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Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or 
disease affecting the peripheral nervous system, is associated with an extremely 
large disease burden, and there is an increasing and urgent need for new therapies 
for treating this disorder. In this review we have highlighted therapeutic targets 
that may be  translated into disease modifying therapies for PNP associated 
with peripheral neuropathy. We  have also discussed how genetic studies and 
novel technologies, such as optogenetics, chemogenetics and single-cell RNA-
sequencing, have been increasingly successful in revealing novel mechanisms 
underlying PNP. Additionally, consideration of the role of non-neuronal cells and 
communication between the skin and sensory afferents is presented to highlight 
the potential use of drug treatment that could be  applied topically, bypassing 
drug side effects. We  conclude by discussing the current difficulties to the 
development of effective new therapies and, most importantly, how we might 
improve the translation of targets for peripheral neuropathic pain identified from 
studies in animal models to the clinic.
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Introduction

Neuropathic pain is defined by the International Association for the Study of Pain (IASP) 
as “pain caused by a lesion or disease of the somatosensory nervous system” (Treede et al., 2008). 
A classification of syndromes associated with clinically relevant pain has been produced by a 
task force established by the IASP in collaboration with World Health Organization (WHO) 
representatives. This effort also resulted in the inclusion of chronic neuropathic pain (NeuP) 
diagnoses in the 11th revision of the WHO International Classification of Diseases and Related 
Health Problems (ICD) (Scholz et al., 2019; Treede et al., 2019). In addition, the IASP has 
updated the grading system for NeuP. Using this grading system, it is possible to define a 
diagnosis of possible, probable, or definite NeuP based on patient history, examination and 
confirmatory diagnostic tests (Finnerup et al., 2016; Colloca et al., 2017).

Neuropathic pain is broadly divided into central or peripheral neuropathic pain (PNP) 
(IASP, 1979; Bankar et al., 2018; Rumora et al., 2019). PNP arises from a damage or disease 
affecting the peripheral nervous system, including neuropathic pain associated with peripheral 
neuropathy (Loeser and Treede, 2008). PNP is associated with an extremely large disease burden 
and involves sensory dysfunctions, including spontaneous pain (shooting, burning or stabbing 
pain; “pins and needles” sensation) and increased evoked pain responses to mechanical and 
thermal stimuli. Despite the high prevalence of neuropathic pain (7%–8% of the general 
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population) (van Hecke et al., 2014; Rice et al., 2016), current drugs 
available for treating PNP are only partially effective (Finnerup et al., 
2015), and the long-term effects of these drugs, particularly opioids, 
are problematic (Finnerup et al., 2015; Vowles et al., 2015). The first-
line recommended drugs (tricyclic anti-depressants, serotonin/
noradrenaline reuptake inhibitors, and gabapentoids) produce limited 
relief in small subset of patients; indeed, one study reported that 4–8 
patients must be treated for one patient to experience a 50% pain 
reduction compared with placebo (Finnerup et al., 2015). Opioids are 
among the less effective for treating neuropathic pain showing 
increased dilemmas linked to chronic use (Vowles et al., 2015; Jones 
et al., 2018). Considering the ongoing “opioid crisis” (Volkow and 
Blanco, 2021), it is crucial to understand neuropathic pain and 
develop novel, safer, non-addictive, and more valid treatments based 
on mechanistic targets specific to PNP.

One critical issue that prevents consistent, effective translation of 
preclinical studies to clinical efficacy is that there exists fundamental 
molecular and physiological differences in the biology of neuropathic 
pain between the rodent models currently used in preclinical studies 
and humans (Mogil, 2019). It is also not clear if these mechanisms 
depend on the characteristics underlying etiology; therefore, 
classifying neuropathic pain according to sensory phenotypes could 
provide more information about the pathophysiological mechanisms 
of these syndromes (Truini and Cruccu, 2016; Forstenpointner et al., 
2018). Such mechanism-based approaches to the study of PNP might 
facilitate in adapting therapies for treating individual patients and 
could be helpful for drug development, allowing patients with selected 
phenotypes to power clinical trials (Truini and Cruccu, 2016; Vollert 
et al., 2017; Forstenpointner et al., 2021). Sensory phenotypes are 
defined using patient questionnaires for assessing pain quality 
(Bennett et al., 2007; Baron et al., 2012; Attal et al., 2018). In addition, 
a neurological examination can be used to evoke dynamic allodynia 
and diagnostic methodologies, such as quantitative sensory testing 
(QST); standard neurophysiological techniques, including 
electrophysiological studies, somatosensory and laser evoked 
potentials, microneurography and skin biopsy are used to determined 
sensory phenotypes (Truini and Cruccu, 2016; Colloca et al., 2017; 
Themistocleous et al., 2018). However, the stratification approach of 
QST has been questioned for (i) the inability to distinguish between 
painful and painless neuropathy, (ii) the discrepancy between 
experimentally evoked and spontaneous pain, and (iii) the potential 
discrepacy between the site of the sensory stimulation and the source 
of pain (Forstenpointner et al., 2021; Schmelz, 2021). Hence, although 
the strategy of differentiating patients according their sensory 
phenotypes is promising, stratification will most likely ultimately 
require multiple approaches, including not only QST, but also patient-
reported questionnaires (Bouhassira et al., 2021), skin biopsy, and 
other more objective parameters or biomarkers, such as 
microneurography, evoked potentials and neuro-imaging combined 
with genetic screening (Calvo et al., 2019; Tracey et al., 2019; Egenolf 
et al., 2021).

While we are aware of the complex pathophysiological profile 
underlying PNP, ranging from primary terminal afferents in the skin 
(Feldman et al., 2017) to central areas in the spinal cord and brain that 
amplify and process nociceptive information (Colloca et al., 2017), in 
this review we will focus on peripheral mechanisms that trigger PNP, 
highlighting promising therapeutic targets that may be translated into 
disease modifying therapies for PNP.

Peripheral neuropathic pain: developing 
novel pain treatments

The last 20 years have seen massive advances in our understanding 
of the neurobiology of pain and nociception, including the peripheral 
and central mechanisms underlying signal amplification and 
sensitization in nociceptive pathways accompanying pain-associated 
pathologies. Two approaches have been particularly effective in these 
efforts: the identification of genetic mutations that cause pain 
abnormalities in humans and the introduction of novel technologies 
applied to the study of painful neuropathy in animal models.

Genetic studies
Human genetic pain disorders have highlighted that the voltage-

gated sodium channel α-subunits NaV1.7, NaV1.8 and NaV1.9 play a key 
role in the peripheral signaling of pain contributing to the generation 
of action potentials in sensory nociceptors (Akopian et al., 1996; Dib-
Hajj et  al., 1998; Bennett et  al., 2019). Biallelic loss-of-function 
mutations in NaV1.7 have been identified in individuals insensitive or 
indifferent to a wide range of painful stimuli. On the other hand, 
NaV1.7 gain-of-function mutations are linked to debilitating chronic 
pain conditions, such as inherited erythromelalgia and paroxysmal 
extreme pain disorder (Dib-Hajj et al., 2008; Goodwin and McMahon, 
2021). Moreover, pathogenic variants in NaV1.7, NaV1.8 and NaV1.9 
have been found in up to 17% of patients with small fiber neuropathy 
(Faber et  al., 2012a,b; Huang et  al., 2014). Genetic studies can 
be instrumental in better understanding differing pain perceptions 
among patients with a similar neuropathy. For example, in the context 
of diabetic neuropathy, several different genetic approaches revealed 
rare NaV1.7 variants in 9% of patients affected by painful diabetic 
neuropathy (PDN); these patients reported more pain and higher 
sensitivity to mechanical stimuli on quantitative sensory testing 
compared to others in their cohort (Blesneac et  al., 2018). 
Furthermore, in transgenic mouse models, the deletion of NaV1.7 in 
different neuronal subsets has demonstrated the critical contribution 
of this channel to different types of pain (Nassar et al., 2004). Similarly, 
the ablation of NaV1.7 in sensory and sympathetic neurons reduces 
mechanical hypersensitivity caused by spinal nerve transection, 
suggesting that a combined antagonism of NaV1.7 in both sensory and 
sympathetic neurons could be  a potential successful strategy in 
treating pain states (Minett et al., 2012).

These observations further support the idea that NaV1.7 variants 
contribute to pain through their effects on the excitability of DRG 
neurons, where these channels play a key role in electrogenesis, and a 
great deal of effort has been invested in targeting NaV1.7 channel to 
develop analgesic processes (Dib-Hajj and Waxman, 2019). Drugs that 
reduce DRG neuronal hyperexcitability, such as sodium channel 
blockers (Eijkelkamp et  al., 2012; Dib-Hajj et  al., 2013), erase the 
excitability and increased [Ca2+]i, preventing not only neuropathic 
pain behavior but also the development of small-fiber degeneration, 
resulting in a potentially effective treatment for PDN. Generally, 
however, small-molecule inhibitors have failed to produce analgesic 
efficacy in phase II trials of PDN and post-herpetic neuralgia (Price 
et al., 2017; McDonnell et al., 2018). Despite these challenges, many 
companies are currently initiating discovery programs for the 
development of small molecule NaV1.7 inhibitors (Dib-Hajj and 
Waxman, 2019). For example, researchers at Genentech have used 
tarantula toxins to investigate the structural basis of NaV1.7 inhibition 
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with the end goal of accelerating the development of next generation 
modulators (Xu et al., 2019). Some work proposes that NaV1.7 activity 
also modulates endogenous opioid peptide release, suggesting that the 
combined action of a NaV1.7 inhibitor and an opioid molecule may 
improve synergistic analgesia with fewer side effects (MacDonald 
et  al., 2021). However, a publication has sought to disprove this 
mechanism suggesting that upregulation of opioid peptides play no 
role in the analgesic effects of NaV1.7 blockers (Bankar et al., 2018). 
Despite the promising genetic evidence, several selected NaV1.7 
inhibitors have been discontinued prior or after phase II trials due to 
concerns about the lack of improvement of daily pain in patients with 
diabetic small fiber neuropathy. On the other hand, other molecules 
such as Vixotrigine (BIIB074), a voltage- and use-dependent Na2+ 
channel blocker, which was discontinued as a treatment for painful 
lumbosacral radiculopathy after phase II failure in 2018, is still in 
phase II trials for small fiber neuropathy (Kingwell, 2019; Faber et al., 
2023). Recently, the selective NaV1.8 inhibitor VX-548, developed by 
Vertex Pharmaceuticals, began phase III clinical trials, including two 
randomized, double-blind, placebo-controlled studies to test the 
efficacy and safety of VX-548 for moderate to severe acute pain after 
surgeries for the removal of bunions (bunionectomy) and of excess 
abdominal fat (abdominoplasty) (Jones et  al., 2023). The same 
molecule is also ongoing in phase II for treating PDN. Hence, specific 
Na2+ channel blockers are still of considerable interest for the 
development of novel analgesics.

Other potential routes to producing novel analgesics have also 
been suggested. It has been proposed that inhibition of the effects of 
the neurotrophin NGF may represent a way of treating pain in 
musculoskeletal conditions such as osteoarthritis (OA) (Wise et al., 
2021). Activation of TrkA is known to produce rapid excitation of 
nociceptors through transactivation of TRPV1, and inhibition of the 
NGF-TrkA signaling pathway significantly reduces chronic pain 
caused by OA (Hefti et al., 2006; Lane et al., 2010). The involvement 
of TrkA signaling in pain has been suggested from the phenotype of 
patients affected by the rare genetic condition named Hereditary 
Sensory and Autonomic Neuropathy type IV (HSAN IV) (Indo et al., 
1996). Loss of function mutations in TrkA have been found in HSAN 
IV affected individuals, leading to pain insensitivity, anhidrosis and 
intellectual disability (Indo, 2018). As observed in the humanized 
knock-in animal model of HSAN IV carrying the TrkAR649W mutation, 
alterations in the phosphorylation state and membrane dynamics of 
TrkA result in a reduced pain sensation and compromised 
thermoregulation (Pacifico et al., 2023). These results suggest that the 
development of small molecules which reduce TrkA kinase activity 
could represent feasible analgesics candidates for pain treatment. 
Indeed, monoclonal antibodies against NGF have been shown to 
be effective in patients with OA associated pain (Lane et al., 2010). 
Unfortunately, this treatment also produced rapidly progressing OA 
in several previously unaffected joints underlying the complex role of 
TrkA signaling in the regulation of overall joint homeostasis 
(Hochberg et al., 2016; Katz, 2019).

Another genetic variant associated with neuropathic pain occurs 
in the gene encoding the transient receptor potential ankyrin 1 
(TRPA1), a calcium-permeable non-selective cation channel, involved 
in peripheral neuropathic pain, such as diabetic neuropathy 
(Andersson et al., 2013; Hiyama et al., 2018). TRPA1 antagonism has 
been observed to decrease mechanical allodynia and hypersensitivity 
in a rodent model of diabetes induced by streptozotocin (Andersson 

et al., 2015). Moreover, TRPA1 can be activated by oxidative stress and 
glucose metabolism by-products, such as 4-hydroxy-2-nonenal 
(4-HNE) and methylglyoxal, which are elevated in diabetes, 
contributing to hyperalgesia (Trevisani et al., 2007). TRPA1 is also 
clearly involved in mechanical and cold allodynia evoked in mouse 
models of chemotherapeutic-induced peripheral neuropathy (CIPN), 
and thus also can represent a potential therapeutic candidate for 
CIPN. Indeed, anticancer drugs, such as oxaliplatin, paclitaxel, 
bortezomib, and the aromatase inhibitors exemestane, letrozole and 
anastrozole, can target TRPA1 eliciting hypersensitivity to mechanical 
and thermal stimuli (Gauchan et al., 2009; Trevisan et al., 2013).

In addition to genetic studies focusing on ion channels and 
transmembrane receptors, several genome-wide studies conducted in 
humans have been summarized in a systematic review and meta-
analysis of genetic risk factors for neuropathic pain (Veluchamy et al., 
2021). Further insights into the genetics of neuropathic pain have also 
been provided by the recently created Human Pain Genetics Database 
(HPGdb; https://humanpaingeneticsdb.ca/hpgdb/) (Meloto et  al., 
2018), a database including all genetic variants that are negatively or 
positively associated with neuropathic pain, which unsurprisingly 
include targets such as OPRM1 opioid receptors. Although this does 
not represent a novel target for pain, associated molecules such as 
G-protein receptor kinases (GRKs), which mediate the 
phosphorylation and desensitization of μ-opioid receptors (MOR), are 
considered another potential target for the treatment of peripheral 
neuropathies (Gamble et al., 2022).

Long non-coding RNAs (lncRNAs), have been recently reported 
as possible key modulators of gene expression networks, and have 
been proposed as a novel means of treating PNP conditions (Bali and 
Kuner, 2014; Wu et al., 2019). For example, the up-regulation of the 
lncRNA NONRATT021972 was reported to interact with two different 
ionotropic purinergic receptors, P2X3R in small-medium DRG 
neurons and P2X7R in satellite glia cells, both of which contribute to 
mechanical hypersensitivity (Liu et al., 2016; Peng et al., 2017). Indeed, 
P2X7R genetic variants linked to gain-of-function mutations have 
been found in individuals affected by PDN (Ursu et  al., 2014). 
Additionally, lncRNAs and microRNAs (miRNA), which are found in 
several bodily fluids, have been reported to play a role in neuronal-
immune communication, acting as long-distance messengers. By 
interfering with the physiological functions of miRNAs and lncRNAs, 
significant alterations have been observed in peripheral nerves and 
DRGs in diabetes, suggesting these molecules may play a key role in 
PNP (Wu et al., 2020).

Inflammatory processes have been increasingly suggested as being 
central players in the onset and maintenance of peripheral 
neuropathies. Patients with PDN have higher levels of 
pro-inflammatory mediator mRNAs and proteins in their blood, 
including inflammatory cytokines, suggesting a connection between 
inflammation and neuropathic pain (Uçeyler et  al., 2007). For 
example, among hundreds of differentially expressed genes found in 
PDN patients, levels of the chemokine receptor CXCR4 are elevated 
(Hur et al., 2011). Similarly, the signaling cascade activated by the 
CXCR4 and its ligand, the chemokine CXCL12 (also known as 
stromal-derived factor 1), is fundamental in the generation of 
mechanical allodynia observed in the PDN mouse model (Jayaraj 
et al., 2018). The enhanced hyperexcitability triggered by CXCL12/
CXCR4 signaling of DRGs of diabetic mice can be prevented by the 
selective chemogenetic inhibition of the NaV1.8-expressing DRG 
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neurons, resulting in the rescue of mechanical allodynia and small-
fiber degeneration (Jayaraj et al., 2018).

However, the big effort in translating genetic studies into 
effective therapies often finds some barriers. For example, (i) the 
reduced sample size due to the high cost of recruiting, phenotyping 
and genotyping the cohort, (ii) the heterogeneity of pain aetiology 
and phenotypic profiles of individuals within the cohort, (iii) the 
lack of common screening tools for neuropathic pain, can limit the 
advances toward developing effective pain treatments (Calvo et al., 
2019). Despite the shortcomings of human genetic studies (Calvo 
et al., 2019), the identification of genetic risk factors for neuropathic 
pain continues to provide important clues as to the biological and 
physiological mechanisms involved in the onset and persistence of 
PNP. Furthermore, genetic studies have offered insights into the 
variability in pain perception in patients with similar neuropathies, 
for which the mutations discovered in NaV1.7 are important 
exemplars (Blesneac et al., 2018) in PDN patients, and in other 
chronic pain states. But human genetic studies alone are not 
sufficient. In recent years there has been a rapid development in 
technologies, such as optogenetics, chemogenetics and 
RNA-sequencing. In addition to the more traditional use of animal 
models of neuropathic pain and the studies on human genetic 
variations, such methods have allowed important progress in the 
understanding of mechanisms underlying neuropathic pain and the 
translation from animal data to humans.

Two powerful techniques have been recently employed for 
furthering our comprehension of nociceptors: optogenetics and 
chemogenetics. Using cell- or tissue- specific promoters, such as for 
example an Advillin-Cre driver mouse, or by adopting adeno-
associated virus, optogenetic and chemogenetic techniques can target 
specific neuronal and non- neuronal cell types with limited off-target 
effects (Roth, 2016; Mickle and Gereau, 2018).

Optogenetic
Optogenetics can be  used to modulate cellular activity by 

manipulating electrical currents generated by the activation of light-
sensitive proteins called opsins (Boyden, 2015). Channelrhodopsin 
(ChR2), the most common “activating” opsin, originally sourced from 
algae, permeabalises neurons to cations when activated by blue light. 
In contrast, halorhodopsin allows anions to enter cells when exposed 
to yellow light producing neural inhibition. Due to cellular specificity 
and temporal precision, optogenetics has become a promising tool for 
the study of a wide-range of systems, including nociception and 
painful neuropathies in preclinical studies.

The conditional expression and activation of ChR2 using the viral 
vector AAV6 and the synapsin promoter in nociceptors expressing 
NaV1.8 or TRPV1 elicited nociceptive-like behaviors in rodents (Daou 
et  al., 2013; Beaudry et  al., 2017). In contrast, activation of the 
inhibitory proton pump archearhodopsin (Arch) in specific sensory 
neuron subpopulations, such as CGRPα and NaV1.8, attenuated pain 
responses in animal models of PNP or inflammatory pain (Daou et al., 
2016; Cowie et  al., 2018). Moreover, the selective activation of 
mechanoreceptors triggered by the blue light in animal models of 
neuropathic pain can also generate nocifensive responses (Dhandapani 
et al., 2018; Murthy et al., 2018). This indicates that selective expression 
of these channels in subtypes of DRG neurons could be instrumental 
in understanding the specific roles of these neurons in 
neuropathic pain.

Recently the application of optogenetic approaches revealed a 
novel role for non-neuronal cells in the skin in mediating PNP. Indeed, 
the direct optogenetic activation of keratinocytes can also generate 
nocifensive responses (Baumbauer et al., 2015; Moehring et al., 2018). 
However, despite the promising efficacy of optogenetics as a therapy 
for peripheral neuropathic pain conditions, the application of this 
technique to patients is just an initial step, point-out the necessity to 
optimize the opsin’s delivery, the safety of their expression and the 
development of handy light-generating tools (Mickle and Gereau, 
2018; Murthy et al., 2018).

Chemogenetics
Among several classes of chemogenetically engineered proteins, 

Designer Receptors Exclusively Activated by Designer Drugs 
(DREADDs) are the most widely used in neuroscience studies 
(Armbruster et  al., 2007; Roth, 2016). DREADD receptors are 
engineered via the molecular evolution of muscarinic receptors 
resulting in their high-affinity, selective binding, and activation by the 
synthetic ligand clozapine-N-oxide (CNO). DREADDs are G protein 
coupled receptors (GPCRs), and CNO binding to DREADDs activates 
the classic GPCR signaling pathways Gq, Gi and Gs in different cell 
types. By administering CNO, either locally or systemically, 
DREADDs expressed under the control of cell-type specific promotors 
can be  selectively activated in the desired cell type with minimal 
off-target impact. Similarly to optogenetics, engineered DREADDs 
can have activating or inhibiting properties based on coupling to Gq- 
or Gi-type G proteins. hM3Dq, one of the first GPCR-based 
DREADDs, has been extensively used to define sensory neuron 
features. The selective expression of hM3Dq DREADD in Mrgprd+ 
sensory neurons elicited itch behavior in rodents (Liu et al., 2012; Hill 
et al., 2022). In contrast, chemogenetic inhibition of NaV1.8-neurons, 
mediated by the expression of hM4Di, reverses the mechanical 
allodynia induced by the surgical destabilization of the medial 
meniscus, a model of progressive osteoarthritis (Miller et al., 2017). In 
a mouse model of PDN, it has been shown that hM4Di expressed in 
NaV1.8-positive neurons was able to modulate their neuronal 
excitability, reversing mechanical allodynia and small fiber 
degeneration (Jayaraj et al., 2018). Discovering naturally occurring 
GPCRs expressed in the same subsets of neurons that recapitulate 
these effects may therefore provide novel targets for inhibiting 
nociceptor excitability. Hence, both optogenetics and chemogenetics 
represent promising tools for identifying novel neuronal targets for 
treating neuropathic pain (Bennett et al., 2007).

The relatively high success rates of trials for GPCR ligands has led 
to the approval by the FDA of 481 GPCR-targeting drugs, and many 
GPCR-targeted molecules are being currently assessed in clinical trials 
for diabetes and obesity (Hauser et al., 2017). Neuronal functions can 
be modulated by GPCRs both directly, through the modulation of ion 
channels, and indirectly, by phosphorylation induced by secondary 
messengers, thereby controlling the selective flux of ions across the 
neuronal cell membrane. For example, in the spinal cord, the blocking 
of the N-type Voltage-gated Ca2+ channels (VGCCs) by activating 
GPCRs blocks nociceptive transmission, leading to a profound 
analgesia in animals and humans (Wang et al., 2000).

Despite the great potentiality of DREADDs, scientists have to 
always consider the limitations linked to the use of chemogenetic 
approaches. Indeed, clozapine, a product of CNO metabolism, is an 
antipsychotic drug that can act on other endogenous receptors causing 
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undesirable side effects (Gomez et al., 2017). This main limitation 
might be  constrained by administering CNO to control samples 
non-DREADD-expressing or employing other selective DREADD-
agonist compounds, such as perlapine (Mahler and Aston-
Jones, 2018).

Potential therapeutic interventions to 
treat neuropathic pain

Genetic, in vivo Ca2+ imaging, chemogenetic and optogenetic 
studies applied to preclinical models of neuropathic pain have 
demonstrated the crucial importance of DRG neuron hyperexcitability 
and associated increased intracellular Ca2+ concentrations in inducing 
the axonal degeneration underlying neuropathic pain associated with 
painful neuropathies. The complex nature of PNP has encouraged 
investigation of the diverse mechanisms that may underly this 
condition. Here, we discuss three different novel approaches:

Targeting DRG neuron excitability

Neuropathic pain is linked to hyperexcitability of neurons in pain 
pathways in the absence of proper stimuli; DRG nociceptors are the 
main mediators of this phenomenon (Zhang et al., 1999; Latremoliere 
and Woolf, 2009). Patients present with abnormal spontaneous action 
potentials in the nerve terminals of C-fiber nociceptors that can 
be recorded with microneurography, a technique particularly suited 
for recording from C-fibers (Orstavik and Jørum, 2010; Serra et al., 
2015). Diabetic patients (Ørstavik et al., 2006) and animal models of 
PDN (Bierhaus et  al., 2012; Andersson et  al., 2013) show 
hyperexcitability of sensory neurons, including spontaneous activity 
of DRG nociceptor axons (Bierhaus et al., 2012; Serra et al., 2015). In 
line with these observations, decreasing the hyperexcitability of DRG 
nociceptors, identified by the Na2+ channel Nav1.8, which is expressed 
by 90% of nociceptors (Shields et  al., 2012), not only reversed 
mechanical allodynia in the well-established high-fat diet (HFD) 
mouse model of PDN (Obrosova et al., 2007), but also reversed small-
fiber degeneration (Jayaraj et al., 2018).

Increased membrane excitability is associated with increased 
calcium influx into nociceptors, leading to a higher concentration of 
intracellular calcium. Indeed, hyperexcitability of Nav1.8 DRG 
neurons was followed by an increase of intracellular calcium level 
([Ca2+]i) in the HFD mouse model of PDN (Jayaraj et  al., 2018). 
Sustained increase [Ca2+]i is a crucial factor in the signaling pathways 
leading to axonal degeneration (Wang et al., 2012) in both the central 
(Coleman and Hugh Perry, 2002) and peripheral nervous systems 
(Lehning et al., 1996; Vargas et al., 2015). Higher [Ca2+]i can lead to 
DRG neurite degeneration in a genetic mouse model of small-fiber 
neuropathy (Estacion et al., 2015). Increased [Ca2+]i might be involved 
in axonal degeneration by altering mitochondrial function (Bernardi 
and Rasola, 2007), including changes of mitochondrial calcium 
homeostasis (Rasola and Bernardi, 2007). Morphology and dynamics 
of mitochondria can be also affected by calcium levels through the 
regulation of dynamin-related protein 1 (Drp1) phosphorylation 
(Cribbs and Strack, 2007; Han et al., 2008). Mitochondria are involved 
in the axonal pathology observed in PDN (Vincent et al., 2010, 2011). 
Down-regulation of mitochondrial respiratory chain complex proteins 

(Chowdhury et  al., 2012) and reduced respiratory chain activity 
(Chowdhury et al., 2010) have been observed in DRG neurons from 
mouse models of type II diabetes. Moreover, the morphology and 
localization of mitochondria are changed in animal models of PDN 
and in PDN patients (Lauria et al., 2003; Edwards et al., 2010; Vincent 
et al., 2010, 2011). The genetic model of type-2 diabetes, the db/db 
mice, reported elevated calcium levels in DRG neurons (Huang et al., 
2002) and altered mitochondrial calcium homeostasis (Fernyhough 
and Calcutt, 2010), as well as changes in the morphology and 
trafficking of mitochondria (Edwards et al., 2010; Rumora et al., 2019) 
and increased fission (Edwards et al., 2010). All these mechanisms are 
indeed fundamental for neuronal function (Court and Coleman, 
2012; Chan, 2020). Ongoing modifications in inter-mitochondrial 
networks, as well as shape, size, connectivity, trafficking, and activity 
of mitochondria belong to dynamic mechanisms of mitochondria 
(Chan, 2020). Mitochondrial morphology is defined by the balance 
between the opposing forces of fusion and fission (Sabouny and Shutt, 
2020). Intramitochondrial [Ca2+]i might play a key function in the 
processes regulating dynamics and morphology (Cribbs and Strack, 
2007; Han et al., 2008). Mitochondrial calcium influx is allowed by the 
mitochondrial calcium uniporter (MCU), a selective calcium channel 
that promotes transport of calcium across the inner membrane when 
intracellular calcium concentration [Ca2+]i reaches the particular 
cellular “set point” (Baughman et al., 2011; Stefani et al., 2011). In 
myocardial ischemia/reperfusion (I/R) injury (Zhao et al., 2015) has 
been observed the upregulation of MCU expression and the increase 
of mitochondrial fission (Zhao et al., 2015; Guan et al., 2019). In I/R 
injury, the pharmacological block of MCU reduces myocardial 
infarction by affecting mitochondria fission (Zhao et al., 2015). Similar 
mechanisms appear to be  involved in axonal degeneration and 
mechanical allodynia in the well-established HFD mouse model of 
PDN (Jayaraj et al., 2018). Indeed, the selective deletion of MCU from 
nociceptors, by preventing calcium entry into the mitochondria, 
recovered mitochondrial morphology and dynamics, inhibited axonal 
degeneration, and rescued mechanical allodynia in the HFD mouse 
model of PDN (George et al., 2022). Hence, we suggest that targeting 
the increased calcium influx into nociceptor mitochondria mediated 
by MCU may be a promising strategy to disease-modifying therapies 
for patients suffering from PNP such as PDN.

Targeting axonal degeneration
The axon degeneration that occurs in many peripheral 

neuropathies is poorly understood. Thus, defining these underlying 
mechanisms could present novel therapeutic targets for axon 
preservation and neuropathic pain prevention (Simon and Watkins, 
2018). Recent genetic and biochemical studies have identified several 
molecular mechanisms driving axonal degeneration. One study 
highlighted the critical role for the Sterile Alpha and TIR Motif 
containing 1 (SARM1) gene as the first compelling axonal-specific 
target for therapeutic intervention (DiAntonio, 2019; Krauss et al., 
2020). Nicotinamide mononucleotide adenylyl transferase (NMNAT2) 
is a fundamental protein that supports axonal integrity, and damages 
that typically alter the axon’s cytoskeleton reducing the axonal 
transport can lead to axonal degeneration. Decreased levels of 
NMNAT2 causes the accumulation of the nicotinamide 
mononucleotide (NMN) and the activation of SARM1 (Sasaki et al., 
2016; Walker et al., 2017). SARM1 activation leads to a rapid and 
almost total depletion of axonal NAD+ followed by the decrease of 
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ATP, leading to a bioenergetic crisis within axons and a conseguent 
axonal collapse (Gerdts et al., 2015; Essuman et al., 2017), that release 
neurofilament light chain protein (Vial, 1958), which can be detected 
in serum (Disanto et al., 2017). This suggests that SARM1 may be a 
potential target for axonal preservation and that neurofilament light 
chain may be a translatable biomarker allowing the development of a 
new group of therapeutical molecules for the treatment 
of axonopathies.

While the link between SARM1 and axon degeneration was 
initially observed in response to axotomy (Gerdts et al., 2013, 2015; 
Tian et al., 2020), recent studies have shown that SARM1 can mediate 
axonal loss in animal models of chemotherapy-induced peripheral 
neuropathy (Osterloh et  al., 2012; Geisler et  al., 2019; Cetinkaya-
Fisgin et al., 2020), in models of diabetic neuropathy (Cheng et al., 
2019), and neuropathy associated with metabolic syndrome (Turkiew 
et al., 2017; Cheng et al., 2019). Furthermore, SARM1 is reported to 
play a critical in axonal degeneration caused in human-derived 
sensory neurons (Chen et  al., 2021). Recently, novel upstream 
molecular mechanisms that trigger SARM1 activation have been 
proposed (Rice et  al., 2016). On the other hand, small molecules 
inhibiting SARM1 promote the rescue of damaged axons that would 
otherwise degenerate (Hughes et al., 2021), and inhibiting SARM1 
pharmacologically might protect axon organization and function in 
paclitaxel-induced peripheral neuropathy (Bosanac et al., 2021).

Microtubules (MTs), a prominent component of axonal 
cytoskeletons, play a key role in several cellular functions, including 
cell division, structure, and intracellular transport. MTs undergo 
polymerization and depolymerization of α/β tubulin heterodimers, 
resulting in the “dynamic instability” process that involves the binding, 
hydrolysis, and the exchange of GTP molecules on the β-tubulin 
monomers (Mitchison and Kirschner, 1984). Mutations of β-tubulin 
can affect vesicular axonal transport. The expression of β-tubulin class 
III (TUBB3) is maintained at elevated levels in the adult peripheral 
nervous system, suggesting a fundamental role for these proteins for 
the maintenance of peripheral motor and sensory neurons. Indeed, 
individuals with missense mutations in TUBB3 exhibit a progressive 
loss of peripheral axons that degenerate in sensory-motor neuropathy 
(Tischfield et al., 2010). The axonal degeneration of sensory neurons 
observed in patients can be explained by the impaired transport of 
vesicles and mitochondria in DRG expressing E410K or D417H 
mutations in TUBB3 (Niwa et al., 2013). In addition to β-tubulin, 
KIF1A, the member of the kinesin-3 family involved in the transport 
of synaptic vesicles, has been reported to play an essential role in 
axonal neuropathy and several neurological symptoms observed in 
patients. In DRGs, KIF1A mediates the transport of vesicles containing 
TrkA in DRG neurons from the cell body to the axon tip, and also 
facilitates the membrane expression of capsaicin receptor TRPV1 
(Tanaka et al., 2016). Furthermore, mice lacking KIF1A (Kif1a+/−) die 
prematurely, and exhibit a strong reduction of synaptic vesicle density 
at nerve endings and an accumulation in the DRG soma (Morikawa 
et  al., 2022), features associated with the progressive sensory 
impairment observed in mice (Tanaka et al., 2016). The link between 
KIF-family members and axonal degeneration is also observed in 
Hereditary Sensory and Autonomic Neuropathy Type II (HSAN2), 
causing progressively reduced sensation of pain, temperature, and 
touch, and in the Hereditary Spastic Paraplegia or typical Charcot–
Marie–Tooth disease type 2 (CMT2) (Nair et al., 2023). Mutations in 

KIF1A or KIF5A are found in individuals affected by HSAN2 and 
CMT2, respectively, highlighting the unique role of these molecules 
in anterograde transport of mitochondria in axons (Morikawa et al., 
2022). KIF26A, another member of the kinesin superfamily of 
proteins, is expressed in peripheral nociceptive neurons and involved 
in the mediation of sensory stimuli. The complete loss of KIF26A in 
Kif26a−/− mice results in prolonged responses to painful stimuli caused 
by sustained calcium transients and neuronal excitation in primary 
DRG Kif26a−/− cultures and in the overdevelopment of DRG axons. 
The inhibition of SFK-FAK signaling transduction, by known KIF26A 
interactors, can reverse the critical phenotype found in Kif26a−/− mice 
(Wang et al., 2018).

Targeting cutaneous nociceptors
A hallmark of painful peripheral neuropathy is the degeneration 

of small fibers, a “dying back” axonopathy that interests the smallest 
axons of the peripheral nervous system, typically the DRG nociceptor 
afferents (Lauria et al., 2012) that extend to innervate the skin. The 
skin is densely innervated with a complicated network of molecularly 
distinct cutaneous nerve subtypes (Usoskin et al., 2015). In the last 
decade, the full cellular diversity and functional heterogeneity of 
cutaneous sensory afferents has begun to be determined (Chiu et al., 
2014; Li et  al., 2016). These discoveries have advanced our 
understanding of the pathogenic mechanisms underlying axonal 
degeneration in painful peripheral neuropathy and could lead to 
promising disease modifying therapeutics for PNP.

The classification of early sensory nerve was originally based on 
factors like size, speed of impulse conduction, and function. Among 
these nerves, there are thinly myelinated Aδ-fibers responsible for 
carrying thermal, mechanoreceptive (pressure), and acute nociceptive 
(pain) signals. C fibers (~70%), which are small and unmyelinated, are 
involved in the transmission of painful inputs, temperature, and itch, 
propagating impulses at a slower rate and in a more sustained manner 
compared to Aδ fibers (Willis, 2004; Fang et al., 2005; Ruscheweyh 
et al., 2007). C fibers have been traditionally classified into two subsets, 
peptidergic (PEP) and non-peptidergic (NP). Peptidergic C fibers can 
release neuropeptides, such as substance P (SP) and calcitonin gene-
related peptide (CGRP), and express TrkA, the main receptor for 
nerve growth factor (NGF, see above). In contrast, non-peptidergic 
C-fibers bind to isolectin B4 (IB4) and express the ATP-binding 
purinergic receptor P2X3 in rodents (Basbaum et al., 2009). In the last 
decade, several studies have led to an increased understanding of the 
full cellular diversity and functional heterogeneity of cutaneous 
sensory afferents (Chiu et  al., 2014; Li et  al., 2016). For example, 
unmyelinated non-peptidergic C fibers innervating the skin and 
expressing Mrgprd are involved in the response to mechanical noxious 
stimuli in both rodents (Rau et al., 2009) and humans (Dong et al., 
2001), also through a potential communication with non-neuronal 
epidermal cells (Zylka et  al., 2005), suggesting that Mrgprd 
downregulation can reduce the mechanical hypersensitivity in 
inflammatory pain (Cavanaugh et al., 2009) and in PDN. On the other 
hand, also targeting A-fibers, usually expressing neurofilament heavy 
chain (Nefh) (Usoskin et al., 2015), might be a successful strategy to 
treat mechanical pain in anticancer-induced peripheral neuropathy 
(Xu et al., 2015).

Recent findings on human DRGs have highlighted many 
differences between rodents and humans, showing, for example, that 

https://doi.org/10.3389/fnmol.2023.1252442
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Pacifico et al. 10.3389/fnmol.2023.1252442

Frontiers in Molecular Neuroscience 07 frontiersin.org

P2X3 mostly colocalises with CGRP in human nociceptors (Shiers 
et  al., 2020; Middleton et  al., 2021). By applying single cell 
transcriptomics, it has become evident that DRG neurons show a 
remarkable level of heterogeneity, suggesting that their functionalities 
may be finely tuned in accordance with their phenotype (Figure 1).

Cutaneous interactions in peripheral 
neuropathic pain

Being our largest sensory organ, the skin is a remarkable mosaic 
of defined sensory areas in which terminal epidermal nerve afferents 
from DRG neurons communicate with a diverse array of distinct cell 
types (Figure 2).

Keratinocytes (KCs), the most abundant cell type population in 
the epidermis, differentiate from a single lineage to become the 
building blocks of the epidermis. The regenerative capacity and 
constant turnover of the epidermis results from the ability of KCs to 
proliferate, migrate and differentiate across the epidermis, releasing 
lipids, keratin and maintaining skin homeostasis. However, the 
importance of KCs is not just limited to providing the structural 
backbone of the skin; they also participate in a wide range of cellular 
processes in health and pathological conditions, including 

nociception, itch, inflammation, and metabolic conditions. KC 
distribution in different epidermal layers suggests that these cells can 
play distinct roles in the communication with nerve afferents. Indeed, 
a variety of neuronal subpopulations terminate in the epidermis 
(Colloca et  al., 2017; Handler and Ginty, 2021), providing an 
opportunity for both gap junctions and synapse-like contacts (Churko 
and Laird, 2013; Woo et al., 2015), as well as indirect crosstalk between 
keratinocytes and nerve afferents (Finnerup et al., 2016). However, the 
complex heterogeneity of KCs further complicates our understanding 
of the extent of KC-nerve communication, and the specific role of KCs 
in nerve degeneration under pathological conditions has not been 
widely investigated. KCs are involved in the detection of touch stimuli 
in the skin, participating in the transmission of mechanical 
information related to pressure and brushing (Löken et  al., 2009; 
Moehring et  al., 2018; Mikesell et  al., 2022). Indeed, under 
physiological conditions, the optogenetic inhibition of KCs, based on 
the expression of Archaerhodopsin-3 (Arch) in K14-expressing 
epidermal cells, which represent the basal-layer progenitor 
keratinocytes, reduces the response to mechanical non-noxious 
stimuli, suggesting their functional role in touch (Moehring et al., 
2018). The crosstalk between KCs and nerve terminals can 
be promoted by the activation of the mechano-transducer PIEZO1 
and/or by the release of ATP molecules via ATP-P2X4 signaling 

FIGURE 1

Schematic representation showing the possible workflow of peripheral mechanisms of NeuP. The increased excitability, leading to increased calcium 
influx culminates with axonal degeneration. Among potential players, alterations in axonal protein transports (SARM1 and KIFs) and the involvement of 
non-neuronal cells both in DRGs and the skin can contribute to the degeneration of nociceptive fibers and neuropathic pain.
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pathway (Moehring et al., 2018; Mikesell et al., 2022). Contrary to 
PIEZO1 knock-out mice that are unresponsive, intraplantar injection 
of Yoda1, a specific PIEZO1 agonist, elicits pain behavior in rodents 
and causes C-fiber hypersensitivity, suggesting that keratinocyte 
PIEZO1-activation mediates touch sensation (Mikesell et al., 2022).

Recent single-cell transcriptomics on human skin cells (Cheng 
et  al., 2018; He et  al., 2020; Wang et  al., 2020) have highlighted 
potentially novel pharmacological targets (Theocharidis et al., 2022). 
For example, using single cell-RNA sequencing of the human neonatal 
epidermis, the group of Dr. Scott Atwood has investigated the dynamic 
nature of KCs and their hierarchical distribution in the epidermis 
(Wang et al., 2020). In addition to KCs, fibroblast heterogeneity has 
also been explored in human skin. Indeed, Tabib and colleagues have 
found different fibroblast populations in healthy human skin, 
characterizing two major groups, defined by SFRP2 and FMO1 genes 
and involved in regulating matrix deposition and inflammation (Tabib 
et al., 2018). Human epidermal cells isolated from pathological skin, 
including patients with psoriasis and eczema, have shown that 
keratinocytes mediate inflammatory responses in skin disorders by 
the activation of NF-kB pathway that can be blocked by the expression 
of ABIN1 and A20, both inhibitors of NF-kB (Harirchian et al., 2019). 
In addition to higher levels of keratins (Cheng et al., 2018), psoriatic 
human skin also shows an enrichment in dendritic cells (Cheng et al., 
2018) that could be  linked to itch sensation carried by C-fibers 
(Komiya et al., 2020). However, a comprehensive understanding of the 
heterogeneity of different cell populations in the skin and their role in 
pathological conditions remains unclear.

Langerhans cells (LCs), discovered by the German physician Pal 
Langerhans in 1868, are a small population of epidermis-resident cells. 
LCs were initially, albeit erroneously, classified as nerve cells in the 
epidermis, but their complete characterization has evolved over time. 
Classically, LCs have been viewed as being exclusively involved in 
inflammatory responses, acting as specialized antigen-presenting cells 

capable of a low rate of local, self-renewal capacity and migration to 
lymph nodes upon activation. However, their morphological and 
functional features indicate that LCs have a macrophage-related 
lineage rather than being a subset of dendritic cells (Satpathy et al., 
2012; Kaplan, 2017). Interestingly, murine LC expression has been 
observed in many neuropathic pain conditions, such as after sciatic 
nerve transection or in chronic constriction of the sciatic nerve (Hsieh 
et al., 1996; Lindenlaub and Sommer, 2002). Both studies report that 
the denervation caused by sciatic nerve transection or chronic 
constriction injury, respectively, led to an increased number of LCs in 
the epidermis, correlating with a higher thermal and mechanical pain 
sensitivity in injured rodents. Interestingly, quantification using 
Langerin/CD207+ cells, an established marker used to label LCs in the 
epidermis, using skin biopsy samples of patients with diabetic small 
fiber neuropathy, revealed higher counts of LCs, also indicating a 
negative correlation between the number of LCs and epidermal 
innervation (Casanova-Molla et al., 2012). Comparable results have 
also been observed in a mouse model of PDN, the db/db knock-out 
mice, suggesting a potential role of these cells in the maintenance of 
mechanical allodynia (Dauch et al., 2013). Though LCs are involved 
in the neuroimmune response of the epidermis, their potential 
interaction with sensory fibers remains uninvestigated.

The communication between nerve terminals and non-neuronal 
cells in the skin has also been explored by Rinwa et al. (2021) who 
showed that a specialized cutaneous glial cell type conveys noxious 
thermal and mechanical sensitivity via a mesh-like network of 
processes at the subepidermal border of the skin. These “nociceptive 
Schwann cells” (NSCs) are found in both human and mouse skin and 
are located at the dermal-epidermal junction. Since their projections 
form contacts with terminal afferents of nociceptors in the epidermis, 
the authors discovered that the ablation of NSCs resulted in the 
retraction of nociceptive fibers and, consequently, mechanical, cold, 
and heat hyperalgesia. The ablation of peptidergic TRPV1+ fibers led 
to a similar phenotype in rodents to those observed in NSC ablated 
mice, suggesting that the mutual dependence of the epidermal nerve 
and the Schwann cell processes is critical for epidermal nerve 
innervation and transmission of nociceptive stimuli (Rinwa et al., 
2021). Exploring the communication between non-neuronal cells and 
nerve terminals in the skin is a crucial step for developing novel 
therapeutic strategies to treat pain conditions (Lowy et al., 2021).

Overall, our improved understanding of the details of 
communication between nerve terminals and non-neuronal cells in 
the skin could well be the basis for new therapeutic approaches that 
could be applied topically bypassing drug side effects associated with 
systemic interventions.

Limitations of preclinical research in 
rodent models: lost in translation

Despite the substantial knowledge gained from animal models 
over the last 70 years on the neurological systems subserving pain, 
there has been an absence of therapeutic progress for human patients. 
Many factors limit the translation of pain candidates previously 
identified from studies in animal models to humans, notably the 
significant behavioral and transcriptomic differences between the two 
species. Here, we will discuss both.

FIGURE 2

Interaction between terminal nociceptive fibers in the epidermis and 
non-neuronal cells, such as keratinocytes, Langerhans cells and 
nociceptive-Schwann cells.
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Behavioural readouts

The evaluation of PNP in preclinical models requires indirect 
behavioral readouts as a surrogate of the pain experience. This can 
substantially limit the capacity of animal models to be  predictive 
clinical efficacy (Patel et al., 2017; Sexton et al., 2017; Yekkirala et al., 
2017; Mogil, 2019) due to significant differences in pain behaviors 
between humans and mice. In animal models, one of the most 
common behavioral outcome is measured as reflex withdrawal 
threshold evoked by thermal or mechanical stimuli aimed to test their 
hypersensitivity (Mogil, 2009; Deuis et al., 2017). On the other hand, 
pain evaluation in patients relies on questionnaires based on conscious 
pain experience, usually associated to a continuous pain sensation 
known as “spontaneous pain” and mediated by pathophysiological 
mechanisms different from those associated to “evoked pain.” 
Developing novel techniques and approaches aimed at evaluating 
spontaneous pain in rodents requires a significant but necessary effort, 
and medications intended to relieve ongoing pain in humans should 
be tested in appropriate preclinical assays for ongoing or spontaneous 
pain rather than relying solely on evoked pain.

To address these obstacles, experimental endpoints in our 
pre-clinical and early-stage clinical investigations need to align. In 
preclinical studies in mice, alongside rigorous randomization, 
blinding, experimental design reproducibility, and a consideration of 
biological variability and sex differences (Mogil, 2012; Mifflin and 
Kerr, 2014; Sorge et  al., 2015; Sorge and Totsch, 2017), it would 
be helpful to use behavioral assays to monitor naturalistic behaviors, 
such as wheel running, gait change, home cage activities, conditioned 
place preference or aversion tests, where one can measure whether a 
drug reduces aversion or induces preference in the context of pain (He 
et al., 2012). An additional shortcoming that could affect the success 
of pre-clinical studies is represented by the exclusive use of male 
animals in the majority of experiments. Indeed, if the exclusion of 
female subjects due to the large fluctuations in hormones (Becker 
et al., 2005) might reduce the variability within the group, on the other 
side “basic scientists are shirking their responsibilities to half of the 
human population” (Mogil and Chanda, 2005). We can now consider 
the integration of female subjects in experiments and utilize novel 
technologies to assess spontaneous pain in mice, such as capturing 
paw kinematics during pain behavior with high-speed videography 
and automated paw tracking using machine learning optimization 
(Langford et al., 2010; Abdus-Saboor et al., 2019; Jones et al., 2020). 
Another endpoint could be  the use of ultrasonic vocalization, 
inaudible sounds used by rodents to communicate and share 
emotional states (Premoli et  al., 2021). Despite the value of these 
vocalizations, especially for neurodevelopmental studies, it is still 
unclear if these can be used as viable parameters for evaluating the 
response to noxious stimuli (Wallace et al., 2005). Overall, careful 
consideration of behavioral endpoints in preclinical studies and 
alignment of these with early human studies may help to better predict 
translational potential of a new target.

An additional critical issue that hinders the translation of our 
preclinical studies to clinical efficacy is that there exists fundamental 
molecular and physiological differences in the biology of neuropathic 
pain between the rodent models compared to humans; in particular, 
there are clear molecular and electrophysiological differences between 
rodent and human DRG sensory neuron subtypes (Rostock et al., 
2018; Shiers et al., 2020; Jung et al., 2023) (Figure 3). These differences 

call for the need to use human tissues, such as spinal cord, DRGs, skin 
biopsies, and iPSCs, in translational pain research, though these 
tissues have been historically difficult to obtain from patients. 
However, in recent years the accessibility of functional tissues from 
organ donors has significantly improved. Sensory neurons derived 
from organ donors can be isolated and maintained in culture for days 
to weeks (Valtcheva et al., 2016). These tissues are suitable for genetic, 
immunohistochemical, RNAscope, imaging, and electrophysiological 
studies along with multiomic assays and topographic single cell 
transcriptomics (Ray et al., 2018; North et al., 2019; Shiers et al., 2020; 
Nguyen et al., 2021; Hall et al., 2022). Indeed, it is now possible to 
validate candidate mechanisms and novel analgesic targets identified 
in animal models using human sensory neurons to confirm whether 
mechanisms of pain sensitization identified in animal models are 
equivalent in human sensory neurons. Therefore, studies of human 
tissues are invaluable, and necessary, in prioritizing potential 
therapeutic targets and refining their targeting strategy (Renthal 
et al., 2021).

Single cell transcriptomics

The dawn of transcriptomic analysis has helped to reveal the 
molecular heterogeneity of DRG neurons and the inconsistency 
between humans and rodents, providing one insight into the reasons 
for the failure of much preclinical research.

In addition to functional experiments, next-generation 
sequencing technology has seen an impressive expansion in recent 
years, leading to several crucial and valuable discoveries. Currently, 
there has been an increasing appreciation and focus on the rigorous 
characterization of individual cell populations within a specific tissue 
(Tang et al., 2009). Unlike the bulk RNA sequencing approach, single-
cell RNA sequencing (scRNA-seq) captures the heterogeneity of cells 
that comprise tissues, allowing the identification of rare populations 
that would otherwise not be detected (Tang et al., 2009).

ScRNA-seq has emerged as a valuable tool for investigating gene 
regulation at high resolution, particularly in the context of detecting 
functional identity of cell types based on the gene expression profile 
of single cells within DRGs or other tissues. Multiple groups have 
conducted scRNA-seq of rodent sensory neurons (Chiu et al., 2014; 
Sharma et al., 2020), enabling in-depth molecular characterization 
and facilitating the clustering of DRG neurons and the associated 
non-neuronal cells into distinct groups to delineate their 
developmental lineages (Chiu et al., 2014; Sharma et al., 2020). These 
studies confirmed the anticipated major DRG neuronal types, 
previously classified based on electrical properties, neuronal size, 
myelination status, and some established markers (Basbaum et al., 
2009). However, single cell transcriptomics allows a comprehensive 
understanding of the subtypes of DRG sensory neurons (Chiu et al., 
2014; Sharma et al., 2020). Unbiased classification of sensory neurons 
with their extensive molecular profiles enables the understanding of 
the specific modalities and cellular basis for chronic pain. In this view, 
we  can now understand the changes in gene expression within 
neuronal subpopulations linked to disease states.

Despite the extensive characterization of the gene expression 
profiles of injured DRGs using bulk RNA sequencing, there have been 
gaps in our knowledge of distinguishing which specific cell types is 
undergoing changes in the transcriptomic profile. Nowadays, scRNA 
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sequencing has delineated the molecular profile of DRG neurons in 
rodents and primates with chronic pain (Kupari et al., 2021). For 
instance, Hu et al. performed scRNA-seq on DRG neurons from mice 
subjected to sciatic nerve transection and their controls (Hu et al., 
2016). Notably, an upregulation of genes associated with cell death and 
changes in pathways linked to neuropathic pain were specifically 
observed in the non-peptidergic (NP) neuronal subpopulation. This 
heterogenous transcriptional alteration caused by injury, within 
distinct neuronal subtypes suggests intrinsic differences in the genetic 
response to injury between different neuronal subtypes. In addition, 
the study identified novel targets, like the potassium channels Kcng3 
and Kcnn1, in the NP population, which may be  important in 
contributing to pain hypersensitivity through changes in nerve cell 
excitability (Hu et al., 2016).

scRNA-seq of DRG neurons performed at different time point after 
spared nerve injury has highlighted the dynamic modifications at 
single-cell resolution that occur during neuropathic pain (Wang et al., 
2021). In addition to the already expected neuronal clusters, other three 
groups were identified after SNI. These clusters showed higher 
expression of Atf3, Gal and other nerve-injury regulated genes. 
Surprisingly, after 24 h, the scRNA-seq analysis showed the presence of 
a cluster expressing Atf3/Mrgprd (a GPCR), and transcriptomic 
modification within this cluster led to changes in the phenotype of DRG 
neurons within 2 days after injury, suggesting that distinct neuron types 
respond differently to a damage and that, in a injury context, neurons 
Mrgprd-positive can show high reprogramming capabilities.

Previous studies of scRNA-seq of human DRGs have displayed 
several significant differences between mouse and human peripheral 
afferents (Ray et al., 2018; Tavares-Ferreira et al., 2022). An integrative 
analysis with RNA-seq data of human and mouse DRGs showed large 
conservation of known DRG and/or nociceptor enriched genes (e.g., 
P2XR3 [P2X3 receptor], SCN10A [Nav1.8], SCN11A [Nav1.9], NTRK1 
[TrkA], and MRGPRD [MRGPRD]) across mouse and human DRGs 
(Price et al., 2016). However, the relative and co-expression of markers 
by different subsets was not the same in mice compared to humans (Ray 

et al., 2018). For instance, CGRP and P2X3R neuronal subpopulation 
overlap in human lumbar DRGs, but not in mouse DRGs (Shiers et al., 
2020). Similarly, several differences were identified in the mRNA 
expression of transient receptor potential channels, cholinergic 
receptors, potassium channels, and sodium channels (Shiers et  al., 
2020). Spatial transcriptomics (10× Genomics Visium) has most 
recently defined ten neuronal clusters corresponding to low-threshold 
mechanoreceptors (LTMR) and nociceptors in human DRGs (Tavares-
Ferreira et al., 2022). In addition, TAC1 (encoding SP) and CALCA 
(encoding CGRP) are broadly coexpressed across human nociceptive 
clusters, in contrast to their separate expression by rodent peptidergic 
subsets (Tavares-Ferreira et  al., 2022). Given the molecular and 
electrophysiological differences observed in DRG sensory neuron 
subpopulation across different species, it will be fundamental to validate 
the mechanisms underlying NeuP discovered to date in mice using 
human samples (Renthal et al., 2021). By performing single-nuclei RNA 
sequencing, Jung and colleagues have recently collected and integrated 
information on the functional profile of sensory neurons from different 
species (mice, guinea pigs, cynomolgus monkeys and human donors), 
developing an extensive transcriptome atlas that highlights differences 
in the expression of molecular modulators involved in sensory function 
between pre-clinical models and humans, such as TAFA4 gene (Jung 
et al., 2023). Moreover, the discrepancy in the abundance of sensory 
neuron subpopulations across species might also suggest that species-
specific biological features need to be taken into constant consideration 
for developing pain treatment (Jung et al., 2023). Clearly, DRG neurons 
heterogeneity is crucial for the functional specificity and responses to 
peripheral stimuli of neuronal subtypes in both mice and humans. 
We must also acknowledge a few limitations of the scRNA-seq data 
currently available from donor DRGs including limited clinical 
informations, small samples size and the lack of longitudinal studies 
(Bledsoe and Grizzle, 2022). Moving towards the utilization of skin 
biopsies might overcome some of these limitations.

With decades of essential understanding about nociception and 
pain from animal models, as well as the availability of cutting-edge 

FIGURE 3

The integration of human and mouse transcriptomes can help bridge translational therapeutic targets between preclinical and clinical studies, 
characterizing the differences and similarities between both and/or other species. Potential targets identified by an omics-approach always require 
validation in both rodent and then human tissues, such as in DRGs and the skin. Only after integrating information from different species and 
performing molecular and functional studies aimed to validate new findings, it is possible to develop effective pain treatments.
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tools to investigate genes, cells, and networks at an unprecedented 
resolution using human samples, we hold the belief that pain research 
is now in an unique position to change and improve pain treatment.
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