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Leaderless secretory proteins of 
the neurodegenerative diseases 
via TNTs: a structure-function 
perspective
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Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and 
huntingtin are known to traverse across cells via exosomes, extracellular vesicles 
and tunneling nanotubes (TNTs). There seems to be  good synergy between 
exosomes and TNTs in intercellular communication. Interestingly, many of the 
known major neurodegenerative proteins/proteolytic products are leaderless 
and are also reported to be secreted out of the cell via unconventional protein 
secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) 
within them. The dynamic behavior of these proteins is due to their heterogenic 
conformations that is exhibited owing to various factors that occur inside the cells. 
The amino acid sequence along with the chemical modifications has implications 
on the functional roles of IDRs inside the cells. Proteins that form aggregates 
resulting in neurodegeneration become resistant to degradation by the processes 
of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT 
formation. The proteins that traverse across TNTs may or may not be dependent 
on the autophagy machinery. It is not yet clear whether the conformation of the 
protein plays a crucial role in its transport from one cell to another without getting 
degraded. Although there is some experimental data, there are many grey areas 
which need to be revisited. This review provides a different perspective on the 
structural and functional aspects of these leaderless proteins that get secreted 
outside the cell. In this review, attention has been focused on the characteristic 
features that lead to aggregation of leaderless secretory proteins (from structural-
functional aspect) with special emphasis on TNTs.
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Introduction

Secretion is a pivotal physiological process that helps in the homeostasis of cells. Proteins 
synthesized inside the cells get secreted to the exterior by traversing across multiple organelle 
compartments which is directed by a small peptide tag called the leader peptide or the signal 
peptide. Multiple molecular machinery is involved in the transport of these proteins that are 
secreted out by passing through the ER, Golgi and plasma membrane and the process is termed 
as conventional protein secretion (CPS). As exclusions always occur, there are a subset of 
proteins that get secreted outside the cells without the presence of the leader peptide and this 
process is termed as unconventional protein secretion (UCPS). Unconventional protein 
secretion follows majorly four different pathways – Type I, Type II, Type III, and Type IV 

OPEN ACCESS

EDITED BY

Yun Li,  
University of Wyoming, United States

REVIEWED BY

Utpal Das,  
University of California,  
San Diego, United States
Graziella Cappelletti,  
University of Milan, Italy

*CORRESPONDENCE

Sreedevi Padmanabhan  
 sreepbc@gmail.com  

Ravi Manjithaya  
 ravim@jncasr.ac.in

RECEIVED 30 June 2022
ACCEPTED 26 May 2023
PUBLISHED 

CITATION

Padmanabhan S and Manjithaya R (2023) 
Leaderless secretory proteins of the 
neurodegenerative diseases via TNTs: a 
structure-function perspective.
Front. Mol. Neurosci. 16:983108.
doi: 10.3389/fnmol.2023.983108

COPYRIGHT

© 2023 Padmanabhan and Manjithaya. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Mini Review
PUBLISHED 
DOI 10.3389/fnmol.2023.983108

15 June 2023

15 June 2023

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2023.983108%EF%BB%BF&domain=pdf&date_stamp=2023-06-15
https://www.frontiersin.org/articles/10.3389/fnmol.2023.983108/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.983108/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.983108/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.983108/full
mailto:sreepbc@gmail.com
mailto:ravim@jncasr.ac.in
https://doi.org/10.3389/fnmol.2023.983108
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2023.983108


Padmanabhan and Manjithaya 10.3389/fnmol.2023.983108

Frontiers in Molecular Neuroscience 02 frontiersin.org

(Rabouille et al., 2012; Rabouille, 2016). Of these, type I and type II 
are non-vesicular. The vesicular pathways are mediated by the Type 
III and IV systems. Besides these modes of secretion, there exists 
another mode via tunneling nanotubes (TNTs) by which the proteins 
get transported from one cell to the other. Biological molecules 
including lipid vesicles, proteins, DNA and even organelles get 
transported through these TNTs.

It is interesting to note that the secreted proteins are often found 
to evolve faster than the intracellular proteins in mammalian cells 
(Julenius and Pedersen, 2006; Liao et al., 2010; Homma et al., 2018). 
Proteins that lack stable tertiary structure in their native form are 
termed as intrinsically disordered proteins and regions (IDRs) and 
they constitute a major fraction of the eukaryotic proteome (Dunker 
et al., 2013; Walsh et al., 2015). Intrinsic disorder of proteins results in 
structural diversity which can lead to multiple functions 
(multispecificity) which includes protein promiscuity and 
moonlighting functions and various pathologies (Hult and Berglund, 
2007; Gupta et al., 2019; Blundell et al., 2020). Hence, the disorder 
becomes an intrinsic function since their presence is seen at significant 
levels in proteins involved in various regulatory processes such as 
signal transduction, transcription, DNA repair and chromatin 
remodeling (Blundell et al., 2020). Around 33% disorder is observed 
in the eukaryotic proteome, of which approximately 67% constitutes 
the long IDRs in the protein which are generally 30 or more amino 
acids long. They evolve faster than structured domains (Oldfield and 
Dunker, 2014). As the IDRs have more hydrophilic properties than 
structured regions, they are expected to be  soluble in aqueous 
solutions (Uversky et al., 2000; Oldfield et al., 2005; Haynes et al., 
2006; Uemura et al., 2018). However, in silico predictions employed to 
discriminate a short IDR (<11 residues, below the lower quartile 
point) from the long IDRs (>77 residues above the higher quartile 
point) demonstrated that the high disorder group was biased towards 
the lower solubility fraction while the low disorder group towards 
higher solubility fraction (Uemura et al., 2018). Recent studies by 
Pritisanac and colleagues suggest that the information in IDR 
sequences cannot be fully revealed only by positional conservations at 
the sequence level but conformational entropy can be modulated to 
facilitate IDRs to tune their energy landscapes thereby enabling 
diverse functional interactions and modes of regulation (Pritišanac 
et  al., 2019). As IDRs play important roles in signaling processes 
(Forman-Kay and Mittag, 2013; Chong and Forman-Kay, 2016) and 
have implications in disease conditions (Babu, 2016; Chong and 
Forman-Kay, 2016; Alberti and Carra, 2018; Forman-Kay et al., 2018), 
we propose plausible role of the IDRs in the formation of TNTs in 
this review.

Intercellular communication—role of 
extracellular vesicles, exosomes and TNTs 
in unconventional protein secretion

Eukaryotic cells employ several means of intercellular 
communication to address the changing physiological demands/cues 
and also in protecting cells from debilitating diseases and /or from 
pathogenic invasions. Intercellular communication is mediated by cell 
derived nano extracellular vesicles such as exosomes in a paracrine 
fashion and also by long range intercellular cytoplasmic bridges such 
as TNTs. Exosome proteins include the transmembrane proteins 

(CD9, CD63, CD81, CD82), heat shock proteins (HSC70, HSP60, 
Hsp70, Hsp90), proteins involved in MVB processing (Alix, TSG101), 
cytoskeleton proteins (actin, tubulin, cofilin, profilin, fibronectin, 
etc.), fusion/transport proteins (Annexins, Rabs), integrins, signal 
transduction proteins, immune regulatory molecules (MHC I and II) 
and various metabolic enzymes. Exosomes are lipid bilayer vesicles 
with a diameter of 30–150 nm, which can carry specific proteins, 
lipids, mRNA, miRNA and other substances. The early endosomes 
mature into late endosomes and multivesicular bodies (MVBs), gets 
translocated to plasma membrane and secrete out as exosomes 
(Colombo et al., 2014). Tunneling nanotubes (TNTs), discovered in 
2004, are thin, long protrusions between cells utilized for intercellular 
transfer and communication. These newly discovered structures have 
not only been demonstrated to play a crucial role in homeostasis, but 
also in the spreading of diseases, infections, and metastases. TNTs are 
actin-based transient cytoplasmic extensions which are stretched 
between cells in the form of open ended nanotubular channels 
(50–200 nm; Rustom et al., 2004) that transport cargoes across cells. 
Motor proteins play as a common component in both TNTs and EVs 
such as exosomes in the transport of cargoes. Exosomes and TNTs 
resemble the pattern in disseminating the disease associated proteins 
especially in the neurodegenerative disease pathologies. The role of 
TNTs and EVs are implicated in the spread of misfolded protein 
aggregates between different cells in the central nervous system. The 
role of EVs in intercellular communication is relatively well-
understood but the role of TNTs is largely underexplored. The 
extracellular vesicles and TNTs are structurally different but perform 
the parallel process of intercellular communication. In the absence of 
direct physical contact, cells communicate with each other using long 
range TNTs or by secreting EVs or exosomes in a paracrine fashion. 
A comparative profile of the EVs and TNTs in intercellular 
communication w.r.t neurodegenerative diseases are listed in Table 1.

Factors associated with the TNT formation 
and transport of leaderless secretory 
proteins via TNTs

This review attempts to understand the common underpinnings 
that work in unison for the secretion of the leaderless peptides with 
special emphasis on TNTs that is largely unknown. In this regard, 
some of the factors which have the putative roles are discussed here 
along with the evidences from the known literature.

Intrinsically disordered regions in 
leaderless secretory proteins

Proteostasis is maintained by multiple cellular pathways such as 
ubiquitin-proteasome system (UPS), autophagy-lysosomal system and 
unfolded protein response (UPR) in neurons. All these pathways 
regulate processes such as protein folding, disaggregation, degradation 
and extracellular release of misfolded or disease related proteins (Lim 
and Yue, 2015). It is interesting to note that many of the proteins/
proteolytic products associated with neurodegeneration are leaderless 
and are also reported to be secreted out of the cell via unconventional 
protein secretion. For example, fragmentation of specific regions such 
as the central region of Tau can be pathogenic (Xia et al., 2021) and 
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C-truncated α-syn is found to be associated with toxicity (Sorrentino 
and Giasson, 2020). Several lines of evidence implicate the secretion 
of these proteins, that form aggregates, in disease progression. The 
disorder and promiscuity of these proteins seems to affect both 
communicable and non-communicable diseases (Blundell et  al., 
2020). Several neurological diseases (conformational diseases) are a 
result of the key factors of IDRs due to their higher propensity of 
aggregation (Mukherjee and Gupta, 2017). The IDR mediated 
aggregation leads to disease impacting amyloid formation (Uversky 
et al., 2000, 2008; Hammerstrom, 2009; Sweeney et al., 2017). Proteins 
such as huntingtin, TDP-43, FUS, SOD1, ataxin-2, alpha synuclein, 
beta amyloid, and tau contain intrinsically disordered regions (IDRs) 
within them (Table 2; Figure 1) which are one of the pivotal common 
factors causing their aggregation. The dynamic behavior of these 
proteins is due to their heterogenic conformations that is exhibited 
due to various factors that occur inside the cells. The amino acid 
sequence along with the chemical modifications has implications on 
the functional roles of IDRs inside the cells. In general, absence of 
hydrophobic residues, but presence of regions of high fraction of 
charged residues and aromatic amino acids are causes of disorder in 
intrinsically disordered proteins (Oldfield and Dunker, 2014; van der 
Lee et al., 2014; Uversky, 2019). It is observed that many of the proteins 
involved in the calcium signaling pathways (e.g., the N-methyl-D-
aspartate, NMDA receptors in spine) are intrinsically disordered. The 
intrinsically disordered C-terminal in the NMDA receptor regulates 
calcium signaling pathway and trafficking by altering the properties 
of the channel (Warnet et al., 2021). This long C-terminal IDR also 
serves as a scaffold to assemble the downstream signaling proteins, 
including calmodulin, kinases and calcineurin. This means that the 
role of IDRs in various intracellular proteins is pivotal in regulatory 
mechanisms that contribute to cellular signaling (Bondos et al., 2022).

In the past few years, the prevalence and roles of intrinsically 
disordered proteins and IDRs in synaptic vesicle trafficking and 
exocytosis in addition to synaptic organization has gained more 
attention (Snead and Eliezer, 2019). Although IDPs lack stable tertiary 
structures, they retain biological function and activity of the proteins 
such as cell signaling. Although the significance of IDRs is 

well-established in other areas of biology, it is not well-explored in the 
field of neurobiology. Similar lines of evidence propose the role of 
intrinsically disordered proteins in dictating and modulating the 
cellular phenotype depending on the environmental cues/micro 
environment in the intercellular communication (Kulkarni et  al., 
2022). It is due to the above reasons, there is a proposed role of IDRs 
in information transfer as linkers, effectors, and sensors that enable 
complex regulatory behavior in molecular signaling (Hilser and 
Thompson, 2007; Motlagh and Hilser, 2012; Tompa, 2014; Arbesú 
et al., 2018; Follis et al., 2018; Li and Hilser, 2018; Zhang et al., 2018). 
Hence, it is important to understand as to whether the IDRs in the 
leaderless proteins have any role in the TNT formation especially in 
the neurodegenerative diseases. It is not known as to whether the 
IDRs are dictating the TNT formation.

Charged residues

The proportion of charged residues are high in the primary 
sequences of IDPs with few hydrophobic amino acids (Cortese et al., 
2008; Uversky, 2016). It is the unique properties of the IDR that render 
conformational and functional flexibility. The structural complexity is 
brought about by these simple sequences and their inability to 
spontaneously fold into a unique three-dimensional structure. The 
charge content, their pattern within the IDRs along with the sequence 
composition are the determining factors that dictate the IDPs to 
respond to external factors like ionic strength and temperature 
(Shammas et  al., 2016). The IDPs demonstrate flat, free energy 
landscapes with local minima separated by low barriers, and they tend 
to rapidly oscillate between different disordered conformations 
(Papoian, 2008). Post translational modifications alter the energy 
landscape and the resultant conformational ensemble of the IDP, and 
they modulate interactions with other biomolecules (Bah and 
Forman-Kay, 2016; Guharoy et  al., 2016; Shammas et  al., 2016; 
Uversky, 2016). Recent report from Ferreira et  al. (2022) have 
demonstrated that pentapeptide KFERQ containing proteins are 
loaded onto a subpopulation of exosomes. This process which is 

TABLE 1 Comparison between the EVs and TNTs in intercellular communication in neurodegeneration.

Characteristics EVs, exosomes TNTs

Structure/form of protein transport Proteins are transported in the vesicles. Proteins are transported via nanotubes.

Cargo transport EVs transport bioactive molecules, including nucleic 

acids, proteins, lipids, and metabolites.

TNTs transport cellular organelles such as mitochondria, lysosomes, 

vesicles, biomolecules such as proteins, lipid droplets, ions.

Composition EVs and exosomes are cargo carriers which is 

composed of lipids and proteins.

TNTs are actin-based transient cytoplasmic extensions which are 

stretched between cells in the form of open ended nanotubular channels.

Size The size is heterogenous which ranges from 30–

10,000 nm.

The tubular channels have a size of 50–200 nm. Nanotubes less than 

0.7 μm in diameter, mainly containing actin and nanotubes larger than 

0.7 μm, containing both microfilaments of actin and microtubules are 

observed.

Mode of communication Cell derived nanovesicles working in paracrine fashion. Long range direct contact-based communication bridges/tubes.

Requirement of motor proteins Actin and myosin proteins are involved in the transport 

of these nano vesicles.

TNTs are actin-based tubes through which the cargoes are transported 

with the help of motor proteins.

Role in disease propagation Involved in the transport and propagation of disease-

causing aggregates.

Involved in the transport and propagation of disease-causing aggregates.

Speed of transfer of aggregate proteins Depends on the motor proteins. Ranges between 0.1–15 μm/s.
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TABLE 2 Comprehensive list of leaderless proteins involved in neurodegenerative diseases.

Neurodegenerative 
disease

Protein 
aggregates 
(Uniprot ID)

Length of 
the protein

IDR protein 
structure

Species 
localization

Autophagy 
secretion-
presence of LIR 
motif*

Unconventional 
secretion

TNT mode 
secretion

References

Huntington’s disease Huntingtin (P42858) 3,142 PolyQ Intracellular (cytosolic 

and nuclear)

Yes Yes Yes Sharma and 

Subramaniam (2019)

Amyotrophic lateral sclerosis TDP-43(Q13148) 414 C-terminal domain Cytoplasmic aggregates Yes Yes Yes Tardivel et al. (2016)

FUS (P35637) 526 N-terminal domain Yes Not reported Not reported -

SOD1 (P00441) 154 22–30,55–95 

region; 121–143 

region

Yes Yes Yes Abounit et al. (2016)

Ataxin-2(Q99700) 1,313 Poly Q-tract Yes Not reported Yes -

TBK-1 (Q9UHD2) 729 TBK-1 Yes Not reported Involved in TNT 

secretion

-

Parkinson’s disease Alpha-synuclein 

(P37840)

140 C-terminal domain Intracellular LB 

formation, extracellular 

and membrane

No Yes Yes Abounit et al. (2016)

Alzheimer’s disease Beta-amyloid 

(P05067)

770 Beta-amyloid Extracellular plaques Yes Yes Yes Dilna et al. (2021)

Tau (P10636) 758 N-terminal domain Intracellular 

neurofibrillary tangles

Yes Yes Yes Tardivel et al. (2016)

*https://ilir.warwick.ac.uk/lirpredict.php and data from Padmanabhan et al. (2018).
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ESCRT independent is dependent on HSC70, CD63, Alix, syntenin-1, 
Rab31 and ceramides. On a similar note, the environmental conditions 
such as hypoxic conditions induce TNTs in glioblastoma and 
surrounding non-tumor astrocytes (Valdebenito et al., 2021). It is 
important to note that as the evolutionary signatures in the amino acid 
sequences dictate the molecular features (Zarin et al., 2019) suggesting 
charged residues / net charge of the proteins might have some role 
in TNTs.

Prion-like proteins

The prion-like proteins such as huntingtin fibrils and TDP-43 
involved in neurodegenerative diseases are shown to trigger TNT 
formation in neuronal cells (Gousset et al., 2009; Costanzo et al., 
2013; Ding et  al., 2015). Human prion-like proteins often 
correspond to nucleic acid binding proteins, displaying both 
globular domains and long intrinsically disordered regions (IDRs; 
Harrison and Shorter, 2017). Their IDRs are of low complexity and 
are usually enriched in Gln and Asn residues and depleted in 
hydrophobic and charged residues and these sequence stretches are 
called prion-like domains (PrLDs). These domains help the prion-
like proteins aggregate into amyloid fibrils, which then can 

accommodate incoming protein monomers as seeds, thus 
propagating the polymeric fold. Human prion-like proteins are 
gaining wide attention as they are identified in an increasing 
number of neurodegenerative diseases in the form of insoluble 
inclusions (Harrison and Shorter, 2017). Some of the well-
characterized examples are FUS, TDP-43, TAF15, EWSR1, TIA1, 
hnRNPA1, and hnRNPA2 proteins. All the neurodegenerative 
disorders such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), amyotrophic lateral sclerosis (ALS), or transmissible 
spongiform encephalopathies (TSEs) are the result of these self-
propagating prion-like properties that disrupt cellular proteostasis 
(Jucker and Walker, 2013; Liberski, 2014; Goedert, 2015). 
Understanding the exact mechanisms of cell-to-cell spreading of 
pathological species are still a subject of intense research. The role 
of TNTs in such propagation has been demonstrated in Huntington’s 
disease, PD and ALS/fronto-temporal dementia among other 
known mechanisms (Aguzzi and Lakkaraju, 2016). The amyloid Aβ 
peptide has been shown to traffic through TNTs and induce 
cytotoxicity in AD (Wang et al., 2011). Similarly, recent reports 
demonstrate that the intercellular spread of pathological tau is 
facilitated by the increased formation of TNTs by the extracellular 
tau (Tardivel et al., 2016) which suggests the plausible role of these 
proteins in TNT formation.

FIGURE 1

Domain architecture of some of the leaderless proteins that are involved in neurodegenerative diseases. RRM—RNA Recognition motif is colored in 
red, the IDRs in cyan, CC—coiled coil structures in light green color. ZnF−zinc finger motif is colored in grey color, LsmAD domain in yellow color 
interacts with RNA helicase, KD-Kinase domain in orange color, ULD—Ubiquitin-Like domain in dark pink color, A4 extra in light pink color and KU 
domain in dark blue color. The domain architecture was drawn to scale using DOG 2.0 illustrator (Ren et al., 2009).
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RNA-binding property

It is interesting to note that many of the RNA-binding proteins 
found in stress granules contain aggregation-prone prion-like 
domains (PrLDs) which are rich in glutamine/asparagine. Several 
mutations in the PrLD-containing RNA-binding proteins have been 
implicated in various neurodegenerative diseases including ALS and 
FTD (Ramaswami et  al., 2013; Baradaran-Heravi et  al., 2020). 
Incidentally, several parallel reports suggest the secretion of many 
RNA-binding proteins (~204) that are microtubule-associated protein 
light chain 3 (LC3)-mediated, and are termed as LC3-Dependent EV 
Loading and Secretion (LDELS; Leidal et  al., 2020; Leidal and 
Debnath, 2020). In a recent extended study of these data sets, Biswal 
et al. (2022) observed that of the 204 proteins, 202 of them were found 
to be leaderless and it has been suggested that the triacidic motif (EEE/
DDD/DEE) is found to occur in a statistically significant proportion. 
The plausible role of phosphorylatable amino acid and the proximity 
of LC3-interacting region (LIR) in autophagy-dependent 
unconventional protein secretion has been reported. This statistically 
significant observation of the presence of triacidic motif in 
mammalian proteins is an extension/ supporting study of the diacidic 
motif—DE in UCPS (Cruz-Garcia et al., 2017) and the context in 
which the diacidic motif appears (Padmanabhan et al., 2018). Studies 
demonstrate that the RNA-binding protein, nucleolin interacts with 
the known TNT-inducing protein, MSec and this interaction forms 
the basis for TNT formation in mammalian cells. This is brought 
about by the RNA-binding domains (RBDs) of nucleolin, which in 
turn maintains the cytosolic levels of 14–3-3ζ mRNA, thus helping in 
TNT formation (Dagar et al., 2021). This suggests a plausible nexus 
between LC3-dependent secretion, RNA-binding proteins and TNTs.

Role of actin and myosin proteins in 
TNTs

Proteins that form aggregates and cause neurodegeneration 
become resistant to degradation by the processes of autophagy and 
proteasome system thus leading to TNT formation. The proteins that 
traverse across TNTs may or may not be dependent on the autophagy 
machinery. It is not yet clear whether the conformation of the protein 
plays a crucial role in its transport from one cell to another without 
getting degraded. Starvation induced autophagy has been shown to 
increase the formation of TNTs in mesothelioma cells (Lou et al., 
2012), suggesting a correlation between these processes. Recently, it 
was observed that TNT signaling induces the secretion of pro-survival 
cytokines (Polak et al., 2015). TNT formation is also dependent on 
actin (Rustom et al., 2004; Polak et al., 2015) and this co-dependence 
might be important for autophagosome transport through the TNT 
machinery. TNTs are membranous protrusions supported by 
filamentous actin that mediate continuity between remote cells by 
remaining open at both ends for cargo transport. Since actin is 
involved in all the steps of autophagy (Aplin et al., 1992; Reggiori et al., 
2005; Aguilera et al., 2012; Zhuo et al., 2013; Kast and Dominguez, 
2017), there could be a plausible crosstalk between autophagy and 
TNTs. Amyloid-β-induced membrane damage triggers TNTs by 
exploiting p21-activated kinase-dependent actin remodulation (Dilna 
et  al., 2021). It is demonstrated that actin related proteins have 
opposite effect on TNT formation in differing cell types such as 

immune cells. Some of the actin and membrane related proteins that 
effects TNTs are IRSp53, CDC42, Rac1, VASP, Fascin, Eps8 and 
My010 (Ljubojevic et al., 2021). The insulin receptor tyrosine kinase 
substrate of 53 KDa (IRSP53) is an I-BAR protein that is involved in 
the initiation and stabilization of negative membrane curvature. Cell 
division cycle 42, CDC42 is a Rho-GTPase signaling protein that is 
involved in triggering actin rearrangement in TNTs. The Ras-related 
C3 botulinum toxin substrate 1 (Rac1) is involved in actin related 
protein, Arp2/3 activation. The vasodilator-stimulated phosphor 
protein (VASP) is an actin nucleator that elongates straight actin 
filaments. The epidermal growth receptor substrate 8 (Eps8) has a dual 
role in limiting actin protrusion extension and in stabilization of 
TNTs. Eps8 acts as a positive regulator of TNT formation. Fascin is an 
actin filament bundling protein. The unconventional myosin, Myo10 
is found to be a key regulator of TNT formation in neuronal cells 
(Gousset et al., 2013). All the above-mentioned molecular players 
seem to play in concert with each other along with the 14-3-3 protein 
in the TNT formation (Ljubojevic et al., 2021). As 14-3-3 is also one 
of the key modulators of autophagy, there is a plausible interlink 
between the process of autophagy and TNT formation.

Role of GTPases in TNTs

The role of Rho-GTPases is implicated in cell surface dynamics 
and TNT biogenesis (Raghavan et  al., 2021) and is observed to 
be significant in various physiology and disease (Zhang et al., 2020). 
Although TNT formation in neurons is not completely understood, 
studies have illustrated that the mutant huntingtin could 
be transported through the biogenesis of TNTs mediated by the brain-
enriched GTPase/SUMO E3-like protein Rhes (Sharma and 
Subramaniam, 2019). The involvement of small Rho GTPases like 
Cdc42, needs to be  established in the context of cell-to-cell 
transmission of prion and prion-like proteins. The complex 
relationship between Rho GTPases and actin-regulatory complexes in 
neurons can be  brought about by the plausible fact that Cdc42-
mediated pathway via IRSp53 and VASP inhibits TNT formation by 
promoting the extension of filopodia concomitantly (Delage et al., 
2016). The potential causal associations with neurodegenerative 
disease development and progression needs to be determined despite 
the established transfer of pathological agents in neuronal models. The 
interaction of M-Sec with RalA GTPase is necessary for the formation 
of TNTs (Hase et al., 2009). As the exocyst complex is involved in 
vesicle trafficking and is involved in autophagy process and secretion 
(Singh et al., 2019; Krause et al., 2022), it is plausible that the directed 
delivery of membrane to a growing TNT is needed; however, the exact 
mechanism is not well known (Ljubojevic et al., 2021).

IDRs of GRASPs and TNTs

Golgi reassembly stacking proteins (GRASP 55 and 65) are known 
to regulate unconventional protein secretion. Golgi apparatus is 
known to undergo fragmentation by the phosphorylation of 
GRASP 55 and 65 during cell division and are known to play pivotal 
regulatory roles in UCPS. GRASP55 regulates the unconventional 
secretion of mutant Htt (Ahat et  al., 2022). The biophysical 
characterization of human GRASP65 proteins demonstrated its higher 
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intrinsic disorder which is capable of forming temperature dependent 
amorphous aggregates as well as time-dependent amyloid fibrils 
(Reddy et al., 2020) which suggests that GRASPs might have a putative 
role in the aggregation of the proteins involved in neurodegenerative 
diseases. It would be interesting to check the involvement of GRASP 
proteins in TNT formation that requires experimental validation.

TNTs and autophagy crosstalk—
plausible pathways

There are several pathways that are involved in the secretion of 
neurodegenerative disease-causing aggregates. One such key cellular 
homeostatic machinery, autophagy, is pivotal and acts as a double-
edged sword in neurodegenerative diseases (Shintani and Klionsky, 
2004; Martinet et al., 2009). Autophagy plays a central role in the 
removal of protein aggregates within neurons as seen in diseases such 
as AD, Huntington’s, and PD (Rubinsztein et al., 2012). Autophagy-
dependent secretion of neurodegenerative disease-causing aggregates 
such as α-synuclein, β-amyloid and tau that are leaderless proteins 
seem to have significant implications in disease pathology. It is known 
that autophagy plays a role in the secretion of β-amyloid aggregates 
formed in AD. Conditional knockdown of Atg7 in excitatory neuronal 
cells in mice was found to influence β-amyloid secretion, thereby 
impacting plaque formation, a pathological hallmark of AD (Nilsson 
et al., 2013; Nilsson and Saido, 2014; Nilsson et al., 2015). Although 
there are many common factors involved in the progression of disease 
via TNTs, there are no concrete studies that establish the direct link 
between autophagy and TNTs. On a similar note, the molecular 
machinery involved in membrane protrusion and stabilization of 
filopodia might have some common players in the TNT formation 
which needs experimental validation. The secretory machinery 
involving exocyst complex in membrane delivery to the TNTs and the 
regulation by 14-3-3 protein provides clues in the crosstalk of 
autophagy with TNT formation. The plausible role of this signaling 
molecule in TNT formation based on the local environmental cues 
needs experimental validation.

Conclusion

Although many studies point towards the targeted proteolytic 
products of the precursor proteins and their involvement in 
neurodegenerative diseases, a significant limitation is the lack of 
truncation-specific monoclonal antibodies that can detect these 
fragments in the disease (Xia et  al., 2021). Activation of various 
proteases that elevates the proteolytic products in blood and CSF can 
be harnessed as cardinal biomarker tools to understand the disease 
pathology, diagnosis, cellular pathways and mechanisms. Currently, 
as the experimental studies are limited, many grey areas still remain 
that need to be revisited to understand the crosstalk of autophagy, 
UCPS and TNTs w.r.t neurodegenerative diseases. This review 
provides a different perspective on the structural and functional 
aspects of these leaderless proteins that get secreted outside the cell via 
TNTs. TNTs have been proposed to play a key role in 
neurodegenerative diseases and are involved in the spread of 
aggregated proteins such as tau, APP, and huntingtin by an 
intracellular pathway instead of a soluble-mediated mechanism 
(Gousset and Zurzolo, 2009; Abounit et al., 2016; Grudina et al., 2019; 

Mittal et al., 2019). Cells naturally create connections such as TNTs 
through which cell survival as well as disease progression occurs. This 
opens up several avenues for researchers to explore these pathways 
and thereby provide therapeutic solutions such as nanomedicines 
(Ottonelli et al., 2022).

Open questions

 1. Although there is a good nexus between the cell homeostatic 
machinery, autophagy with neurodegenerative diseases and 
unconventional protein secretion, crosstalk between autophagy 
and TNTs, is there any direct evidence to support the formation 
of TNTs with leaderless proteins?

 2. Is any selective autophagy machinery involved in TNT 
formation supporting UCPS?

 3. Is there any specificity of the RNA-binding proteins in 
triggering TNT formation based on environmental cues?

 4. Is there any synergy between autophagy machinery and 
TNT biogenesis?

 5. Is there any role of GRASPs in TNT formation and in turn 
the UCPS?
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