein–protein interaction (PPI) analyses. (A) PPI network connectivity for proteins identified as differentially spliced in NGE data represented 
with normal bubbles and key etiological proteins of AD or DDX5 and CELF2 represented with a yellow star inside bubbles. The network contains 11 
clusters and 66 nodes with 157 edges (vs. 74 expected edges); clustering coefficient 0.481; enrichment value of p  <  1.0e-16; average node degree 4.76. 
(B) PPI network connectivity for proteins identified as differentially spliced in NFT data represented with normal bubbles and key etiological proteins of 
AD or DDX5 and CELF2 represented with a yellow star inside bubbles. The network contains 12 clusters and 71 nodes with 157 edges (vs. 94 expected 
edges); clustering coefficient 0.475; enrichment value of p 1.53e-09; average node degree 4.42. Edge line thickness indicates the strength of data 
support. Each cluster has the same color bubbles.
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FIGURE 10

Comparison among bulk, NGE, and NFT. (A) Venn diagram indicates that numbers of total ASEs identify in each data. (B) Venn diagram illustrates the 
numbers of total significant ASEs in each study. (C) The upset plot compares total annotated ASEs based on the cell type and study. (D) Comparison 
intronic/exonic ratio, (E) junctional reads proportion, and (F) novel/known junction ratio among studies by ANOVA post hoc Tukey. p  <  0.05 (*), p  <  0.01 
(**), and p  <  0.001 (***).
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cytoplasm. This phenomenon is associated with the phosphorylation 
of DROSHA by p38 MAPK in neurons, and the DROSHA 
phosphorylation site is located near the junction of exon eight to seven 
(Xu et al., 2021). Another example is PLEKHA5 transcripts, which 
show SE that includes an additional exon between exon nine and ten. 
This SE increases the mRNA structure in EN-L3-5 with NFT, and this 
region encodes the Pleckstrin homology domain, which regulates 
plasma membrane and trans-Golgi membrane traffic activities 
(Sluysmans et al., 2021). Finally, we observed that RI is another type 
of ASE, significantly increased in astrocytes. For instance, NPAS2, 
which is involved in the circadian rhythm, has a splicing disorder in 
its transcripts that may be related to sleep disorder in AD (Sharma 
et al., 2021).

The findings pertaining to astrocytes indicate that alternate 
splicing in this cell type is closely associated with Alzheimer’s disease 
(AD). Moreover, certain sub-types exhibit distinct patterns of 
alternative splicing and expression linked to specific AD pathologies. 
Notably, astrocytes exhibit significantly impaired splicing of CLU 
transcripts, a gene highly expressed in astrocytes. CLU is an 
extracellular chaperone that interacts and binds to Aβ, reducing its 
aggregation and promoting its clearance, suggesting a potential 
neuroprotective role. However, some studies have suggested that CLU 
may contribute to the spread of Aβ in the brain and serve as a key 
mediator in Aβ-induced neurotoxicity. This interaction may depend 
on the distribution ratio of CLU to Aβ (Foster et al., 2019). Most of the 
astrocyte-related CLU splicing disruptions observed in this study are 
related to the alpha domain. Some of the abnormal junctions miss the 
glycosylation and phosphorylation residues of CLU, which disruption 
of these structures can lead to a decrease in the polarity of the protein 
and a suitable substrate for the deposition of insoluble compounds 
such as Aβ and NFT or Its secretion is prevented. The CLU gene is 
known as the third risk factor for late-onset AD. Studies of allele-
specific quantitative loci indicate that CLU splicing changes are related 
to rs9331896 and rs7982 polymorphisms in the intronic region of the 
CLU gene (Raj et al., 2018; He et al., 2022). Another crucial gene in 
astrocytes is APOE, the first risk factor for late-onset AD, which 
undergoes APA and reduced expression in astrocytes. In humans, 
there are three common types, ApoE3, ApoE2 and ApoE4, which 
differ by only one amino acid at position 112 or 158. APOE plays a 
vital role in Aβ clearance, which ApoE2 has the strongest effect on Aβ 
clearance, followed by ApoE3 and least of all ApoE4 (Huynh et al., 
2017). Studies of allele-specific quantitative expression loci reveal an 
association between APOE ASE and rs429358 polymorphism, coding 
ApoE4, in the coding region of the 3′ end of the APOE gene (He et al., 
2022). Although the PCR data related to this polymorphism was 
available for the samples used in this study, the correlation between 
the allele and the reduction of the length UTR3’ and the N-terminal 
coding of APOE was not statistically significant, possibly due to the 
smaller sample size compared to the previous study. A network of 
genes involved in metal homeostasis, oxidation, and metabolism, such 
as FTL, MT1E, MT1G, and MT3, is evident in astrocyte clusters 
related to the nutritional support of neurons and synapses. Disruption 
in the transcripts related to these genes primarily leads to autophagy 
disorder, one of the pathological features of AD (Koh and Lee, 2020). 
Furthermore, a significant decrease in the expression of DDX5, an 
RNA helicase that regulates spliceosome structure and prevents the 
formation of unwanted RNA loops, was observed in astrocytes. This 
decrease correlated with an increase in the dispersion of scZ scores of 

CLU transcripts. Additionally, studies suggest that DDX5 increases the 
access of U1snRNP to the 5′ binding site of MAPT exon ten by 
structurally changing the stem-loop structure, which prevents the 
formation of incomplete tau proteins (Kar et al., 2011). Additionally, 
studies suggest that DDX5 increases the access of U1snRNP to the 5′ 
binding site of MAPT exon ten by structurally changing the stem-loop 
structure, preventing incomplete tau proteins (Li et al., 2021). PTGDS 
is a highly abundant protein found in cerebrospinal fluid that has been 
suggested to act as an endogenous chaperone for Aβ. The expression 
level of PTGDS is related to dementia, with its expression being 
regulated both directly and indirectly by estradiol (Unno et al., 2015). 
It has been reported that plasma levels of PTGDS in AD patients are 
associated with increased levels of inflammatory cytokines and 
reactive oxygen species (Dharshini et al., 2019). Our study revealed 
that the A5SS event of PTGDS transcripts endothelial and astrocyte 
cells. UniProt data suggests this event occurs within the coding region 
of turn between beta sheets with disulfide bonds near the enzyme’s 
active site, potentially impacting the enzyme’s regulatory activities. A 
recent NMR study has shown that PTGDS can inhibit primary and 
secondary nucleation of Aβ40 by interacting with both monomers and 
the surface of fibrils, reducing the final fibril content (Kannaian et al., 
2019). The proposed binding region of PTGDS with Aβ is adjacent to 
the turn affected by the A5SS event in PTGDS.

Our analysis revealed that genes contributed to RNA splicing and 
the steroid hormone signaling pathways in microglia undergoing 
DTU and DGE. Studies suggest that the loss of ovarian hormones 
during menopause may increase the risk of AD in women, as 
androgens play a crucial role in various brain functions, such as 
neurotransmission, neurodevelopment, survival, protection against 
oxidative stress, reduction of Aβ peptide levels, and reduced tau 
hyperphosphorylation (Breijyeh and Karaman, 2020). Furthermore, 
our findings showed a correlation between the splicing changes of FTL 
transcripts and DDX5 expression. In microglia, FTL has increased 
expression and alternative splicing of exon 3, despite only one FTL 
transcript in the reference genome and the skipping of exon three 
observed in ADH being considered abnormal. Exon three encodes 
FTL alpha helices, and mutations in this region have been linked to 
Parkinsonian symptoms, ataxia, and mild non-progressive cognitive 
impairment (Maciel et al., 2005). Our analysis also revealed several 
alternative APAs in microglia. Moreover, we  observed expression 
changes in factors involved in shortening the poly A tail of mRNA 
molecules synthesized in the nucleus of microglia. While APOE 
splicing changes were also observed in microglia, we  did not 
statistically confirm its relationship with rs429358. HSP90AA1, an 
intracellular chaperone that corrects misfolded proteins and prevents 
their disruptive aggregation, underwent 3′ end elongation in 
ADH. Studies suggest that this difference in elongation may be due to 
alternative promoter recognition by different transcription factors in 
combination with RNA polymerase rather than APA. An increase in 
this transcript’s 3′ end length is associated with factors such as viral 
infection, inflammation, cell death, and increased glucose 
concentration(Zuehlke et al., 2015; Bohush et al., 2019). Increased 
expression of HSP90AA1 was also observed in microglia and EN in 
other studies (Bohush et al., 2019).

In contrast to the bulk sequencing data, which showed limited 
cases of ASEs and DTU and lacked any DGE in neuronal types, single-
cell sequencing data revealed multiple cases of expression and 
transcriptome changes. This may be due to the wide transcriptome 
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difference between EN and IN or may be due to an error in the neuron 
collection protocol. The events identified in neurons using single-cell 
sequencing data appear to be repeated in the bulk sequencing data but 
are not statistically significant. Increasing the number of donors for 
neuron lineages may improve this issue. Nonetheless, important genes 
such as TSPAN14 are observed in the DTU of the bulk data. Studies 
on quantitative allele-specific expression loci methylation support the 
hypothesis that increased brain expression of TSPAN14 is linked to an 
increased risk of AD (Bellenguez et al., 2022). CLU is an example of 
widespread dysregulation of ENs transcripts, and this disruption 
seems to enhance with disease severity. This irregularity increased 
correlated with the decrease of CELF2 and DDX5 expression. CELF2, 
also called ETR3, has been identified as a novel risk factor associated 
with AD, particularly in individuals carrying the high-risk APOE ε4 
allele, and it has also shown significant association with AD 
independent of APOE ε4, indicating its potential as a valuable 
therapeutic target for addressing underlying genetic causes of the 
disease (Tran, 2023). Prior research has demonstrated that the 
alternative splicing of exon three in TREM2, a genetic risk factor for 
AD, is regulated by two paralogous RNA-binding proteins, CELF1 and 
CELF2, with CELF2 being implicated in the reduction of full-length 
TREM2 protein expression through exon three skipping and 
nonsense-mediated mRNA decay, which effects on microglial 
responses to the Aβ aggregation (Yanaizu et al., 2020). Also, CELF2 is 
involved in influencing various transcripts, such as different exons of 
MAPT and NMDAR1 exon five, in the mis-splicing event in myotonic 
dystrophy type 1, particularly in reducing the inclusion of MAPT exon 
10, indicating its role in alternative splicing regulation and potential 
nuclear and cytoplasmic functions in the brain (Liu et al., 2021). To 
understand the specific relationship between CELF2 and tau splicing 
in AD, further studies are needed to investigate the interactions 
between CELF2 and the tau gene in AD-affected brain tissues.

In addition to protein-coding genes, our study identified changes 
in transcripts of lncRNAs such as MEG3 and MALAT1 in neurons. 
MEG3 displayed one of the most distinct cell type-dependent splicing 
patterns among ENs, INs, and OPCs, as well as among different AD 
pathological conditions. Previous studies have reported the potential 
therapeutic effects of MEG3 in AD, as overexpression of MEG3 was 
shown to improve cognitive disorders, reduce nerve damage, and 
inhibit astrocyte activation in the hippocampal tissues by inhibiting 
the PI3K/Akt signaling pathway in rats (Yi et al., 2019). However, 
another study using human neurons transplanted into mouse brains 
exposed to Aβ found specific NFT pathology and cell death in human 
neurons, while mouse neurons showed only mild pathology (Balusu 
et al., 2022). That study further demonstrated that the induction of 
MEG3 in ex vivo conditions led to cell necroptosis, unlike in mice, 
which showed no effect (Balusu et al., 2022). Also, unannotated events 
of SYT1 in the 5′ region are actually part of the SYT1 alternative 
promoter and are not splicing disruption. This is due to some of the 
SYT1 variants had not been annotated in the version of the reference 
genome that we used, GENCODE V39 (Ensemble 105), while they 
were annotated in the recent version of the reference genome, 
GENCODE V42 (Ensemble 108). Our study identified an 
undocumented splicing event, including an unusual junction in 
position chr17:29,515,203-29,546,866 of the TAOK1 gene, which is 
present in all individuals in control, ADM, and ADH groups. 
Interestingly, the expression of this unknown transcript is increased 
in ADH ENs compared to the control and ADM ENs. The region 

lacked pseudogenes, nonsense RNA, and DNase signals, and the 
deleted region corresponded to the regulatory region of TAOK1 
through ATM-mediated phosphorylation (Raman et al., 2007). This 
unknown transcript was increased in neurons with NFT in all cortical 
layers, but the increase was not statistically significant. TAOK1 plays 
a crucial role in regulating microtubule dynamics and organization, 
and it can induce apoptotic changes through the activation of JNK, 
MAPK, and caspases. Furthermore, TAOK1 regulates MAPKs and 
stimulates the JNK and p38 MAPK signaling pathways. Our findings 
also show that TAOK1 expression is increased in neurons with NFT, 
consistent with its role in regulating tau phosphorylation. Two 
phosphorylated tau residues (T123 and T427) are identified in the AD 
brain that appears to be specifically targeted by TAOK1. Notably, a 
TAOK1 inhibitor reduced tau phosphorylation in cortical neurons 
without affecting synapse markers and neuronal health (Giacomini 
et al., 2018). These results suggest that TAOK1 may be a potential 
therapeutic target for tauopathy in AD.

On the other hand, it is important to note that not all ASEs of 
certain genes can be detected in single-cell data due to poly A tail 
capture. Although almost all transcripts significantly altered in AD 
have a stop codon in the ORF or 3’ UTR, except for some CLU and 
TAOK1 transcripts, which are likely to be eliminated by non-stop 
decay mechanisms, it is still unclear whether these transcripts decayed 
by other mRNA surveillance mechanisms such as peptide dependent 
translation arrest, 18S nonfunctional rRNA decay, and mRNAs 
containing a strong secondary structure within the ORF (Wolin and 
Maquat, 2019). it is not completely clear which sequence length 
increase or decrease can affect RNA turnover (Andrzejewska et al., 
2020). Furthermore, the question remains whether these ASEs 
contribute to the development of AD pathology or are a result of it or 
whether a positive feedback loop is involved. Lastly, it is unclear 
whether these altered transcripts are translated into functional 
proteins and, if so, what impact these changes have on protein 
function in some ASEs. Further investigation is required to address 
these questions.

In the future, the VASA-Seq technology could be a valuable tool 
for identifying all relevant ASEs in AD postmortem brain tissues due 
to its ability to provide full-length reads in over 10,000 cells (Salmen 
et al., 2022). However, to validate and further investigate the spread of 
these ASEs as the first steps, more precise methods such as in situ 
hybridization and immunohistochemistry should be used. There is 
also currently less data available in the databases for CELF2 and 
DDX5 than for other RBPs. Crosslinking and immunoprecipitation 
methods could also be employed to explore the interaction between 
splicing factors and ASEs (Sternburg and Karginov, 2020). The 
recently developed single-cell long-read method can provide more 
details of the final RNA sequence and may predict more translational 
regulation by the asset of the machine learning approach than the 
current studies (Hardwick et al., 2022; Joglekar et al., 2023). However, 
single-cell long read transcriptomics has been limited in capturing a 
wide range of isoform diversity due to the sequencing depth 
constraints inherent in its protocols. As a result, datasets typically 
exhibit low redundancy levels between cells of the same cell type 
(Arzalluz-Luque et  al., 2022). Also, polysome profiling provides 
information about the translational control consequences of ASEs 
(Reixachs-Solé and Eyras, 2022). Also, after researching these cases, it 
is possible to integrate RNA sequencing data with other omics data, 
such as proteomics and epigenomics, and identify potential 
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therapeutic targets. These methods may provide a more complete 
understanding of the relationship between ASEs and AD pathology, 
which could lead to the development of novel therapeutic strategies. 
In summary, our study sheds light on the importance of splicing in the 
AD pathology that might be considered AD as a spliceopathy during 
the disease progression. By applying a cell-level approach, we have 
identified several novel ASEs in the PFC cells of AD. Further research 
on splicing in AD may lead to the development of novel diagnostic 
and therapeutic strategies for neurodegenerative diseases.
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