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Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, 
and its functions have later been identified in inflammation, tumorigenesis, 
neurodegeneration, and other disorders. We have recently found its alterations 
in the brains with Alzheimer’s disease, which might provide important clues to 
the mechanisms of some unique pathologies. To provide better understanding 
of this promising molecule, we here summarize research progresses in genetics, 
pathology, biochemistry, cell biology and other studies of Netrin-1 about 
its mechanistic roles and biomarker potentials with an emphasis on clinical 
neurodegenerative disorders in order to expand understanding of this promising 
molecular player in human diseases.
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1 Introduction

Netrin-1 is a canonical chemotropic cue for axon guidance. The discovery of netrins can 
be traced back to the 1890s when Dr. Cajal proposed that axons may be guided by diffusible 
cues that attracted the projections of spinal commissural neuron axons toward the ventral 
midline of the embryonic spinal cord where these cues were secreted and formed a 
chemotropic gradient in the neuroepithelium (Moore et  al., 2007). Netrin-1, along with 
Netrin-2, was initially discovered and purified in embryonic chicken brain homogenate. 
Subsequently, other netrin family proteins have been identified or implicated in Drosophila, 
mice, and humans (Moore et al., 2007). Now netrins are found to not only function in axon 
pathfinding but also play key roles in other diverse cellular processes including, cell migration, 
adhesion, differentiation, and survival, with involvements in neurodegeneration (Jasmin et al., 
2021), inflammation (Xia et al., 2022), cancer and other clinical diseases (Lengrand et al., 
2023). Netrin-1 has been studied in Parkinson’s Disease (PD), Alzheimer’s disease (AD) and 
other types of neurological disorders, and we have found new evidence of Netrin-1 involved 
in AD pathogenesis (Bai et al., 2020). Here we provide an overview of Netrin-1 to highlight its 
mechanistic roles and biomarker potentials in these neurological disorders.
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The netrin family proteins belong to the superfamily of laminin-
like proteins and contains Netrin-1, Netrin-3, Netrin-4, Netrin-G1, 
and Netrin-G2 in mammals. Netrin-3 is more similar to Netrin-1 
share more about 50% amino acid identity while Netrin-4 and 
Netrin-5 are more distinct (Rajasekharan and Kennedy, 2009). 
Netrin-1, Netrin-3, Netrin-4, and Netrin-5 are secreted proteins and 
are involved in axonal migration and neuronal growth during 
development of the central nervous system. In contrast, Netrin-G1 
and Netrin-G2 are largely different from Netrin-1 in protein sequence 
and they are GPI membrane linked (Sun et  al., 2011). These two 
proteins have not been implicated in axon guidance or neuronal 
growth, but have a well described role in regulating synapse formation 
(Rajasekharan and Kennedy, 2009; Matsukawa et al., 2014). For these 
distinct properties, Netrin-G1 and Netrin-G2 make up a distinct 
subfamily (Sun et al., 2011).

Netrin-1 is widely expressed in normal adult tissues with highest 
levels in the gastrointestinal tract and the muscle tissues according to 
the human protein atlas database1. In the human adult brain, it is 
present almost universally in all regions with a relatively high level in 
the midbrain. In the prefrontal cortex, it is slightly more abundant in 
posterior cingulate, piriform and retrosplenial cortices. However, the 
human tissue proteome analysis demonstrates its protein expression 
is selectively high at the gallbladder and the urinary bladder (Kim 
et al., 2014). This analysis also shows the Netrin-1 protein is highly 
expressed in NK cells in the peripheral blood. Other studies report its 
expression in macrophages, endothelium and epithelium cells (van 
Gils et  al., 2012, 2013; Ramkhelawon et  al., 2014; Bruikman 
et al., 2020a).

As recorded in the UniProt database2, Human Netrin-1 is a 
secreted protein and consists 604 amino acids with extensive disulfide 
bonds. The Netrin-1 protein contains a highly conserved a N-terminal 
laminin domain (typically referred to as domain VI), three cysteine-
rich EGF-like repeats (referred to as domain V) and a positively 
charged netrin-like (NTR) module at the C-terminus with a motif of 
the cell attachment site (Rajasekharan and Kennedy, 2009).

Netrin-1 regulates neuronal axon guidance in human mainly 
through the DCC (deleted in colorectal cancer) and UNC-5 receptors 
(uncoordinated-5 homolog family members, UNC5A, UNC5B, 
UNC5C and UNC5D), and other possible receptors that include 
neogenin (Moore et  al., 2007), DSCAM (Down syndrome cell 
adhesion molecule) (Ly et  al., 2008; Liu et  al., 2009), Adora2b 
(adenosine receptor A2b)(Corset et al., 2000), CD146 and integrin 
subunits (Stanco et al., 2009; Lemons et al., 2013; Tu et al., 2015; Li 
et  al., 2023). The UNC5C proteins are mainly involved in axonal 
repulsion while the DCC receptors regulate axonal attraction through 
their bindings with Netrin-1 at different affinities (Boyer and Gupton, 
2018). Besides, DCC and the UNC5 proteins also regulate apoptosis, 
either promoting it in the absence of Netrin-1 or inhibiting it in the 
presence of Netrin-1, and thus they are called “dependence receptors” 
(Llambi et al., 2001; Arakawa, 2004; Tang et al., 2008). However, these 
effects are also contradicted by findings in which Ntn1 null mice fails 
to fully recapitulate the phenotypes of Unc5−/− mice and 

1 https://www.proteinatlas.org/

2 https://www.uniprot.org/

Ntn1−/− mouse embryos exhibit increased expression of DCC and 
neogenin with no increased apoptosis (Bin et  al., 2015; Yung 
et al., 2015).

The reports about DSCAM and Adora2b as netrin receptors are 
controversial. Subsequent to the initial description, compelling 
evidence has shown DSCAM to be irrelevant for netrin dependent 
commissural axon guidance in the embryonic spinal cord and instead 
appears to function as a homophilic adhesion protein that promotes 
axon fasciculation independent of netrins (Palmesino et al., 2012; 
Cohen et al., 2017). Although Netrin-1 is reported to interact with 
Adora2b to mediate axon outgrow and cAMP production, there is also 
contradictory evidence showing that Netrin-1 does not increase the 
concentration of intracellular cAMP in neurons (Moore and Kennedy, 
2006; Moore et al., 2008).

Netrin-1 regulates axon guidance through different receptors it 
binds (e.g., DCC/DCC for chemoattraction, UNC5/DCC for long-
range repulsion and UNC5/DSCAM for short-range repulsion), 
intracellular secondary messengers (e.g., cAMP, Ca++, cGMP), its 
own local level (low level of Netrin-1 activates DCC/DCC 
homodimerization to exert chemoattraction and high level of 
Netrin-1 induces UNC5/DCC heterodimerization for repulsion), and 
existence of other modulators in the extracellular environment (e.g., 
draxin, glycosaminoglycans, the binders of Netrin-1) (Sun et  al., 
2011; Boyer and Gupton, 2018). In canonical chemoattraction, 
Netrin-1 binds to DCC receptors and thus induces their 
homodimerization. This activates constitutively bound NCK1 
(non-catalytic region of tyrosine kinase adaptor protein 1) and FAK 
(focal adhesion kinase) which starts recruitment of numerous 
intracellular signaling components to activate Src family kinases and 
Rho GTPases, release Ca++ stores, stimulate protein translation, 
leading to rearrangement of the actin cytoskeleton eventually (Sun 
et al., 2011).

Although Netrin-1 and other members in the family are 
extensively studied as essential chemotropic cues for migrating cells 
and axons during neural development, it is now evident that the netrin 
proteins and their receptors are also involved in other biological 
processes both throughout development and in adulthood, including 
adult stem cell migration, tumorigenesis, inflammation (Arakawa, 
2004; Petit et al., 2007; Sun et al., 2011; Zhang et al., 2018; Xia et al., 
2022; Cassier et al., 2023; Lengrand et al., 2023).

We recently find that the Netrin-1 expression is significantly 
increased in the brain tissue of patients with Alzheimer’s disease 
(AD), and highly correlated with Aβ in their levels. Netrin-1 
colocalizes with Aβ within the plaques in both human and mouse 
brain tissue and starts expressing inside neurons with Aβ at the 
early stage. Importantly, a receptor of Netrin-1, UNC5C, has a 
mutation in a familial AD (Wetzel-Smith et  al., 2014). These 
suggest that Netrin-1 is an important player in AD pathogenesis 
and might provide plausible explanations for some intriguing 
common pathologies. In consideration that Netrin-1 is also a 
critical factor in Parkinson’s disease (PD) and that mutation of 
Netrin-1 can cause neurological disorders directly, we  here 
summarize the genetics, pathology, biochemistry, cell biology and 
other evidence in research progress about Netrin-1 to provide 
better understanding of Netrin-1 as a promising molecular in 
molecular mechanism and biomarker potential in these 
neurodegenerative diseases.
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2 Genetic diseases of Netrin-1

The clinical significance of a molecule is best implicated by its 
related genetic variation and the resulting diseases. Mutations of the 
gene (NTN1) that encodes for Netrin-1 is associated with congenital 
mirror movements. This is an autosomal dominant disorder 
characterized by involuntary movements on one side of the body that 
accompany and mirror intentional movements on the other side 
(Online Mendelian Inheritance in Man, OMIM, # 618264). Three 
mutations (I518del, C601R, C601S) have been found on NTN1 that 
cause this type of neurological abnormality (Meneret et al., 2017). 
These patients have more ipsilateral corticospinal tract projections and 
in cultured cells proteins bearing these mutations fail to be secreted 
(Meneret et al., 2017). It is notable that causative gene mutations in 
congenital mirror movements also include DCC and RAD51, in 
which DCC is the receptor of Netrin-1 and RAD51 negatively 
regulates Netrin-1 signaling (Meneret et al., 2014; Franz et al., 2015; 
Glendining et al., 2017). This strengthens the potential involvement of 
the Netrin-1 regulatory pathway in this disease.

According to the human gene mutation database (Stenson et al., 
2020), other genetic variations with NTN1 are also indicated in autism 
spectrum disorder (A449D) (Iossifov et al., 2014), adult-onset hearing 
loss (T375P) (Lewis et al., 2018), intellectual disability (V429M) or 
hypogonadotropic hypogonadism (R362C, T525R) respectively 
(Bouilly et al., 2018; Hu et al., 2019), although NTN1 are not the 
primary mutated gene in these diseases and further validations 
are needed.

3 Involvement of Netrin-1 in 
Alzheimer’s disease

Alzheimer’s disease (AD) is an aging related irreversibly 
progressive neurodegenerative disorder that represents about 65% of 
dementia cases in people over 65 years old (Tahami Monfared et al., 
2022). Although some drugs such as Lecanemab have been developed 
and approved by FDA in America, more evidence is needed to 
establish their effectiveness and safeness (Burke et al., 2023; Couzin-
Frankel, 2023; van Dyck et al., 2023).

AD is hallmarked by extracellular amyloid plaques and 
intracellular neurofibrillary tangles (NFTs) in brain cortical tissues 
with other frequent concomitant but not unique pathologies like 
amyloid angiopathy, brain atrophy, synaptic loss, white matter 
rarefaction, granulovacuolar degeneration, neuronal death, TDP-43 
proteinopathy, neuroinflammation (Masters et al., 2015). Aβ amyloid 
pathology initially occurs as a few patches in poorly myelinated areas 
in basal parts of the neocortex, and then gradually increases and 
eventually spread to the entire cortex and subjacent portions of the 
underlying white matter (Braak and Braak, 1996). In contrast, the 
NFTs start early in the transentorhinal region of the medial temporal 
lobe and this can happen even at young ages. Later these tangles 
progress more severely into both entorhinal and transentorhinal 
regions until its culmination in neocortical and primary sensory areas 
eventually (Braak and Braak, 1996). It takes about 50 years from the 
first appearance of transentorhinal NFTs to the end stage of AD (Ohm 
et al., 1995), which is partially consistent with the pattern of memory 
and cognitive decline. Therefore, developments of Aβ plaques and 

NFTs do not follow the same temporal or anatomic pattern during 
aging in the brain. It is also notable that NFTs in the medial temporal 
lobe are universally present in subjects older than 70 years while Aβ 
plaques are found only in a significant proportion of the older 
population but are not universal (Nelson et al., 2012). Besides, the Aβ 
plaque burden in the brain is not correlated with the dementia severity 
while the number of NFTs are highly correlated with the number of 
dying neurons as well as the dementia scores (Nelson et al., 2012).

The cores of these aggregated protein deposits are Aβ peptides and 
hyperphosphorylated protein Tau (MAPT, microtubule-associated 
protein Tau) respectively (Duyckaerts et al., 2009). The Aβ peptides 
(40, 42, 43 and other number of amino acids long) are generated from 
the protein APP through sequential cleavage by the β-secretase (such 
as BACE1) and the γ-secretase that includes PSEN and other 
components probably in late endosomes and trans-Golgi apparatuses 
(Greenfield et  al., 1999). Aβ42 is more prone to aggregation and 
soluble forms of these Aβ species (dimers, tetramers, oligomers) are 
considered more neurotoxic (Haass and Selkoe, 2007). The protein 
Tau has 44 phosphorylated sites and 28 of which are elevated in AD, 
which involves nearly 20 kinases including GSK3β (Glycogen synthase 
kinase-3 β), CDK5 (cyclin-dependent protein kinase-5), MAPK 
(mitogen-activated protein kinases), etc. (Martin et  al., 2013; Tan 
et al., 2015; Bai et al., 2020).

So far, all three familial AD genes (APP, PSEN1, PSEN2) are 
directly involved in Aβ generation (Yu et al., 2021). Mutations that 
cause overproduction of Aβ promotes the development of AD while 
those that inhibit Aβ production protects people from AD (Jonsson 
et  al., 2012). In combination with evidence from pathology, 
biochemistry, cell biology and animal work, it is generally posited in 
the field that Aβ is the initiator of this devastating disease and Tau 
mediates its full development (Bloom, 2014).

Besides Aβ and Tau, inflammation is another important player in 
AD pathogenesis (Heppner et  al., 2015). Among the list of AD 
genetics, half of the risk factors are related to inflammation processes 
(Yu et al., 2021). Inflammation is considered as a central mechanism 
in AD (Kinney et al., 2018). First, in AD brain cortices, complement 
system protein components C1q, C3b, C3c, C3d, and C4 are found to 
localize within the amyloid plaques (Eikelenboom and Stam, 1982), 
and fibrillar Aβ peptides and neurofibrillary tangles can activate 
directly the complements in vitro (Tenner, 2020). AD risk genes such 
as TREM2, CR1, CD33, CLU are close regulators of the complement 
system. Besides the complements, microglia are another very 
important inflammatory factor in AD. Activated microglia almost 
universally colocalize with Aβ plaques in the AD brain tissue and they 
correlate with both neuropathological stages of disease severity and 
clinical severities of dementia (Leng and Edison, 2021). The 
progression and expansion of activated microglia closely parallel that 
of neuritic plaques in AD brains across different and regions from the 
hippocampus to the temporal lobe until the frontal and occipital lobes 
where they coexist in same cortical layers (Mrak, 2012). In addition, 
increased levels of pro-inflammatory mediators, such as tumor 
necrosis factor (TNF), IL-1β, IL-6, prostaglandins, reactive oxygen 
species and reactive nitrogen species, are found in brain tissues, 
consistent with the activation of microglia (Mrak and Griffin, 2005; 
Gyengesi and Munch, 2020). In fact, epidemiological and 
observational studies have reported that long-term treatments of 
inflammation diseases (such as rheumatoid arthritis) with 
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nonsteroidal anti-inflammatory drug (NSAID) showed about 50% 
reduction in the risk for developing AD (Kinney et  al., 2018). 
Inflammation in AD appears to exert a dual function, probably 
be neuroprotective at the early stage while lose control and become 
detrimental (Leng and Edison, 2021).

The involvement of Netrins in AD pathogenesis is highlighted by 
discovery of mutations in its receptor UNC5C in familial AD patients. 
A rare mutation T835M in the coding region of UNC5C segregate 
with AD in two families in an autosomal dominant pattern and it was 
associated with disease across four large case–control cohorts with the 
odds ratio of 2.15 (Wetzel-Smith et al., 2014). T835M is a conserved 
site in the hinge region of UNC5C and this mutation enhances cell 
death and potentiates the neurotoxicity of Aβ in vitro (Wetzel-Smith 
et al., 2014). Besides, UNC5C cleavage by δ-secretase at amino acids 
N467 and N547 enhances subsequent caspase-3 activation to 
potentiate its proapoptotic activity, facilitating neurodegeneration in 
AD (Chen et al., 2021). In combination with the report that UNC5H 
acts as a dependence receptor to induce apoptosis when the netrin 
ligands are absent (Llambi et al., 2001), UNC5C in the presence of 
Netrin-1 in AD might be considered protective. It is also notable that 
Netrin-5 is among the 38 genomic risk loci identified from 90,338 
(46,613 proxy) cases and 1,036,225 (318,246 proxy) controls, 
indicating a strong association with AD as an outstanding disease 
mechanistic clue.

Indeed, Netrin-1 interacts with APP and modulates Aβ 
production and function to exert protective effects on cells and 
neurons. Netrin-1 is not only coimmunoprecipitated with APP from 
cultured cells, recruited to the plasma membrane of APP-expressing 
cells, but also colocalizes with APP in the growth cones of cortical 
neurons (Lourenco et  al., 2009). This binding is mediated by 
involvement of several domains of Netrin-1 and the Aβ region of 
APP. Structural analysis reveals that Netrin-1 binds to the amino acids 
4–16 of Aβ, repeatedly positioning the hydrophobic F352 side chain, 
toward grove 4–8 amino acids of Aβ and this is favored by the 
hydrophobic F4 of Aβ (Borel et  al., 2017). The binding between 
Netrin-1 and APP leads to increased translocation of the fragment of 
APP intracellular domain (AICD) from cytoplasm to the nucleus, thus 
promoting AICD-dependent gene transcription (Lourenco et  al., 
2009). Mutually, through this binding, APP also regulates Netrin-1 in 
commissural axon navigation through the DCC receptor complex. 
Inactivation of APP in mice is associated with reduced commissural 
axon outgrowth (Rama et al., 2012).

Binding with Netrin-1 also modulates Aβ production and 
aggregation. It is well known that under the physiological condition, 
APP undergoes nontoxic cleavage by the α-secretase ADAM10 (a 
disintegrin and metalloprotease), while in the pathological situation 
of AD, β-secretase mediated cleavage to generate Aβ peptides is 
increased. It is found that Aβ peptides are substrates of ADAM10 and 
inhibit this protease, shifting the α-cleavage to β-cleavage, exerting a 
self-amplification effect (Spilman et al., 2016). However, this effect is 
inhibited by Netrin-1  in cultured cells and neurons, and Netrin-1 
expression suppressed both Aβ40 and Aβ42 levels in the transgenic 
mice that overexpress Aβ40, probably due to binding of Netrin-1 in 
the Aβ region of APP, prevent it from β-cleavage to generate Aβ 
(Spilman et al., 2016). This provides a potential therapeutic approach 
for control of Aβ generation in in AD brains.

In mice, Netrin-1 restores memory performance impaired by 
exogenously administered Aβ. Repeated intracerebroventricular 

injection of Netrin-1 rescued long-term potentiation reduction and 
memory impairment in the maintenance phase in all cognitive 
behavioral tasks (Shabani et al., 2017). This might be supported by the 
fact that selective homozygous deletion of Netrin-1 or its receptor 
DCC from glutamatergic neurons in the forebrain, including 
hippocampal CA1 pyramidal neurons, results in significant 
impairment of memory consolidation (Glasgow et  al., 2021), 
suggesting the critical role of Netrin-1 in maintenance of synaptic 
plasticity and thus memory in turn.

The neuronal protection from Netrin-1 on the Aβ insults might 
be related to its suppression on inflammation, oxidation and apoptosis. 
Treatment of SH-SY5Y cells exposed to Aβ42 peptides with Netrin-1 
increased cell viability and partially restored the expression levels of 
the inflammatory factors TNFα and NF-κB and the oxidation marker 
nuclear factor erythroid 2–like 2 (Nrf2) (Zamani et al., 2020). The 
Netrin-1 treatment is also able to reduce caspase-3/7activities induced 
by intrahippocampal injection of Aβ42 in mice (Zamani et al., 2019). 
Specific mechanisms of these neuronal protective effects of Netrin-1 
still remain to be clarified.

In our ultradeep mass spectrometry based quantitative proteomics 
analysis, we have found Netrin-1 is extremely correlated with Aβ in 
their levels not only in brains of human AD patients but also in those 
of mice that overexpress Aβ (Bai et  al., 2020). Besides, Netrin-1 
colocalizes with Aβ plaques in both AD human and mouse brain 
cortices, and it can directly bind Aβ peptides in vitro (Bai et al., 2020). 
Further experiments in our preliminary studies show that Netrin-1 
starts to occur in neurons when Aβ becomes observable in 5xFAD 
mice at ages of 1, 2 and 3 months. From these lines of evidence, 
we might speculate that Aβ can possibly induce protein expression of 
Netrin-1 which in turn promotes Aβ aggregation through direct 
binding, forming a vicious cycle.

In AD, there is a prominent pathology in brain cortex that amyloid 
plaques are commonly surrounded by microglia and this might 
be  related to Netrin-1. It is reported that Netrin-1 can arrest 
macrophages and inactivate their egress from atherosclerotic plaques 
(van Gils et al., 2012). Netrin-1 does so by binding to its receptor 
UNC5b to inhibit activation of the actin-remodeling GTPase Rac1 
and actin polymerization, making macrophages anergic (van Gils 
et al., 2012). The same phenomenon can be seen in obesity where 
Netrin-1 induced by the saturated fatty acid palmitate acts through its 
UNC5b to retain macrophages in the adipose tissues (Ramkhelawon 
et al., 2014). Therefore, as the type of the macrophages in the central 
nervous system, microglia might also similarly be sequestered around 
the plaques where Netrin-1 is enriched. If this is finally turned out to 
be  true, Netrin-1, again, should be  a promising target for early 
therapeutic intervention of inflammation control in AD.

It is important to mention that the high correlation of Netrin-1 
with Aβ is also seen in the Aβ-overexpressing 5xFAD mice, suggesting 
that Aβ can induce elevated protein level of Netrin-1. Because the 
RNA-seq data of these mice do not show altered mRNA level of 
Netrin-1 (Chen P. C. et  al., 2022), the regulation is highly likely 
achieved at the protein level and this can be explained by two possible 
mechanisms, sequestering Netrin-1 either by direct binding or 
through binding of proteins that regulate Netrin-1 traffic in the 
secretory pathway (Kanekiyo et  al., 2013; Sollvander et  al., 2016; 
Marshall et al., 2020). If these are evidenced, the elevated Netrin-1 and 
other proteins (such as Midkine, Netrin-3, CTHRC, etc.) not only 
cause gain-of-function-like problems where they are accumulated, but 
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also more importantly cause loss-of-function-like issues resulting 
from insufficient cellular secretion due to sequestration.

4 Involvement of Netrin-1 in 
Parkinson’s disease

Parkinson’s disease (PD) is the second major neurodegenerative 
disorder that mainly affects movement in senior population, 
manifesting rigidity, slowness, and tremor and other non-motor 
symptoms (Emamzadeh and Surguchov, 2018). It is caused by 
neuronal loss in the substantia nigra, resulting in insufficient synthesis 
of dopamine to maintain normal neuronal activities for movement 
control. In the brain, PD is hallmarked by intracellular inclusions of 
aggregated protein α-synuclein known as Lewy Bodies (Poewe et al., 
2017). The underlying molecular mechanisms of pathogenesis include 
α-synuclein proteostasis, mitochondrial function, oxidative stress, 
calcium homeostasis, axonal transport, neuroinflammation and other 
potential biological processes and cellular signaling (Poewe 
et al., 2017).

Netrin-1 and its receptor DCC are highly expressed in adult 
brains in dopaminergic neurons of the substantia nigra pars compacta 
(SNpc) which is selectively affected in PD (Osborne et  al., 2005). 
Netrin-1 can also be  produced in the forebrain and transferred 
through axons to the midbrain, to direct migration of GABAergic 
neurons into the ventral SN during development, confining 
dopaminergic (DA) neurons within the dorsal SN (Brignani et al., 
2020). Netrin-1 acts on DA neurons at both ventral tegmental area 
(VTA) and SN, but these two populations of DA axons respond 
differentially: VTA axons prefer higher concentrations while SN axons 
require lower concentrations, so that topographic distribution of 
specific neuron types can be maintained (Li et al., 2014).

According to recent data, Netrin-1 may be associated with PD 
pathogenesis. During aging, Netrin-1 is substantially reduced in the 
brain and this is more significant in PD patient brains although this is 
possibly due to loss of dopaminergic neurons which are the major 
source of Netrin-1 (Ahn et  al., 2020b). In PD mouse models, 
imbalance of NTN-1 and DCC is found to be a common feature in 
nigral DA neurons in which the well-established chemical PD inducer 
MPP+ (1-Methyl-4-phenyl pyridinium iodide) inhibits the expression 
of Netrin-1 but increases DCC expression in both concentration- and 
time-dependent manners (Hua et al., 2023). Normally, only Netrin-1 
is significantly expressed in the substantia nigra of healthy adult brains 
while α-synuclein is basally present and their protein levels are 
inversely correlated. It is actually found that Netrin-1 and α-synuclein 
can directly interact with each other and Netrin-1 blocks α-synuclein 
aggregation in vitro; besides, Netrin-1 deprivation initiates α-synuclein 
aggregation in cultured primary DA neurons (Kang et  al., 2023). 
Therefore, loss of Netrin-1 enhances α-synuclein aggregation and 
possibly contributes to PD pathogenesis. In vivo, conditional knockout 
of Netrin-1 specifically in the adult mouse induces DCC cleavage and 
a significant loss of dopamine neurons, leading to impaired motor 
function in these mice (Jasmin et al., 2021).

Chronic constipation is a frequent symptom that occurs even 
before the onset of PD and propagation of the aggregated α-Synuclein-
containing Lewy bodies from the gut into the brain has been proposed 
as a key mechanism in PD etiopathogenesis (Braak et  al., 2006).  
PD mice demonstrate increased intestinal permeability to 

proinflammatory bacterial products (Kelly et al., 2014), imposing the 
oxidative stress on the enteric neurons (Forsyth et al., 2011). Research 
has shown an inverse correlation of Netrin-1 and BDNF (brain-
derived neurotrophic factor) with inflammatory cytokines-activated 
transcription factor CCAAT/enhancer binding protein β (C/EBPβ) in 
PD patient brains and colons resulting from binding of C/EBPβ to the 
promoters of Netrin-1 and BDNF genes to inhibit their mRNA 
expression (Ahn et al., 2020a, 2021).

There are two possible mechanistic pathways that have been 
studied in the death of DA neurons caused by Netrin-1 insufficiency: 
one is the mammalian Ste20-like kinases 1 (MST1) and the other is 
the delta-secretase (asparagine endopeptidase, AEP). The MST1/2 is 
involved in the Hippo pathway that is critical in controlling tissue 
growth, cell proliferation, differentiation, and migration in developing 
organs. Netrin1 reduction activates MST1 which in turn selectively 
binds and induces phosphorylatin of UNC5B on T428 to generate its 
apoptotic fragment via active caspase-3 in dopaminergic neurons in 
the SN. Netrin1 deprivation also causes the downregulation of YAP, a 
protein involved in ROS scavenge. Both pathways lead to 
dopaminergic neuronal death. Besides, deficiency of Netrin-1 activates 
of delta-secretase (asparagine endopeptidase, AEP) which then cleaves 
both α-Synuclein at N103 and the UNC5C receptor in an 
age-dependent manner in mice, resulting in accelerated DA neuronal 
loss and PD phenotypes and pathologies, which can be rescued by 
AEP deletion. Notably, AEP is highly active in the SNpc regions in 
human brains with PD where the DA neurons are mainly located and 
Netrin-1 is highly expressed (Wang et al., 2018; Ahn et al., 2021). 
However, these are challenged by findings as mentioned earlier in 
which Ntn1 is unlikely the dominant ligand for Unc5 family and 
Ntn1−/− mouse embryos exhibit increased expression of DCC and 
neogenin but no increased apoptosis (Bin et al., 2015; Yung et al., 
2015). Besides, deletion of DCC, which is proposed to be pro-apoptotic 
by the dependence model, is instead required for dopaminergic 
neuronal survival during aging (Lo et al., 2022), suggesting the impact 
of Netrin-1 on cell survival is more complex than the mechanisms 
proposed by the dependence model.

Overall, Netrin-1 is critical to maintain healthy DA neurons in SN 
and its deficiency is probably one of the key mechanisms in 
PD etiology.

5 Netrin-1 in psychiatric disorders

Many psychiatric disorders are related to the mesocorticolimbic 
dopamine system where dopamine cells project from the upper 
brainstem to the dorsal striatum and multiple cortical and subcortical 
limbic regions including the ventral striatum nucleus accumbens, 
olfactory tubercle, septum, hippocampus, amygdala, and cortical 
regions, particularly the prefrontal cortex, cingulate, and the perirhinal 
cortex (Vosberg et al., 2020). Genetic variations of Netrin-1/DCC have 
been shown to associate significantly with depression, schizophrenia, 
and substance use (Flores, 2011; Hoops and Flores, 2017). This is 
further evidenced by two other Netrin family members: Netrin-G1 
and Netrin-G2 which have shown significant associations in 
schizophrenia (Aoki-Suzuki et al., 2005). Besides, according to the 
largest genome-wide meta-analysis of psychiatric disorders conducted 
so far (~725,000 cases-controls, across eight psychiatric disorders), the 
intronic DCC SNP rs8084351 shows the most significant and 
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pleiotropic effect (Cross-Disorder Group of the Psychiatric Genomics 
Consortium, 2019; Torres-Berrio et al., 2020). In addition, results 
from human postmortem examinations, animal work and GWAS 
studies suggest that the relevance of the Netrin-1/DCC pathway in the 
etiology of major depressive disorder due to its abnormal 
spatiotemporal organization of circuits involved in cognition and 
emotion (Torres-Berrio et al., 2020). In mice, Dcc haploinsuffificiency 
results in impaired dopamine transmission and dopamine-related 
behaviors in adulthood (Flores, 2011; Hoops and Flores, 2017).

6 Netrin-1 in other clinical diseases

The Netrin-1 has already been extensively studied in other 
diseases such as inflammation, angiogenesis, diabetes, atherosclerosis 
and tumorigenesis (Xia et al., 2022). In the acute inflammation of 
ischemia–reperfusion (I/R) injury, the protein level of Netrin-1 is 
reduced in the affected tissues such as kidney, liver, lung and 
myocardium (Zhang and Cai, 2010; Ranganathan et al., 2013; Schlegel 
et al., 2016). Mice heterozygous for Netrin-1 deficiency (Ntn1+/−) 
undergo more activated inflammation and manifest severer hepatic 
I/R injury (Schlegel et  al., 2016). Treatment with Netrin-1 or its 
peptides in cultured cells or mice largely alleviates inflammation 
(Zhang and Cai, 2010; Bouhidel et al., 2014; Cui, 2015; Boneschansker 
et al., 2016; Liu et al., 2019; Chen et al., 2020b). Netrin-1 exerts these 
protections by inhibiting production of cytokines (such as IL-2, IL-4, 
IL-6, IL-13, IL-17, interferon-γ, etc.) and suppressing expression of 
cyclooxygenase-2 and prostaglandin E2  in T regulatory cells, 
polymorphonuclear neutrophils and macrophage (Xia et al., 2022), 
and thus to regulate activation, filtration and polarization of these 
major inflammatory cells. Specific signaling pathway for these effects 
involve Netrin-1 and its receptors. For examples, in cardiac I/R, the 
perfused Netrin-1 binds to its receptor DCC and thus activates the 
ERK1/2/eNOS pathway to maintain DCC expression via a feed-
forward loop and promote generation of nitric oxide (NO·) to protect 
heart tissues from infarct apoptosis (Zhang and Cai, 2010).

In angiogenesis, Netrin-1 exerts a promoting or inhibiting effect 
depending on the receptors it binds to or its protein concentration. 
Upon binding to DCC, Netrin-1 activates the downstream ERK1/2 
signaling to phosphorylate eNOS for increase production of 
endothelial NO, forming a feed-forward signaling cascade to promote 
angiogenesis (Nguyen and Cai, 2006). Netrin-1 also binds to CD146 
or an unknown receptor to enhance endothelial cell growth and 
migration possibly through other mechanisms (Park et al., 2004; Tu 
et al., 2015). However, when bound to the receptor UNC5B, Netrin-1 
exerts repulsive effects in angiogenesis including endothelial filopodial 
extension, vessel branching and abnormal navigation (Lu et al., 2004). 
The bidirectional effects of Netrin-1  in angiogenesis are also 
concentration-dependent: at low levels, Netrin-1 induces endothelial 
proliferation, migration and tube formation while at higher doses 
these effects are inhibited (Xia et al., 2022).

Netrin-1 is also an important molecular player in atherosclerosis, 
exerting beneficial or disastrous effects depending on its cellular 
source (Xia et  al., 2022). Netrin-1 secreted by endothelial cells is 
protective as it inhibits chemotaxis of leukocytes and migration of 
monocytes to atherosclerotic plaques. In contrast, macrophage-
derived Netrin-1 is proatherogenic in that it retains macrophage 
numbers in the plaques (Fiorelli et al., 2021). Besides, a mutation 

(R590L) within NTN1 is found in a family with premature 
atherosclerosis, strongly suggest the causative role of Netrin-1 in this 
common disease (Bruikman et al., 2020b).

In diabetes mellitus and its complications, Netrin-1 is highly 
expressed in obese adipose tissue of humans and mice, causing 
retention of macrophages for activated inflammation (Ramkhelawon 
et al., 2014). It is also significantly altered in the peripheral circulation 
system (Ay et al., 2016; Liu et al., 2016; Yim et al., 2018). It regulates 
pancreatic epithelial cell migration and tissue regeneration as well as 
β-cell apoptosis (De Breuck et al., 2003; Yang et al., 2011). Mice with 
partial Netrin-1 deficiency demonstrate severer kidney injury in with 
diabetic nephropathy which can be  restored by treatment with 
recombinant Netrin-1 (Tak et al., 2013). In mice with high-fat diet/
streptozotocin-induced diabetes, Netrin-1 treatment increases insulin 
release from β-cells, promotes islet vascularization, reduces islet 
macrophage infiltration, and alleviates inflammation (Gao et al., 2016).

The study of Netrin-1 is heated in the cancer field. Netrin-1 is 
often highly expressed in cancer tissues and involved in tumorigenesis 
as an oncogene (Arakawa, 2004; Mehlen et al., 2011; Sung et al., 2019). 
Normally it is expressed mainly during embryonic development, but 
probably due to the function of anti-apoptosis through its death 
receptors, Netrin-1 has been found to be highly expressed in tissues 
of many tumors, including inflammation-associated colorectal cancer 
(Paradisi et al., 2008, 2009), metastatic breast cancer (Fitamant et al., 
2008), endometrial cancer (Cassier et al., 2023), lung cancer (Delloye-
Bourgeois et  al., 2009a), neuroblastoma (Delloye-Bourgeois et  al., 
2009b), lymphoma and melanoma (Broutier et al., 2016; Boussouar 
et al., 2020). According to the globally largest and most comprehensive 
cancer mutation database (Catalogue of Somatic Mutations in Cancer, 
COSMIC), point mutations, copy number variation, high expression 
or methylation of NTN1 is found in almost 30 types of cancers. In 
animal models, downregulation of Netrin-1 or its receptors promotes 
cancer cell death and inhibits tumor growth (Broutier et al., 2016; 
Sung et al., 2019; Boussouar et al., 2020). Based on the causative role 
of Netrin-1 in cancer pathogenesis and extensive studies showing its 
efficiency as a therapeutic target, a monoclonal antibody (NP137) that 
targets Netrin-1 to disrupt its interaction with the UNC5B receptor 
has been developed and is currently receiving clinical phase 1 trial 
(NCT02977195) to evaluate safety and efficacy (Grandin et al., 2016; 
Cassier et al., 2023). The current studies about Netrin-1 in the cancer 
field is moving rapid and more achievements can be expected in the 
near future.

7 Biomarker potentials of Netrin-1

Netrin-1 is a secreted protein and can thus be released from the 
affected tissue regions into body fluid, especially serum, becoming 
potential biomarkers. In AD, the serum Netrin-1 protein levels are 
lowered in AD and MCI (mild cognitive impairment) patients and 
correlated with reduction in dementia scores (Ju et  al., 2021). 
Interestingly, a bilateral intracerebroventricular injection of Aβ42 in 
rats has not only induced spatial learning and memory deficits and 
increased neuronal apoptosis, but also reduced Netrin-1 protein levels 
in both serum and cerebrospinal fluid of these rats with a significant 
correlation with cognitive deficits (Sun et al., 2019). Besides AD, the 
serum Netrin-1 is also found to decrease in clinical patients with 
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TABLE 1 List of neurological disorders and other clinical diseases that involves Netrin-1.

Diseases Involvement of Netrin-1 and its signaling 
pathway

Netrin-1 level in clinical 
sample

Reference (PMID)

1. Mirror movements I518del, C601R, C601S in NTN1; S126X, N176S, W273R, R275X, 
G470D, R667H, N702S, V793G, G803R in DCC (the Netrin-1 receptor); 
H47R, I136F, R250Q, R254X, a heterozygous one base pair duplication 
(855dupA) in exon 9 in RAD51 (a negative Netrin-1 signaling regulator)

28945198, 24808016

2. Alzheimer’s Disease (AD) Mutation of the Netrin-1 receptor UNC5C (T835M) is associated with 
familial AD patients.

Serum Netrin-1 is reduced in AD and 
MCI, and patients with cognitive decline 
due to spinal cord injury.

25419706

Netrin-1 interacts with APP and modulates Aβ production. 19148186

Netrin-1 inhibits apoptosis, inflammation, oxidation, and protects mice 
from memory loss and cognitive decline induced by Aβ.

27060954, 28389207

Netrin-1 is highly correlated with Aβ in levels in the brain tissue of both 
human AD patients and the mice that overxpressed Aβ (5xFAD); 
colocalizes with Aβ in amyloid plaques.

31926610, 35250531, 35493300

3. Parkinson’s disease (PD) Netrin-1 and its receptor DCC are highly expressed in adult brains in 
dopaminergic neurons of the substantia nigra which is affected in PD.

Serum Netrin-1 is reduced in PD. 36852451

Netrin-1 is more significantly reduced in brains of PD patients. 32929029

Netrin-1 binds α-synuclein and their levels are inversely correlated in 
substantia nigra.

36751943

Chronic constipation occurs frequently in PD at the early stage during 
which the aggregated α-Synuclein-containing Lewy bodies is often 
found in the gut

16330147

4. Psychiatric disorders The psychiatric disorders are related to the mesocorticolimbic dopamine 
system which involves the Netrin-1/DCC signaling pathway.

31659271, 32593422, 31835028, 
21481303, 29032842

Genetic variations of Netrin-1/DCC have been shown associate 
significantly with depression, schizophrenia, and substance use.

The DCC expression in the prefrontal cortex is altered in major 
depressive disorder and determines susceptibility to chronic social 
defeat stress.

In mice, the haploinsuffificiency of the Netrin-1 receptor Dcc causes 
impaired dopamine transmission and dopamine-related behaviors in 
adulthood.

5. Other diseases

Ischemia–reperfusion (I/R) injury Reduced in affected kidney, liver, lung and myocardium tissues. 35082104, 26573873

Ntn1+/− mice show stronger inflammation and severer hepatic I/R injury.

Netrin-1 treatment protects inflammation and angiogenesis by 

inhibiting inflammatory cells and their release of cytokines.

Netrin-1 exerts protective effects through DCC/ERK/eNOS pathway.

(Continued)
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TABLE 1 (Continued)

Diseases Involvement of Netrin-1 and its signaling 
pathway

Netrin-1 level in clinical 
sample

Reference (PMID)

Atherosclerosis Netrin-1 was downregulated and UNC5B upregulated in atherosclerotic 

plaques.

Netrin-1 plasma levels are lower in 

subclinical atherosclerosis and negatively 

correlated with plaque burden.

24122613, 37439909, 32151395

Netrin-1 is generally considered to protect atherosclerosis by inhibiting 

inflammation, but conflicting reports also exist.

A NTN1 mutation (R590L) is associated with a familial premature 

atherosclerosis.

Diabetes Netrin-1 is highly expressed in obese adipose tissue of humans and 

mice.

The reported blood levels of Netrin-1 is 

inreased or reduced, controversial.

21212933, 27520508, 37996774

Netrin-1 treatment promotes adult β-cell survival and insulin release.

Cancer Netrin-1 protein expression is increased in tissues of many types of 

cancer such as colorectal cancer (from inflammatory bowel diseases), 

metastatic breast cancer, non-small cell lung cancer, neuroblastoma, 

melanoma.

Plasma or serum netrin-1 levels are 

significantly increased in lung, breast, 

prostate, colorectal, renal, liver, 

meningioma, pituitary adenoma, and 

glioblastoma cancers.

15573119, 37532929, 37532934

NP137, a netrin-1-blocking monoclonal antibody is currently in clinical 

trials for human cancer therapy (ClinicalTrials.gov identifier 

NCT02977195).

21303223, 27067437, 32474463, 

35765995

Ischemic stroke and its complications Serum Netrin-1 level is reduced. 32417215, 32912541, 30852966

Post-stroke depression Serum Netrin-1 level is reduced. 32912541

Delayed neurological sequelae in 

unintentional carbon monoxide poisoning

Serum Netrin-1 level is reduced. 32228196

Brain hemorrhage Serum Netrin-1 level is reduced. 31047878

Sclerosis Lower Netrin-1 protein expression in the spinal cord and the cerebella of 

experimental mice.

Serum Netrin-1 level is reduced. 28677863

Preeclampsia Serum Netrin-1 level is increased. 27296221

Acute coronary syndrome Serum Netrin-1 level is high. 32267322

kidney Injury Urinary netrin-1 level is increased. 18234954, 20007677

Periodontitis Netrin-1 level in the gingival crevicular 

fluid is increased.

31769036
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spinal cord injury and can be an independent risk factor for cognitive 
impairment in these patients (Meng et al., 2022).

In PD, as the substantia nigra where Netrin-1 is highly expressed is 
the most affected area in this disease, reduced Netrin-1 protein 
expression is found in these affected regions of brain tissues from PD 
patients (Jasmin et al., 2021). Intriguingly, the reduced Netrin-1 level is 
not only found in PD brain tissues, but also found in the gut where Lewy 
body-like aggregation first appears in the enteric neurons even before its 
occurrence in the brain (Ahn et al., 2021). Loss of these neurons that are 
the major sources of Netrin-1  in these areas might lead to reduced 
Netrin-1 in the peripheral system. A recent study reveals a significant 
decrease in plasma Netrin-1 levels with a positive correlation with 
UPDRS (Unified Parkinson’s Disease Rating Scale) scores in PD patients 
(Hua et al., 2023), strongly supporting its biomarker potential in this 
second most common neurodegenerative disease.

Besides the aging-related neurodegenerative disorders, the 
reduced serum netrin-1 level is also found in ischemic stroke and its 
complications (Guo et al., 2020; Chen Z. et al., 2022), post-stroke 
depression (Chen et al., 2020a), and delayed neurological sequelae in 
unintentional carbon monoxide poisoning (Kokulu et al., 2020); and 
increased serum Netrin-1 predicts better prognosis of ischemic stroke 
(Guo et al., 2019; Zang et al., 2021). In fact, altered Netrin-1 levels in 
serum, urine or types of body fluids are associated with a large number 
of other clinical diseases, including cancer (Kefeli et  al., 2017), 
atherosclerosis (Munoz et al., 2017; Bruikman et al., 2020a), obesity 
and diabetes (Yim et al., 2018; Elkholy et al., 2021; Nedeva et al., 2022), 
kidney Injury (Reeves et al., 2008; Ramesh et al., 2010), brain damage 
and hemorrhage (Chen et al., 2019; Lou et al., 2020; Xie et al., 2021), 
periodontitis (Gunpinar et al., 2020; Abdulfattah et al., 2022), acute 
coronary syndrome (Leocadio et al., 2020), sclerosis (Mulero et al., 
2017), preeclampsia (Cekmez et al., 2017; Berenji et al., 2022; Sert, 
2022; Kaya et al., 2023).

In cancer, the expression of Netrin-1 is largely altered in lesioned 
tissues, but its level in serum has not been extensively studied. 
Increased serum Netrin-1 is found in gastric and lung cancers and it 
is reduced after chemotherapy, but the levels do not show correlations 
with the patient survivals (Kefeli et al., 2012; Yildirim et al., 2016). In 
a large scale of clinical blood samples from cancer patients, plasma 
Netrin-1 levels are significantly higher in breast, renal, prostate, liver, 
meningioma, pituitary adenoma, and glioblastoma cancers than it in 
controls (Ramesh et al., 2011). Recent studies report serum netrin-1 
a novel biomarker in colorectal cancer and lung cancer (Li et al., 2020; 
Zhao et al., 2022).

Although the Netrin-1 level in the peripheral system is changed 
widely in a large number of diseases, it might bear the potential as a 
biomarker in diseases of the similar type (such as cancer) or sharing a 
similar mechanism (such as inflammation).

8 Conclusion

Here we  have reviewed Netrin-1 by its genetics, pathology, 
biochemistry and other biological evidence about its mechanistic 
involvement and biomarker potential in neurodegenerative, 
inflammatory, cancerous and other diseases. Mutation of the Netrin-1 
gene can cause neurological and other diseases directly, implicating it 
is not indispensable importance in maintaining normal physiological 
function. Netrin-1 is highly likely protective in AD, but is also possibly 

responsible for microglia attraction in the brain tissue. Netrin-1 is 
critical to dopaminergic neurons in substantia nigra of the brain and 
its deficiency is critical in both PD pathogenesis and development of 
psychiatric disorders. It is largely protective in inflammation and the 
related diseases, bidirectionally effective in atherosclerosis, and 
generally deleterious as an oncogene in cancer. Besides, Netrin-1 
might also be a potential biomarker for these clinical diseases. Here 
we summarize all these in the Table 1 for better understanding of this 
promising molecule. Overall, Netrin-1 is a promising protein to 
be studied across a variety of disease spectra for the discovery of novel 
molecular mechanisms, potential biomarkers, and therapeutic targets.
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