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Background: Ferroptosis is a newly defined form of programmed cell death 
and plays an important role in Alzheimer’s disease (AD) pathology. This study 
aimed to integrate bioinformatics techniques to explore biomarkers to support 
the correlation between ferroptosis and AD. In addition, further investigation 
of ferroptosis-related biomarkers was conducted on the transcriptome 
characteristics in the asymptomatic AD (AsymAD).

Methods: The microarray datasets GSE118553, GSE132903, GSE33000, and 
GSE157239 on AD were downloaded from the GEO database. The list of 
ferroptosis-related genes was extracted from the FerrDb website. Differentially 
expressed genes (DEGs) were identified by R “limma” package and used to 
screen ferroptosis-related hub genes. The random forest algorithm was used to 
construct the diagnostic model through hub genes. The immune cell infiltration 
was also analyzed by CIBERSORTx. The miRNet and DGIdb database were used to 
identify microRNAs (miRNAs) and drugs which targeting hub genes.

Results: We identified 18 ferroptosis-related hub genes anomalously expressed 
in AD, and consistent expression trends had been observed in both AsymAD 
The random forest diagnosis model had good prediction results in both training 
set (AUC  =  0.824) and validation set (AUC  =  0.734). Immune cell infiltration was 
analyzed and the results showed that CD4+ T cells resting memory, macrophages 
M2 and neutrophils were significantly higher in AD. A significant correlation of 
hub genes with immune infiltration was observed, such as DDIT4 showed strong 
positive correlation with CD4+ T cells memory resting and AKR1C2 had positive 
correlation with Macrophages M2. Additionally, the microRNAs (miRNAs) and 
drugs which targeting hub genes were screened.

Conclusion: These results suggest that ferroptosis-related hub genes we screened 
played a part in the pathological progression of AD. We explored the potential of 
these genes as diagnostic markers and their relevance to immune cells which 
will help in understanding the development of AD. Targeting miRNAs and drugs 
provides new research clues for preventing the development of AD.
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Introduction

As the primary cause of dementia, AD is a progressive 
neurodegenerative disease associated with aging (Ambrogio et al., 
2019). Its core pathological features include the accumulation of 
amyloid-β protein and hyperphosphorylated tau (Surguchov et al., 
2023). According to the standards of the National Institute on Aging, 
NIH and the Alzheimer’s Association, the appearance of AD pathology 
may occur without any symptoms (Knopman et al., 2019). It then 
progresses to mild cognitive impairment, with a decline in learning 
and memory abilities, and ultimately to significant dementia and loss 
of the ability to live independently. This span can last for 15–25 years, 
but not every patient will follow this continuous process (Scheltens 
et  al., 2021). An assessment report on survival after dementia 
diagnosis in the United  States indicated a survival time of only 
3–4 years (Jack et al., 2019). Similarly, a study of another European 
cohort showed a median survival time of 6 years after diagnosis 
(Vermunt et al., 2019). The sharp increase in AD patients has brought 
heavy pressure to families and society. Based on a highly complex 
process that integrates behavioral, genetic, and environmental factors, 
extensive research has been conducted on the pathogenesis of AD.

Interestingly, in addition to the deposition of amyloid-β protein 
and tau, the brains of AD patients also exhibit progressive neuronal 
loss and oxidative stress caused by metal homeostasis imbalance 
(Plascencia-Villa and Perry, 2021). With the discovery of ferroptosis - 
a form of programmed cell death mediated by lipid peroxidation that 
is distinct from autophagy, apoptosis, and necrosis (Dixon et al., 2012; 
Jiang et al., 2021) – the hypothesis of transitional metal imbalance has 
gained strong support, and researchers believe that ferroptosis may 
be an important cause of neuronal loss in AD patients. Iron metal is 
involved in critical processes such as myelin formation, neuronal 
activity, neurotransmitter synthesis, and energy metabolism in the 
brain (Crichton et al., 2011). Its storage, distribution, and efflux are 
precisely regulated by transcriptional levels of iron response elements 
and iron regulatory proteins (Ward et al., 2014). Studies have shown 
that iron homeostasis imbalance can block the activity of the 
mitochondrial electron transport chain, causing oxidative stress 
(Onukwufor et al., 2022). In summary, ferroptosis plays an important 
role in AD pathology. Moreover, recent reports have also pointed to 
the pathogenesis of AD to lysosomal autophagy and 
neuroinflammation (Calsolaro and Edison, 2016; Lee et al., 2022). 
Peripheral immune cells, such as bone marrow-derived monocytes, 
are recruited into the brain to efficiently clear amyloid deposits 
(Simard et al., 2006). On the other hand, researchers found CD8 + T 
cells in the hippocampus of AD patients after death, which may be one 
of the direct causes of neuronal dysfunction (Unger et  al., 2020). 
Therefore, this study will also focus on the immune penetration in AD, 
to analyze the composition of immune cells.

MicroRNAs are small RNA molecules which associated with 
many neurodegenerative diseases that regulate gene expression by 
binding to target mRNAs (Juźwik et al., 2019). Previous studies have 
reported the abnormal expression of hsa-miR-4286 in AD (Henriques 
et  al., 2020) and its association with Parkinson’s disease 
neurodegeneration (Su et al., 2018). MicroRNAs (miRNAs) and their 
target genes are intensely studied as candidates for diagnostic and 
prognostic biomarkers. For instance, in the cerebrospinal fluid of AD 
patients, exosomal miR-193b was negatively correlated with amyloid-β 
(Liu et  al., 2014). In this study, we  aimed to screen abnormally 

expressed ferroptosis-related genes in AD and identify miRNAs with 
diagnostic or therapeutic potential by targeting ferroptosis-related 
genes. Diagnostic models were constructed through hub genes to 
judge the potential of these genes to identify AD, while assessing the 
correlation of these genes with immune infiltration in AD patients. 
Finally, by screening the MicroRNAs and drugs targeting hub genes, 
we can provide valuable data support for the clinical treatment and 
drug development of AD.

Materials and methods

Dataset download

The microarray datasets GSE118553, GSE132903, GSE33000 and 
GSE157239 on AD were downloaded from the Gene Expression 
Omnibus (GEO) database1 (Barrett et  al., 2013). The annotation 
information of the chip probes of the corresponding platforms was 
obtained from the GEO database, respectively. We collected clinical 
features from various datasets, including age, gender and the number 
of individuals in each group (Table 1).

Differential expression and pathways 
enrich analysis

The R software package limma (Ritchie et al., 2015) was used to 
achieved differential analysis on control and AD samples. Genes with 
p_adj < 0.05 and abs(logFC) > 0.585 were considered as DEGs. Heat 
maps and bot plots of DEGs were created using the “pheatmap” and 
“ggplot2” packages. Kyoto encyclopedia of gene and genomes (KEGG) 
pathway enrichment analysis were performed on DEGs to explore the 
biological functions and related pathways of DEGs.

Ferroptosis-related genes acquisition

The list of ferroptosis-related genes was extracted from the FerrDb 
website (Zhou et al., 2023). By intersecting the ferroptosis-related 
genes list with DEGs, finally 18 ferroptosis-related hub genes were 
identified. An interaction network for the ferroptosis-related genes 
was generated by the STRING database (Szklarczyk et al., 2011).

Diagnostic model construction

The 18 ferroptosis-related hub genes were used to constrct the 
random forest model. To further obtain the error-stable model, 
appropriate parameters were selected by varying the number of 
decision trees, and the 1,000 trees were finally set as the optimal 
parameters of the model. Two hundred and sixty-seven samples from 
GSE118553 were randomly divided into a training set and a testing set 
using a ratio of 4:1. The importance of features by calculating the 
purity of nodes through Gini coefficient method were computed.

1 https://www.ncbi.nlm.nih.gov/geo/
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Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used for pathway 
enrichment analysis (Subramanian et  al., 2005). The Molecular 
Signatures Database (MSigDB) of hallmark gene sets (H), curated 
gene sets (H2), and GO gene sets (C5) were used for enrichment 
analysis. An FDR value of 0.05 was used as a cutoff.

Immune infiltration analysis

CIBERSORTx is an analytical tool to assess the abundance of 
immune cell subsets in tissue samples by using a deconvolution 
algorithm (Newman et al., 2019). The LM 22 signature matrix file, 
which contains 22 immune cell components, was used as a reference 
for cell quantification. Correlation between immune cells and genes 
was analyzed by Pearson correlation analysis.

Exploration microRNAs targeting the hub 
genes

Differential analysis of the GSE157239 expression matrix was 
performed using the Limma R package to obtain differentially 
expressed miRNAs. MiRNAs with p.value <0.05 and abs(logFC) > 0.263 
were considered as DEmiRNAs. Potential miRNAs of hub genes were 
retrieved by miRNet database (Chang et al., 2020). The association 
between microRNAs and AD was investigated through the HMDD 
database (Cui et al., 2023).

Drugs and genes interaction scores

Drugs targeting hub genes were retrieved from the Drug-Gene 
Interaction Database (DGIdb). The DGIdb is a web resource that 
provides information on drug-gene interactions and druggable genes 
from publications, databases, and other web-based sources (Freshour 
et al., 2021). The bar plots of interaction scores were created using 
“ggplot2” package.

Statistical analysis

R software was used for statistical analysis. Principal Component 
Analysis (PCA) was performed using an R package “factoextra.” The 
association between continuous variables was assessed using Pearson’s 

correlation coefficient. *p < 0.05; **p < 0.01; and ***p < 0.001 are 
considered significant.

Results

Identification of DEGs associated with 
ferroptosis in AD

To screen out the genes associated with ferroptosis that are 
robustly expressed in AD, two datasets (GSE118553 and GSE132903) 
were used for the analysis. The expression of amyloid precursor 
protein (APP) was downregulated in both two datasets (Figure 1A). 
Firstly, we identified differentially expressed genes (DEGs) between 
Alzheimer’s disease (AD) and healthy control groups in GSE118553 
(Supplementary Figure S1A). We found that upregulated genes in AD 
were mainly associated with apoptosis and ferroptosis, while 
downregulated genes were mainly involved in neuroactive ligand-
receptor interaction (Figure  1B). To further determine hub genes 
associated with ferroptosis in AD, we  used FerrDB to identify 
ferroptosis-related genes that were aberrantly expressed in AD 
(Figure 1C). According to FerrDB, we classify ferroptosis regulators 
into three categories: Driver, Suppressor, and Unclassified genes. 
Furthermore, we  observed consistent expression trends with 
GSE118553 of these genes in AD in GSE132903 (Figure  1D) 
(Supplementary Figures S1B,C) and found significant downregulation 
of Driver regulators such as KLF2 and YAP1  in AD, as well as 
significant upregulation of multiple Suppressor regulators (Figure 1E). 
Correlation analysis revealed that the hub genes exhibit strong 
associations in both the GSE132903 and GSE118553, additionally, 
protein–protein interaction network also indicates the interrelated 
interactions among the hub genes (Figure 1F). The results indicate that 
we identified a robustly differentially expressed gene list associated 
with ferroptosis in AD by screening through GSE132903 
and GSE118553.

Machine-learning-based for constructing 
diagnostic model of AD

To assess the potential of the above gene list for diagnosing AD, 
we  constructed a RandomForest model. We  performed model 
construction using 18 genes associated with ferroptosis and selected 
1,000 as the number of decision trees in the Random Forest model 
(Figure 2A). The Gini coefficient indicated that these genes have high 
importance for predicting AD (Figure 2B). Firstly, we divided the 267 

TABLE 1 Microarrays datasets clinical characteristics.

Dataset GSE118553 GSE132903 GSE33000 GSE157239

Groups Control AsymAD AD Control AD Control AD Control AD

Number 100 134 167 98 97 157 310 8 8

Age 70.44 ± 15.79 86.28 ± 8.59 82.92 ± 10.20 84.98 ± 6.90 85.02 ± 6.75 63.52 ± 9.91 80.60 ± 8.99 79.88 ± 7.32 79.75 ± 9.66

Gender

Male 55 40 69 50 49 123 135 3 2

Female 45 94 98 48 48 34 175 5 6
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samples from GSE118553 into a training set and a testing set using a 
ratio of 4:1 (Figure 2C). The AUC value was 0.824 (95% confidence 
interval [CI] = 0.759–0.889) and corresponding matrix demonstrated 
that the training model could correctly classify AD and healthy 

samples with high accuracy. Then, we performed model testing using 
GSE132903 (Figure 2D). The AUC value and corresponding matrix 
demonstrated that the model achieved a high diagnostic accuracy in 
GSE132903 as well. Furthermore, we found that the model can also 

FIGURE 1

Identification of DEGs associated with ferroptosis in AD. (A) The boxplot shows the expression difference of APP between the Control group and AD 
group. Data were analyzed by Kruskal−Wallis test. **p  <  0.01, ****p  <  0.0001. (B) The heatmap plot shows DEGs between frequent exacerbators and 
non-frequent exacerbators. Dotplot displays KEGG enrichment analysis of over-represented genes in control and AD groups. (C) The expression 
patterns of ferroptosis-related genes were presented in the boxplot in GSE118553. Data were analyzed by Kruskal−Wallis test. *p  <  0.05, **p  <  0.01, 
***p  <  0.001. (D) The collection diagram shows driving, suppressing, and unclassified ferroptosis related genes overlapping in the two datasets. 
(E) Ferroptosis related genes with the same expression trend were found in both datasets. Barplot and dotplot show their log2FC and-log10 adjust 
pvalue. (F) Correlation dotplot shows correlations between genes in two datasets. The upper triangle represents GSE118553 and the lower triangle 
represents GSE132903. Red dots means negative correlation, blue dots means positive correlation. The graph on the right shows part of the 
interactions between genes.
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FIGURE 2

Machine-learning-based for constructing diagnostic model of AD. (A) The line chart shows the change in the number of decision trees and the error 
value of the model. When the number of decision trees is greater than 1,000, the error value tends to be stable. (B) The barplot shows importance of 
variables through MeanDecreaseGini coefficients. (C) The flow chart of random forest model construction through GSE118553. Receiver operating 
characteristic (ROC) curve for the testing model and confusion matrix of the hub genes combination in GSE118553. (D) The diagnostic model 
verification model in GSE132903. ROC curve for the testing model and confusion matrix in validation cohort. (E) ROC curve for the classification model 
between three cohorts. Calculation of AUC values in the cohorts by 5-fold cross-validation. (F) Boxplot shows 18 ferroptosis related genes expression 
in control, AsymAD and AD groups. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001.
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be  used for the classification of asymptomatic AD (AsymAD). 
Compared to diagnosing healthy controls and AsymAD (AUC: 0.689), 
the model exhibited higher accuracy in diagnosing AsymAD and AD 
(AUC: 0.705) (Figure 2E).

We also discovered that these genes exhibit consistent expression 
trends in AsymAD and AD compare to healthy controls (Figure 2F). 
This may suggest that the hub genes related to ferroptosis may play an 
important role in the progression stages of the disease.

Clinical and molecular characteristics of 
AsymAD and AD

We analyzed the demographic differences including age and 
gender between AsymAD and AD. The results indicated that there 
were significant differences in age among the control, AsymAD, and 
AD groups (Figure  3A). Studies have shown that there may be  a 
gender difference in the prevalence and risk of AD (Masters et al., 
2015). Women are more likely to develop AD than men and our 
results showed that there was a higher proportion of females than 
male (Figure 3B). We also observed that the expression level of APP 
AD was significantly lower than that of AsymAD, while there was no 
significant difference between AsymAD and control (Figure 3C). In 
contrast, in order to comprehend the potential biological functions 
difference between AsymAD and AD, enrichment analyses were 
conducted. The GSVA results revealed that the expression of oxidative 
stress response pathways was elevated in both AsymAD and  
AD (Supplementary Table 1), and the expression of Neuron-to-
Neuron synapse and Nerve impulse pathways were decreased in AD 
compared to control and AsymAD, suggesting abnormalities in 
neurological related pathways in AD (Figure 3D). GSEA of the DEGs 
in AsymAD and AD has shown that they are associated with 
neurological related pathways include Neurotransmitter secretion and 
learning or memory (Figures 3E,F) and iron ion-related biological 
processes include Response to iron ion (Figures 3G,H). The results 
reveal significant demographic disparities, particularly in age and 
gender, between AsymAD and AD groups, and also underscore the 
complex interplay between demographic factors and molecular 
mechanisms in the progression of Alzheimer’s disease.

Distinct brain regional molecular 
characteristics and gene expression 
patterns in AsymAD and AD

To further investigate the connection between different brain 
regions and AD, we examined four regions in the brain, namely the 
Cerebellum, Entorhinal Cortex, Frontal Cortex, and Temporal Cortex, 
in both AD and AsymAD (Figure 4A). We observed that the Temporal 
Cortex and Entorhinal Cortex exhibited the most significant changes 
in both AD and AsymAD, suggesting that these two regions may play 
a crucial role in disease progression (Figure 4B). Further, we examined 
the expression of ferroptosis-related hub genes across different brain 
regions (Figure 4C). We found that MUC1, MT1G, SREBF1, AKR1C3, 
YAP1, PRDX6, RARRES2, and CD44 were specifically high-expressed 
in Entorhinal Cortex, and this trend was more pronounced in 
AD. Similarly, DDIT4, AKR1C2, DUSP1, and KLF2 were highly 
expressed in the Frontal Cortex of both AD and AsymAD. CIRBP, 

ATP6V1G2, BEX1, FBXW7, NGB, and RGS4 were highly expressed 
in the Temporal Cortex of AsymAD, but were highly expressed in the 
Frontal Cortex of AD. These findings suggest region-specific roles of 
these genes in the pathogenesis of AD and AsymAD.

The results of principal component analysis (PCA) revealed 
distinct differences between the Cerebellum and other regions in 
patients AsymAD (Figure 4D). On the other hand, the distribution of 
the Entorhinal Cortex, Frontal Cortex, and Temporal Cortex appeared 
to be more similar, indicating a similarity in molecular characteristics 
among these three regions in AsymAD. In contrast, the molecular 
characteristics of the four regions showed significant changes in 
AD. By observing the score of gene with principal component 1 (PC1), 
we found that genes highly expressed in entorhinal cortex (SREBF1, 
PRDX6, CD44, MTIG and AKR1C3) had high scores with PC1 in 
both AsymAD and AD (Figure  4E). Furthermore, we  conducted 
further analysis on region-specific genes present in both AsymAD and 
AD (Figure 4E). The results demonstrated that both the Cerebellum 
and Entorhinal Cortex exhibited distinct molecular features compared 
to other regions (Figure 4F). In the Entorhinal Cortex, region-specific 
genes are primarily involved in Myeloid leukocyte activation, 
Ensheathment of neurons, MAPK cascade, and Oligodendrocyte 
differentiation. In the Cerebellum, region-specific genes are mainly 
associated with Telencephalon development, Chemical synaptic 
transmission, Excitatory postsynaptic potential, and Postsynaptic 
membrane potential. Additionally, we identified a group of genes that 
are highly expressed in regions other than the Cerebellum. These 
genes are primarily involved in Forebrain development, Neuron 
projection development, and Trans-synaptic signaling. Additionally, 
we observed consistent downregulation of APP in both AsymAD and 
AD cerebellum (Figures  4G,H). Our findings shed light on the 
regional heterogeneity and molecular signatures associated with AD 
and AsymAD, providing valuable insights for further research and 
understanding of the disease.

Immune microenvironment alterations in 
AD

The clinical therapeutic sensitivity and disease diagnosis are 
significantly influenced by the microenvironment, which 
comprises immune cells, extracellular matrix, inflammatory 
factors, and a diverse range of growth factors. To investigate the 
alterations in the immune microenvironment of AD patients, 
we employed the CIBERSORT algorithm to assess the proportions 
of immune cells in AD and healthy control groups in GSE33000. 
Firstly, we  compared the expression of APP and ferroptosis-
related genes in the GSE33000 dataset between control and AD 
groups. We found that APP was significantly downregulated in 
AD group (Figure 5A). Additionally, the expression patterns of 
ferroptosis-related hub genes were consistent with our previous 
findings (Figure 5B). The CIBERSORT algorithm results showed 
that CD4+ T cells naive, CD4+ T cells resting memory, 
macrophages M2 and neutrophils were significantly higher in 
AD. In contrast, plasma cells, CD8+ T cells, T cells follicular 
helper and NK cells activated were significantly lower in AD 
(Figures  5C,D). We  subsequently investigated the correlation 
between hub genes and immune infiltration (Figure 5E). The hub 
genes were significantly negatively associated with CD4+ T cells 
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FIGURE 3

Clinical and molecular characteristics of AsymAD and AD. (A) The age difference between controls, AsymAD and AD patients. Data were analyzed by 
Kruskal−Wallis test. ***p  <  0.001, ****p  <  0.0001. (B) The difference of gender ratio in different groups. Data were analyzed by chi-squared test. (C) The 
boxplot shows APP expression in controls, AsymAD and AD groups. ns, not significant; *p  <  0.05, **p  <  0.01. (D) The heatmap plot shows pathway mean 
expression levels in different groups. The expression level of each pathway was determined by GSVA score. (E–G) The enrichscores and adjust pvalue 
of Neurotransmitter secretion, Learning or memory and Response to iron ion pathways. The results were calculated by GSEA analysis between 
AsymAD and AD groups. (H) The network plot shows the major down-regulated genes onvolved in pathway between AsymAD and AD groups.
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FIGURE 4

Molecular characteristics in different brain regions of AD and AsymAD. (A) The number of four brain regions (cerebellum, entorhinal, frontal and 
temporal cortex) in AsymAD and AD groups. (B) Barplot shows the contribution of DEGs (AsymAD and AD) from different brain regions. (C) Heatmap 
indicates ferroptosis-related genes specifically highly expressed in different brain regions. (D) Principal component analysis (PCA) showing two 
principal components of different regions in AsymAD and AD samples. (E) Barplot shows the score of genes with principal component 1 (PC1). Red bar 
represents AD, blue bar represents AsymAD. (F) Heatmap of specifically highly expressed genes in each brain region and the pathways in which they 
are involved. (G,H) The abundance of APP gene in four regions of AsymAD and AD. ns, not significant; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001.
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resting memory, CD8+ T cells, macrophages M2, NK cells 
activated and neutrophils, which suggests that hub genes have a 
significant impact on the immune microenvironment. DDIT4 
showed strong positive correlation with CD4 T cells memory 

resting and AKR1C2 had positive correlation with Macrophages 
M2 (Figure 5F). These results suggest that ferroptosis-related hub 
genes may play an important role in the immune 
microenvironment of AD patients.

FIGURE 5

Immune infiltration and immune-related factors. (A) The boxplot shows the expression of APP in control and AD groups. ****p  <  0.0001. (B) The 
boxplot shows expression of ferroptosis related genes in GSE33000 including healthy controls and AD groups. Ns, not significant; *p  <  0.05, **p  <  0.01, 
***p  <  0.001, ****p  <  0.0001. (C) Boxplots showed the differences in immune infiltration between control, HD and AD. (D) The relative abundances of 
22 infiltrated immune cells among control, HD and AD. (E) Correlation dotplot shows correlation between genes and immune cell infiltration. Red dot 
represents positive correlation while blue dot represents negative. The size of the points are determined by the value of Spearman’s coefficient. 
(F) Scatter plots showed the correlation between AKR1C2 and M2 macrophages, DDIT4 and T cells CD4 memory resting.
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Potential therapeutic drug search based on 
ferroptosis-related hub genes

In order to identify potential small molecule drugs for the 
treatment of AD, we analyzed 55 differentially expressed miRNAs 
(DEmiRNAs) including 19 up-regulated miRNAs and 34 up-regulated 
miRNAs between AD and healthy control groups using GSE157239 
(Figures 6A,B). Subsequently, to further investigate whether these 
DEmiRNAs are associated with ferroptosis-related hub genes, 
we utilized the miRnet database and finally identified 14 miRNAs that 
target ferroptosis-related hub genes as potential therapeutic targets 
(Figures  6C,D; Supplementary Table 2). Furthermore, we  further 
confirmed the close association between AD and 7 miRNAs (hsa-miR-
125a, hsa-miR-18b-5p, hsa-miR-193b, hsa-miR-373, hsa-miR-4286, 
hsa-miR-483, and hsa-miR-664b-3p) through the Human microRNA 
Disease Database (HMDD) (Table 2).

To further refine our search, we  employed the Drug-Gene 
Interaction Database (DGIdb) to identify compounds with high 
interaction scores with the hub genes (Figure  6E; 
Supplementary Table 3). These findings suggest that these miRNAs 
and drugs may hold promise as potential therapeutic agents for AD, 
and further investigation is warranted to determine their efficacy 
and safety.

Discussion

Ferroptosis is a form of regulated cell death characterized by the 
accumulation of iron and lipid peroxidation, leading to cell membrane 
damage and ultimately cell death. In the context of AD, dysregulation 
of iron metabolism and increased oxidative stress contribute to the 
accumulation of toxic protein aggregates, such as amyloid-β plaques 
and tau tangles. This exacerbates neurodegeneration and cognitive 
decline in Alzheimer’s patients. In addition, a substantial proportion 
from 20 to 30%, of cognitively intact elderly individuals exhibit 
amyloid-β protein accumulation. Compared to those without 
amyloid-β, these individuals have a higher risk of progressing to AD 
and are commonly referred to as AsymAD individuals (Driscoll and 
Troncoso, 2011).

In this study, we  identified differentially expressed genes 
associated with ferroptosis in AD patients using the GSE118553. 
We further validated the expression trends of these hub genes using 
the GSE132903, demonstrating consistency in their expression 
patterns. Among the ferroptosis-related hub genes we identified, four 
genes were involved in driving ferroptosis: KLF2, YAP1, CIRBP, and 
FBXW7. KLF2 has been found to have a negative regulatory 
relationship with APP and overexpression of KLF2 attenuated 
Aβ-induced oxidative stress (Wu et al., 2013; Fang et al., 2017). YAP1 
is a transcriptional co-activator that has been linked to 
neurodegenerative diseases, including AD (Xu et al., 2021). CIRBP 
demonstrated neuroprotective effects against amyloid-induced 
neuronal toxicity through antioxidative and antiapoptotic pathways 
(Su et  al., 2020). FBXW7 is a ubiquitin ligase that plays a role in 
protein degradation and has been reported that plays a crucial role in 
neurological functions, particularly in neurodevelopment and the 
pathogenesis of neurodegeneration (Yang et al., 2021). Furthermore, 
we  identified that 9 DEGs are involved in suppressing ferroptosis 
process. AKR1C2 and AKR1C3 belong to the aldo-keto reductase 

family, which are involved in the metabolism of steroid hormones and 
other endogenous compounds. Dysregulation of AKR1C2 and 
AKR1C3 has been observed in Alzheimer’s disease (Luchetti et al., 
2011; Chik et  al., 2022), suggesting their potential role in disease 
progression. PRDX6 has already been reported to be involved in the 
oxidative stress and antioxidant defense process in AD (Viejo et al., 
2022). CD44 is a cell surface glycoprotein and involve in the 
neuroinflammatory processes mediated by microglial cells (Rangaraju 
et al., 2018; Smajić et al., 2022). SREBF1 has also been confirmed as a 
disease-associated transcription factor (Morabito et al., 2021). BEX1 
has been reported to potentially be  associated with the gender 
disparity in AD (Garcia et  al., 2023). However, the relationship 
between MUC1, RARRES2 and MT1G with the disease is not 
extensively studied, and the specific role of them in AD pathogenesis 
is still being elucidated. In addition, we  have also identified 5 
unclassified ferroptosis-related genes that are associated with AD: 
DUSP1, DDIT4, NGB, ATP6V1G2, RGS4. There have been reports 
indicating a significant negative correlation between DUSP1 and 
cognitive abilities in AD patients (Qi et al., 2022). In the context of 
AD, DDIT4 responds to extracellular amyloid-β and regulates the 
cytotoxic effects of amyloid-β in vitro (Morel et al., 2009). NGB is a 
neuroglobin protein, belonging to the globin family. The 
overexpression of NGB can protect neurons from mitochondrial 
dysfunction and neurodegenerative diseases such as AD (Ascenzi 
et al., 2016). ATP6V1G2, a subunit of the vacuolar ATPase (V-ATPase) 
complex. Studies have shown that ATP6V1G2 as significantly 
regulated by DNA methylation at hub CpGs in AD (Kim et al., 2023). 
RGS4, a regulator of G-protein signaling, has been identified as a 
potential biomarker for AD in multiple studies (Zou et al., 2019; Chen 
et al., 2022), and this finding has been confirmed in our result as well. 
Although these genes exhibit consistent strong correlations in both 
datasets, there are some genes whose correlations show completely 
opposite patterns between the two datasets. Therefore, further 
investigation into the stability of interactions between ferroptosis-
related hub genes may be necessary to provide additional evidence. 
This could be an important aspect to consider in future research.

To investigate the potential of these genes as biomarkers for AD, 
we constructed a random forest classifier model. Our results showed that 
this model was able to accurately distinguish between healthy controls 
and AD patients in both the training sets (GSE118553, AUC = 0.824) and 
validation sets (GSE132903, AUC = 0.734). Furthermore, we found that 
the model was also able to differentiate between AsymAD and control 
groups (AUC = 0.689), and also can distinguish between AsymAD and 
AD (AUC = 0.705), indicating that these genes may play an important 
role in the progression of AD. Demographic characteristics also 
indicated that both AsymAD and AD patients had significantly higher 
age compared to the healthy control group. Additionally, a higher 
proportion of females was observed in both AsymAD and AD patients, 
which is consistent with previous research findings. Furthermore, 
we discovered significant downregulation of pathways related to learning 
or memory, neurotransmitter secretion, and response to iron ion in AD 
patients compared to AsymAD patients. Besides, in our analysis of genes 
involved in the learning or memory pathways, we discovered that APOE 
and AGER exhibit dysregulated expression in AD. APOE is involved in 
lipid metabolism and is a major genetic risk factor for late-onset 
Alzheimer’s disease, with the APOE ε4 allele being particularly 
associated with an increased risk (Serrano-Pozo et al., 2021; Martens 
et al., 2022). AGER is involved in the regulation of inflammation and 
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oxidative stress. In Alzheimer’s disease, AGER contributes to the 
accumulation of amyloid-beta plaques and the activation of microglia, 
which can exacerbate neuroinflammation and neuronal damage (Ding 
et al., 2020).

Further, we observed the transcriptional expression profiles of 
different brain regions in AsymAD and AD, respectively. By 
assessing the contribution of different brain regions in DEGs of 
AsymAD and AD, we found that the DEGs of AsymAD and AD 

FIGURE 6

Potential therapeutic drug search based on ferroptosis-related hub genes. (A) The volcano map shows differentially expressed miRNAs between 
control and AD. (B) The abundances of 55 (Up:19, Down:34) differentially expressed miRNAs in control and AD patients. (C) A total of 633 miRNAs 
targeting ferroptosis related genes were obtained from miRNANnet. Fourteen kinds of miRNAs are obtained by intersected with differentially expressed 
miRNAs. (D) The Sankey plot shows 14 miRNAs and genes they target. (E) The interaction scores of genes and drugs were obtained by DGIdb.
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were mostly from temporal cortex and frontal cortex, which was 
consistent with previous studies (Patel et al., 2019). In different 
regions of AsymAD and AD, we found MUC1, MT1G, SREBF1, 
AKR1C3, YAP1, PRDX6, RARRES2 and CD44 were upregulated 
in both AsymAD and AD entorhinal cortex region. DDIT4, 
AKR1C2, DUSP1 and KLF2 were all upregulated in frontal cortex 
region. Notably, CIRBP, ATP6V1G2, BEX1, FBXW7, NGB, and 
RGS4 were upregulated in AsymAD temporal cortex region but 
upregulated in AD frontal cortex region. These results indicate that 
ferroptosis-related hub genes can reflect the transcriptional 
changes of different brain regions in pathological states. It is worth 
noting that the changes of ferroptosis-related hub genes in other 
brain regions, such as the hippocampus, which have a significant 
impact on AsymAD or AD, have not been elucidated in our study. 
This is a crucial aspect that requires further research and validation 
in the future. We also identified specific high-expression genes in 
different brain regions. Entorhinal cortex specific high expression 
genes are mainly related to myeloid leukocyte activation, 
ensheathment of neurons, MAPK cascade and oligodendrocyte 
differentiation. The highly expressed genes of cerebellum are 
mainly involved in telencephalon development, chemical synaptic 
transmission, excitatory postsynaptic potential and postsynaptic 
membrane potential. We also identified a group of genes that were 
highly expressed in regions other than the cerebellum, which 
primarily associated with forebrain development, neuron 
projection development, and trans−synaptic signaling.

Studies have shown that both microglia and astrocytes, as well as 
peripheral immune cells, are involved in neuroinflammation 
associated with AD (Leng and Edison, 2021). Therefore, 

we  investigated immune infiltration in AD, we  found that M2 
macrophages’ infiltration was significantly increased in AD, which is 
consistent with previous study (Lin et  al., 2022). In addition, 
neutrophils and monocytes were also upregulated in AD. In contrast, 
CD4 T cells memory resting was downregulated. Further, we found 
ferroptosis-related hub genes was highly correlated with immune cell 
infiltrations. DDIT4 showed strong positive correlation with CD4 T 
cells memory resting and AKR1C2 had positive correlation with 
Macrophages M2. It has been shown that downregulation of neuronal 
DDIT4 can restore the proliferative characteristics of glial cells and the 
abnormal expression of key proteins of inflammasome (Pérez-Sisqués 
et al., 2021). Therefore, studying the role of immune and inflammatory 
cells in AD may provide anti-inflammatory and immunomodulatory 
targets for AD treatment.

Here, miRNAs targeting ferroptosis related hub genes were 
identified by miRNAnet. We identified 14 miRNAs which targeting 10 
of ferroptosis related genes. miR-125a showed promise in regulating cell 
functions and inflammation in diseases associated with neuronal 
dysfunction (Potenza and Russo, 2013). In addition, study also reported 
that in a rat model of ethanol-induced neurotoxicity, the SVCT2 
mitigated oxidative injury by modulating the JNK/p38 MAPK, NF-κB, 
and miR-125a-5p pathways (Tian et al., 2016). Moreover, it has been 
observed that miR-483-5p plays a role in repressing the activity of 
ERK1/2, leading to a decrease in the phosphorylation of TAU protein at 
epitopes associated with TAU neurofibrillary pathology in AD (Nagaraj 
et al., 2021). Then, 19 drugs targeting the above genes were retrieved 
from the DGIdb database. Albuterol also known as Salbutamol, is a 
short-acting β 2-adrenoceptor agonist. Increased amyloid β production 
after β 2-adrenoreceptor activation was reported by Ni et al. (2006), 

TABLE 2 Associations between microRNAs and AD.

miRNA 
name

Evidence code Disease 
name

PMID Description Causality

hsa-mir-125a

genetics_knock down_

promote

Alzheimer 

disease 32626959

Rescue experiments were conducted by transfecting lnc-ANRIL 

knockdown plasmid and lnc-ANRIL knockdown plasmid and miR-125a 

inhibitor in the PC12 cellular AD model as the KD-ANRIL group or 

KD-ANRIL KD-miR-125a group, respectively. Lnc-ANRIL knockdown 

suppressed cell apoptosis and inflammation while promoting neurite 

outgrowth via binding of miR-125a in AD. Unknown

hsa-mir-18b other

Alzheimer 

disease 36723144

Taking miR-18b-5p and miR3p which are associated with Alzheimer’s 

disease as an example, a FRET sensing system was fabricated for the 

simultaneous analysis of two miRNAs within 1 h at picomolar 

concentration. Unknown

hsa-mir-193b

circulation_biomarker_

diagnosis_ns

Alzheimer 

disease 25119742

MicroRNA-193b is a regulator of amyloid precursor protein in the blood 

and cerebrospinal fluid derived exosomal microRNA-193b is a 

biomarker of Alzheimer’s disease. NO

hsa-mir-373

circulation_biomarker_

diagnosis_up

Alzheimer 

disease 36422510

Therefore, we suggest that miR-204 and miR-373 are potential 

biomarkers for AD. Unknown

hsa-mir-4286 tissue_expression_down

Alzheimer 

disease 32920076 The analyses yielded 6 miRNAs differentially expressed Unknown

hsa-mir-483

circulation_biomarker_

diagnosis_ns

Alzheimer 

disease 24577456

Genome-wide serum microRNA expression profiling identifies serum 

biomarkers for Alzheimer’s disease. NO

hsa-mir-664b Other

Alzheimer 

disease 36153426

Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant 

differential expression in AD brains versus controls, in accordance with 

the change direction of lead exposure. Unknown
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animal models of memory disruption have shown improved 
performance after Albuterol treatment (Ciprés-Flores et al., 2019). In 
our results, Albuterol showed the highest interaction score with DUSP1, 
indicating that DUSP1 may be a promising drug target. Insulin plays an 
important role in the regulation of glucose metabolism and can 
influences cerebral bioenergetics, turnover of neurotransmitters in AD 
(Arnold et  al., 2018; Kellar and Craft, 2020). A study has reported 
Hydroxyurea provides neuroprotection in vitro against neurotoxins, 
which increase oxidative stress and excitotoxicity and reduce 
mitochondrial function (Brose et al., 2018).

Conclusion

In conclusion, we acquired 18 ferroptosis-related hub genes in 
AD. We explored the potential of these genes as diagnostic markers 
and their role in the disease process which will help in 
understanding the development of AD. However, further 
experimental validation is needed to verify their functions. In 
addition, these hub genes have high correlation with infiltration of 
immune cells. Currently, a few drugs targeting these hub genes are 
predicted to relieve AD, provides new research clues for preventing 
the development of AD. Our study also has limitations, we used 
data from public databases for our analysis, which were from 
different platforms. Due to different sequencing technologies and 
platforms, the inclusion criteria of patients are different. 
Furthermore, our study is limited to the transcriptome level, the 
significance of these findings requires further validation through 
prospective clinical and basic experiments.
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(A) Volcano plot of differentially expressed genes differing significantly 
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