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The rodent hippocampus is a spatially organized neuronal network that supports the 
formation of spatial and episodic memories. We conducted bulk RNA sequencing 
and spatial transcriptomics experiments to measure gene expression changes 
in the dorsal hippocampus following the recall of active place avoidance (APA) 
memory. Through bulk RNA sequencing, we examined the gene expression changes 
following memory recall across the functionally distinct subregions of the dorsal 
hippocampus. We found that recall induced differentially expressed genes (DEGs) 
in the CA1 and CA3 hippocampal subregions were enriched with genes involved 
in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus 
(DG) were enriched with genes involved in energy balance and ribosomal function. 
Through spatial transcriptomics, we examined gene expression changes following 
memory recall across an array of spots encompassing putative memory-associated 
neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. 
Within samples from both trained and untrained mice, the subpopulations of 
spatial transcriptomic spots marked by these IEGs were transcriptomically and 
spatially distinct from one another. DEGs detected between Arc  +  and Arc− spots 
exclusively in the trained mouse were enriched in several memory-related gene 
ontology terms, including “regulation of synaptic plasticity” and “memory.” Our 
results suggest that APA memory recall is supported by regionalized transcriptomic 
profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially 
distinct IEG expressing spatial transcriptomic spots, and biological processes 
related to synaptic plasticity as a defining the difference between Arc  +  and Arc− 
spatial transcriptomic spots.
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1 Introduction

The neural operations supporting memory require the 
involvement of various brain systems interconnected through neural 
networks (Kitamura et al., 2017). The activity of these networks is 
fine-tuned by experience through the selective recruitment of 
ensembles of neurons ascribed to contain the bits of information 
associated with memory (Josselyn and Tonegawa, 2020). Neuronal 
ensemble activity is shaped by synaptic plasticity mechanisms that 
modulate the weight and efficacy of the ensemble’s synaptic 
connections (Takeuchi et al., 2014; Malenka and Bear, 2004). Changes 
in gene expression are a key underlying mechanism in synaptic 
plasticity (Mayford et al., 2012), and recent studies have identified 
multiple profiles of gene expression associated with memory (Marco 
et al., 2020; Rao-Ruiz et al., 2019; Reshetnikov et al., 2020).

In the rodent hippocampus, encoding of spatial memory 
information is supported by the diversity of synaptic computations 
within and across its sub-fields (Poo et al., 2016; Mayford, 2014). Each 
hippocampal subregion (i.e., Dentate Gyrus, CA1, CA2, CA3) shows 
distinct patterns of activity to process spatial information and to form 
or retrieve memories (Middleton and McHugh, 2020; Chevaleyre and 
Siegelbaum, 2010; Senzai, 2019; Basu and Siegelbaum, 2015; Amaral 
and Witter, 1989; Sloviter and Lomo, 2012). At the regional level, 
patterns of activity are conferred through the combination of cyto-
architecture, local synaptic circuitry, neuronal cell types and synaptic 
inputs unique to each region (van Strien et al., 2009; Senzai, 2019; 
Kesner et al., 2004; Lisman, 1999; Ryan et al., 2015; Hunsaker and 
Kesner, 2013; Molitor et al., 2021; Rao-Ruiz et al., 2019; Shpokayte 
et al., 2022; Sullivan et al., 2021; Shah et al., 2016; Cho et al., 2016). At 
the single-cell level, the functional state of hippocampal neurons is 
defined by connectivity, hippocampal subregional location, and 
experience-dependent recruitment into a memory ensemble (Josselyn 
and Tonegawa, 2020; Tonegawa et  al., 2018). The investigation of 
memory across molecular and functional levels necessitates an 
approach that connects the scales of hippocampal organization 
between cellular mechanisms and networks of cells. Though hundreds 
of individual genes supporting synaptic plasticity at the cellular level 
have been identified (Sanes and Lichtman, 1999; Alberini and Kandel, 
2014; Asok et al., 2019; Magee and Grienberger, 2020; Malenka and 
Bear, 2004), the transcriptomic profiles which characterize memory 
across hippocampal subregions and memory-associated neuronal 
ensembles are understudied.

In this study, we present an exploratory approach to expand our 
understanding of the spatial organization of transcriptomic profiles by 
providing evidence that hippocampal subregions undergo distinct 
differential gene expression of biological mechanisms to support 
memory. We  characterized changes in gene expression across the 
major subregions of the hippocampus using bulk RNA sequencing of 
micro-dissected dorsal hippocampal subregions from mice that 
learned an active place avoidance memory task. The regionalized 
changes in gene expression with memory in the hippocampus is a 
developing area of investigation often using behavioral paradigms like 
fear conditioning or the Morris Water Maze (Cho et al., 2016; Sardoo 
et al., 2022; Reshetnikov et al., 2020; Harris et al., 2020). Our approach 
involved training mice in the active place avoidance paradigm 
(Cimadevilla et al., 2000; Stuchlik et al., 2013), a spatial memory task 
that distinguishes itself from these other aversive paradigms because 
it requires proper utilization of cognitive control to solve the spatial 

task (Chung et al., 2021; Kelemen and Fenton, 2016). Results from our 
bulk RNA sequencing data suggest that the consolidation of an active 
place avoidance memory is supported by regionalized transcriptomic 
profiles separating the CA1 and CA3 from the DG.

Following the establishment of the memory-associated 
transcriptomic profiles of bulk hippocampal subregions we deepened 
our exploration of these transcriptomic changes using an innovative 
RNA sequencing methodology known as spatial transcriptomics. 
Spatial transcriptomics provides localized whole transcriptome 
sequencing across tissue sections at near single cell resolution (a.k.a. 
spatial transcriptomic spots) (Stahl et al., 2016). With this approach, 
we investigated the putative memory-associated neuronal ensemble 
by characterizing the spatial distribution of immediate early gene 
(IEG)-associated gene expression across coronal dorsal hippocampal 
sections. Memory-associated neuronal ensembles are a sparsely 
distributed population of neurons which are strongly activated 
together during the acquisition and recall of a memory, and are 
thought to encode the traces of information relevant to that memory 
(Ryan et al., 2015; Guan et al., 2016; Chen et al., 2019). Numerous 
studies have identified IEGs such as Arc, c-Fos, Egr1, c-Jun, Npas4, 
Bdnf, and Fmrp to characterize memory-associated neuronal 
ensembles (Sauvage et  al., 2019; Josselyn and Tonegawa, 2020; 
Meenakshi et al., 2021; Erwin et al., 2020). Moreover, the expression 
of Arc mRNA has been used to tag and characterize the properties of 
memory-associated neuronal ensembles (Guzowski et  al., 1999; 
Ramirez-Amaya et al., 2005; Lee et al., 2022).

Through our combined understanding of IEG activation and 
memory-associated neuronal ensembles, we used the detection of IEG 
expression in spatial transcriptomic spots to infer the location of these 
ensembles and explore the transcriptomic changes supporting spatial 
memory in the hippocampus. Consistent with our bulk RNA 
sequencing findings, spatial transcriptomics also showed differential 
gene expression between the hippocampal regions from an active 
place avoidance memory trained compared to an untrained mouse. 
We  then investigated the difference between memory-associated 
neuronal populations through the analysis of spatial transcriptomic 
spots expressing the IEGs Arc, Egr1, and c-Jun. Comparison of the 
gene expression profiles from these IEG-expressing spatial 
transcriptomic spots between the memory trained and the untrained 
mouse revealed differential expression of genes involved in energy 
production and cytoplasmic translation. Novel analyses comparing 
IEG-expressing spatial transcriptomic spots within each mouse 
hippocampal sample (i.e., within the memory trained mouse or within 
the untrained mouse) revealed that IEG-expressing spatial spots were 
transcriptomically and spatially distinct from one another. With Arc, 
only the comparison between Arc-expressing and non-Arc-expressing 
spatial transcriptomic spots in the memory trained mouse –but not 
the untrained mouse– detected gene expression profiles linked with 
synaptic plasticity and memory. Additionally, similar comparisons 
amongst Egr1 and c-Jun expressing versus non-expressing spots 
revealed collections of differentially expressed distinguishing each of 
the investigated populations of IEG-expressing spots within the 
trained sample.

While still at an exploratory level, our spatial transcriptomics 
results highlight the role of Arc in shaping memory-associated 
ensembles and of the detection of gene expression profiles unique to 
the comparison Arc-expressing versus non-Arc-expressing spatial 
transcriptomic spots in an animal trained in the active place avoidance 
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memory task. We speculate that a neuronal network being actively 
recruited in the consolidation of memory (such as the hippocampal 
network in our study) manifests transcriptomically divergent cellular 
microenvironments (such as the Arc-expressing and non-Arc-
expressing spatial transcriptomic spots in our study) that could 
facilitate the processing of memory information.

2 Methods

2.1 Animals

A total of 18 adult ArcCreERT2::eYFPflx mice (Denny et al., 2014) 
with C57BL/6 genetic background aged 3–4 months were utilized 
across all experimental cohorts. Bulk RNA sequencing experiments 
utilized 3 male and 3 female mice, 2 females and 1 male were assigned 
to the trained behavioral condition, and 1 female and 2 males were 
assigned to the untrained behavioral condition (see section “Behavior” 
for details). Spatial transcriptomics experiments utilized 2 male mice, 
1 mouse was assigned to each behavioral condition. RT-qPCR 
experiments utilized 12 male mice, with 6 mice assigned to each 
behavioral condition. Prior to experimental onset mice were bred 
in-house at the SUNY Downstate Health Sciences University vivarium 
(Brooklyn, NY, USA). Mice were housed in groups of two to five per 
cage. Beginning on the first day of training and testing, mice were 
single housed in shoebox cages in a sound attenuation cubicle (Med 
Associates). For every experimental run, a minimum of two mice —
each undergoing the same behavioral conditioning— were 
simultaneously housed in the sound attenuation cubicle. Ad libitum 
food and water was provided. Mice were randomly assigned to 
behavioral cohorts before the start of the experiment. Mice were 
handled daily for 3 days prior to the start of the experiment to reduce 
anxiety and improve voluntary approach. All animal procedures 
proposed are approved by, and will be  performed following, the 
Institutional Animal Care and Use Committee guidelines at SUNY 
Downstate Health Sciences University.

2.2 Behavior

All procedures were performed in compliance with the 
Institutional Animal Care and Use Committee of the State University 
of New  York, Downstate Health Sciences University. 
ArcCreERT2::eYFPflx male mice were trained in a hippocampus-
dependent two-frame active place avoidance task. The place avoidance 
system consisted of a 40-cm diameter arena with a parallel rod floor 
that could rotate at 1 rpm. The position of the animal was tracked 
using PC-based software (Tracker, Bio-Signal Group Corp., Brooklyn, 
NY) that analyzed 30-Hz digital video images from an overhead 
camera. Mice in the trained condition learned the active place 
avoidance task. Place avoidance of a 60° zone was reinforced by a 
constant current foot shock (60 Hz, 500 ms, 0.2 mA) that was 
scrambled (5-poles) across pairs of the floor rods. Rotation of the 
arena would carry the mouse into the shock zone unless the animal 
actively avoided the zone. Entering the shock zone for more than 
500 ms triggered shock. Additional shocks occurred every 0.5 s until 
the animal left the shock zone. Measures of place avoidance were 
computed by TrackAnalysis software (Bio-Signal Group Corp., 

Brooklyn, NY, USA). The number of detections of the animal in the 
shock zone was tracked as the performance metric for the 
training trials.

On day one, mice assigned to the trained behavioral condition 
(trained mice) received a 30-min trial with the shock off to habituate 
to the rotating arena. Across the next 2 days the animals experienced 
four training trials, with two 30-min trials a day with the activated 
shock with a 40 min inter-trial-interval. Control (untrained mice) 
experienced identical training conditions, except for the shock always 
being off. The number of detections of the animal in the shock zone 
was tracked as the training performance metric for the training trials. 
Memory retention performance was assessed 24 h after the final 
training session in a 10-min retention test with the shock off. Latency 
to the animal’s second entrance into the shock zone was tracked as the 
memory retention performance metric for the retention test. Previous 
research indicates the latency to second entrance as a valid behavioral 
metric for retention test performance because it represents place 
avoidance memory recall that is less affected by to the animal’s 
potential errors in self-localization once placed in the rotating arena 
(Cimadevilla et al., 2000; Stuchlik et al., 2013; Cimadevilla et al., 2001).

2.3 Microdissected bulk RNA sequencing

60 min post retention test, mice were euthanized (5% isoflurane 
vaporized in 100% oxygen), and brains were extracted, washed in ice 
cold artificial cerebrospinal fluid, blocked, and mounted on a vibratome 
stage. Hippocampal subregions (DG, CA3, CA1) were microdissected 
from 400 μm thick coronal live tissue sections. Subregions from the 
dorsal hippocampus were extracted and microdissected using 
microsurgical tools. Microdissected pieces of tissue from each animal 
were pooled by subregion in 500 μL of prechilled TRIzol in a 1.5 mL 
microcentrifuge tubes and stored at −80°C.

Total RNA was extracted using the Direct-zol RNA miniprep kit 
(Zymo Research, Irvine, CA, United  States) according to the 
manufacturer’s protocol. RNA quality was assessed on an Agilent 2200 
TapeStation (Agilent Technologies, Palo Alto, CA, United  States). 
Samples with a RIN greater than 7 were processed for library 
preparation with NEBnext rRNA depletion kit and ULTRAII FS 
RNA-seq Library Preparation Kit for Illumina (New England Biolabs, 
Ipswich, MA, United States). This procedure involved steps for mRNA 
enrichment, fragmentation, random primed cDNA synthesis, second 
strand synthesis, end repair, A-tailing, adaptor ligation, and PCR 
amplification. Size selection and cleanup was performed with SPRI 
select beads (Beckman Coulter, Indianapolis, IN, United  States). 
Sequencing was performed on the NovaSeq 6000 (Illumina, Inc., San 
Diego, CA, United States) to obtain paired end sequencing reads.

2.4 Bulk RNA sequencing data 
preprocessing

RNA sequencing reads obtained from NovaSeq  6000 were 
systemically processed to ensure high-quality outputs for downstream 
analyses. To evaluate the quality of the reads, quality control analysis 
was performed using FASTQC v0.11.9. RNA sequencing reads in 
Binary Base Call (BCL) format were subsequently converted using 
bcl2fastq2 v2.20 to FASTQ format, and simultaneously demultiplexing 
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to assign sequences to their respective samples based on index 
sequences. Demultiplexed samples that did not pass quality control 
were excluded from future analyses in the pipeline. Next, FASTQ files 
were then mapped to mouse MM10 (GRCm39) reference genome 
using STAR 2.7.10a aligner. Lastly, the transcript quantification of the 
reads was done using Salmon v1.2.0 to create a count matrix for 
downstream analyses.

2.5 Bulk RNA sequencing analyses

We conducted several differential expression analyses using 
DESeq2 v1.1.0 in the Illumina BaseSpace, comparing RNA counts 
between trained and untrained sample groups. Genes with a false 
discovery rate (FDR) below 0.05 were deemed differentially expressed. 
To identify the variances in our count data, we performed principal 
component analysis (PCA) on the normalized count data, 
encompassing all hippocampal regions and within each specific region.

To visualize our data, we generated a heatmap in ComplexHeatmap 
v2.18.0 using Z-scores, which standardized the expression levels of 
genes across samples (Gu et al., 2016). The heatmap, organized with 
dendrogram and sorted using Euclidean distance, allowed us to 
identify patterns of similarity in gene expression across samples.

To explore deeper into biological significance, we conducted Gene 
Ontology (GO) enrichment analysis using clusterProfiler v4.10.0 in R 
(Wu et al., 2021), focusing on biological processes, cellular components, 
and molecular functions. Only enriched GO terms with an FDR less than 
0.01 were identified as significant, and the top  10 GO terms were 
displayed in a ranked dot plot. Redundant terms were filtered out using 
simplify with a cutoff of 0.7. Biological processes were ordered along the 
y-axis based on their ordered significance within each column from left 
to right. Additionally, if a biological process in one analysis is amongst 
the top 10 of another analysis, the dot signifying its enrichment will 
be shown at the corresponding row in the plot.

We also utilized Vennplex v1.0.0.2 software to compare and 
visualize the overlaps among differentially expressed genes (DEGs) 
from our differential expression analyses (Cai et al., 2013). The gene 
lists were categorized into upregulated and downregulated, allowing 
the visualizing of the gene overlaps and identification of counter-
regulated genes (genes exhibiting opposite expression trends in 
different regions). We employed the SuperExactTest v1.1.0  in R to 
statistically assess whether the observed overlapping genes across 
different hippocampal regions significantly exceeded the expected 
overlap by random coincidence (Wang et al., 2015). The assessment 
was performed using hypergeometric distribution and Fisher’s Exact 
test, and the statistical significance of these gene overlaps was shown 
in upset-style plots.

2.6 Tissue preparation for spatial 
transcriptomics

60 min after retention test, mice were euthanized and brains were 
extracted and immediately prepared for snap freezing in cuvettes of 
Tissue-Tek Optimal Cutting Temperature compound (Sakura Finetek 
USA, Torrance, CA, United States) floating in a bath of methyl-butane 
chilled by liquid nitrogen. Brain blocks were cryosectioned at −20°C 
(10X Genomics, 2023) and 10 μm thick coronal sections containing 

the dorsal portion of the hippocampus were obtained (bregma −1.7 
and − 2.2 mm, Paxinos and Franklin, 2019). Collected tissue sections 
are trimmed to fit within the 5 mm × 5 mm capture area on the Visium 
gene expression slide. Sections were mounted on a prechilled Visium 
gene expression slide or a Tissue Optimization slide.

For Optimization, all tissue sections were collected from a single 
tissue. For Visium gene expression, slide capture areas contained one 
section per biological sample. Slides were fixed in prechilled methanol 
before staining using the Visium spatial tissue optimization protocol 
(Genomics, 2019) or the Visium spatial gene expression protocol 
(Genomics, 2023).

Tissues permeabilization time on the gene expression slide was set 
to 18 min based on our tissue optimization results. Images were taken 
according to the Visium Spatial Gene Expression Imaging Guidelines 
(Genomics, 2021). Brightfield histology images for the Visium Tissue 
Optimization and Gene Expression slides were taken using the Leica 
Aperio CS2 Slide Scanner at 20x magnification. Tissue optimization 
fluorescent images were taken on a Zeiss LSM 800 (555 nm LED, 75% 
intensity, and 200 ms exposure).

mRNA was extracted and libraries were prepared following the 
Visium Spatial Gene Expression User Guide (Genomics, 2023). Libraries 
were indexed using the Dual Index Kit TT Set A (PN-1000215). Indexed 
libraries were loaded at 300 pM and sequenced on a NovaSeq 6000 
System (Illumina) using a NovaSeq S4 Reagent Kit (200 cycles, catalog 
no. 20027466, Illumina), targeting a sequencing depth of approximately 
2.0 × 108 read-pairs per sample. Sequencing depth was determined 
through a calculation of a suggestion 50,000 read pairs per spatial capture 
spot (Genomics, 2023). Our tissue samples covered roughly 80% of the 
5,000 spatial capture spots within the Visium fiducial frame 
[(0.8 × 5,000) × 50,000 = 2.0 × 108]. Sequencing was performed using the 
following read protocol: read 1: 28 cycles; i7 index read: 10 cycles; i5 index 
read: 10 cycles; and read 2: 91 cycles.

2.7 Spatial transcriptomics preprocessing

Raw RNA sequencing data obtained from NovaSeq 6000 were 
systemically processed to ensure high-quality outputs for downstream 
analyses. Raw sequencing data in BCL format were converted using 
bcl2fastq2 v2.20 to FASTQ format, and simultaneously demultiplexing 
to assign sequences to their respective samples based on both i5 and 
i7 index sequences. Following the conversion, these FASTQ files were 
subsequently processed with TrimGalore v.0.6.5 to automate quality, 
adapter trimming and perform quality control.

For the alignment and the quantification of gene expression, Space 
Ranger v2.0.0 (10x Genomics) was used to generate and quantify raw 
gene-barcode matrices from RNA sequencing data. Alignment and 
quantification of Visium spatial gene expression data utilizes the same 
tools implemented in the analysis of single cell RNA-seq data sets. Data 
were aligned to refdata-gex-mm10-2020-A, a mouse genome index 
provided by 10x Genomics, which is an annotated version of mm10 
genome assembly. The gene-barcode matrices identified the number of 
unique molecular identifiers (UMIs) associated with each gene for each 
cellular barcode, allowing the quantification of transcript abundance.

After the alignment and quantification, Space Ranger toolset was 
utilized to normalize the gene expression data within the raw gene-
barcode matrices to account for any technical variations. Finally, 
we also utilized Space Ranger to align gene expression data with spatial 
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coordinates derived from histological images of each sample, facilitating 
the visualization of transcriptional activity to specific tissue location.

2.8 Spatial transcriptomics analysis

Gene expression outputs from Space Ranger were analyzed using 
the software package Seurat v5 in the R coding environment (Hao 
et al., 2023; Butler et al., 2018). Spatial gene expression data were 
cropped to only include the capture spots within the dorsal 
hippocampus. Using default Seurat commands, data from each sample 
were normalized, transformed (using SCTransform v2) and integrated. 
The integrated data set were further normalized and clustered 
(resolution = 0.8) in PCA space. Clustered data can be  visualized 
through UMAP projections of the capture spots or in the 2D space of 
the tissue section. Cell type annotation was performed by integrating 
our data with a random subset of 10,000 hippocampal cells from the 
Allen Brain Atlas Cortex and Hippocampus Single Cell Taxonomy 
(Yao et al., 2021). Predicted cell-type identities were calculated and 
optimized based on gene expression similarity and anatomical location.

Capture spots were grouped along two different criteria to 
calculate differential gene expression in our samples. First, capture 
spots belonging to the whole hippocampus and each anatomical cell 
layer in the DG, CA3 and CA1 regions were compared across training 
conditions. Next, within each training condition, hippocampal capture 
spots were separated into two groups based on the detectable (>0) 
expression of the immediate early gene (e.g., Arc + and Arc− groups). 
IEG expressing and not expressing groups of spots were compared 
both within training conditions and across training conditions. 
Differential gene expression was calculated using the Wilcoxon rank 
sum test (the default method for Seurat). Genes with an of FDR below 
0.05 were considered differentially expressed genes/transcripts. GO 
term enrichment and overlap analyses on detected DEGs were 
performed as described above for bulk RNA sequencing DEGs.

Expression data for 23 IEGs from all hippocampal spots evaluated 
through pairwise Pearson’s Correlations using the R-language base 
stats package. Pearson’s correlation coefficients between all IEG pairs 
were calculated within samples, alongside p values to assess 
significance. Heatmaps of the correlation matrix were plotted using 
the R-language package, ComplexHeatmap.

2.9 RT-qPCR

Dorsal hippocampal subregions (CA1, CA3, and DG) were 
microdissected as described for bulk sequencing. Tissue was 
homogenized using TRIzol (Thermo Fisher Scientific, Waltham, MA, 
United  States) before RNA extraction by guanidinium-phenol-
chloroform extraction with ethanol precipitation was performed and 
quantified using spectrophotometry. cDNA was reverse transcribed 
from sample bulk RNA using Thermo Fisher’s SuperScript IV Kit 
(Thermo Fisher Scientific, Waltham, MA, United States). Relative gene 
expression was quantified using the SYBR green master mix system 
(Ponchel et al., 2003). 10 μL reactions were prepared in the wells of a 
384 well plate, hippocampal regions were each prepared on separated 
plates. Each well contained 2.5 ng of template cDNA and 0.5 μM each 
of forward and reverse primers for one gene per well for a total 
reaction volume of 10 μL (sequences and melting temperatures can 

be found in Table 1). Each gene was loaded in triplicate in each plate 
to account for pipetting errors. Plates were incubated in the Bio-Rad 
CFX384 Real-Time PCR Detection System (Bio-Rad Life Sciences, 
Hercules, CA, United States) using the following schedule: 50°C for 
5 min (1 cycle), 95°C for 10 min (1 cycle), 60°C for 1 min (1 cycle), and 
95°C for 15 s followed by 60°C for 1 min (40 cycles).

Primers were selected to validate the most significant genes with 
the highest fold change of expression for each regional comparison of 
trained and untrained animals. The genes Crym and Kit were selected 
from the DEGs detected in the DG comparison. Rasal1 and Pcsk1n 
were selected from the DEGs detected in the CA3 comparison. And 
Bok, Homer3, Serpina3n, and Shank3 were selected from the DEGs 
detected in the CA1 comparison.

Ct values for each reaction are automatically determined (roughly 
20% of the plateau value). Data were analyzed for relative gene expression 
quantification utilizing the ∆∆Ct method, using the expression of Gapdh 
as the internal control. Relative expression values were normalized to the 
expression value of the untrained group. The Levene’s test was uses to 
assess the homogeneity of variances for Log2 transformed relative 
expression. Upon confirmation of homogeneity of variances, Student’s 
t-tests were performed on each primer target across training conditions 
using log2 transformed relative expression value for each comparison.

3 Results

3.1 APA trained mice exhibit place 
avoidance memory

To investigate gene expression changes induced by active place 
avoidance (APA) training in the hippocampal network, we conducted 

TABLE 1 RT-qPCR primer sequences.

Gene Primer Sequence TM 
(°C)

Bok
F AGG TAG TGT CCC TGT ATT CCG 60.4

R AAG GTC TTG CGT ACA AAC TCC 60.2

Crym
F GGG AGT CAT GCC TGC CTA C 61.8

R AGC CAT TGC TGG GAT CAA AGA 61.8

Gapdh
F AGG TCG GTG TGA ACG GAT TG 57.47

R TGT AGA CCA TGT AGT TGA GTC A 52.84

Homer3
F AGG GAA CAG CCA ATC TTC AGC 62.4

R GAC ACG GTA AGT GCG TGC T 62.6

Kit
F GCC ACG TCT CAG CCA TCT G 58.51

R GTC GCC AGC TTC AAC TAT TAA CT 55.14

Pcsk1n
F GCT GCT GTG CCT AAT ACC CA 60.11

R GGA GTG CTC GTC TCA ACC AA 59.97

Rasal1
F GCC AAG GAC GTG TCT GGA AG 62.8

R TGA ACG GTG TAC TCC TCC CC 62.8

Serpina3n
F TGT CTG CGA AAC TGT ACC CT 58.95

R ACC CAC AGA CAG GCT CAA TG 59.96

Shank3
F TCT TAG CCT TTG ATG CTC CCC 59.79

R CAC AGT GTA GTG GCG GAA GA 59.68
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FIGURE 1

Mice trained in the APA learned to avoid the location of an unmarked shock zone. (A) Experimental timeline. Mice were trained in the active place 
avoidance paradigm over the course of 4  days following 3  days of handling. On day 0 mice were habituated (HT) to a rotating arena with no active 
shock zone. On day 1 and 2 mice assigned to the trained (TR) behavioral condition (n  =  4) received two 30-min trials with an active shock zone. Mice 
assigned to the untrained (UT) behavioral condition (n  =  4) were not exposed to an active shock zone. On day 3 all mice received a 10-min retention 
test trial (exposed to the rotating arena with no active shock zone). Mice were sacrificed 60  min following the end of the retention test, brains were 
collected for further processing. Samples from three of the four trained mice (2 females, 1 male) and untrained mice (1 female, 2 males) were 
processed with bulk RNA sequencing, while the remaining mice (1 trained male, 1 untrained male) had their samples processed with spatial 
transcriptomics. (B) Training performance measured as number detections in the shock zone. Mice assigned to the trained behavioral condition 
learned to avoid the location of the shock zone indicated by the decreased number of shocked triggered. Exponential fit learning curves included with 
shaded error bars (SE). (C) Memory performance measured as time to second entrance in the retention test trial. Trained mice demonstrated higher 
time to second entrance during the retention test. Trained mean 375  s  ±  70.4  s (SE), Untrained mean 58.7  s  ±  8.51  s (SE). Line and point color reflect the 
assigned behavioral condition (untrained  =  blue, trained  =  red). Point shape reflects the experimental pipeline a given animal was assigned to 
(square  =  bulk RNA-seq, circle  =  spatial transcriptomics).

bulk RNA-sequencing and spatial transcriptomics (see Figure 1A for 
experimental timeline). In the APA, mice learn to avoid a 60° shock 
zone on a rotating circular arena (Cimadevilla et al., 2000; Stuchlik 
et al., 2013). Mice trained in the APA task with the shock zone on 
(n = 4, 2 females, 2 male) exhibited a decrease in the number of 
detections in the shock zone during the acquisition trials (Figure 1B) 
and longer re-entry times to the shock zone during the memory 
retention test trials (Figure 1C) relative to the mice in the untrained 
cohort (n = 4, 1 female, 3 males). Re-entry times to the shock zone (i.e., 
time to second entrance) was used as the retention test performance 
metric because it represents performance that is more resistant to the 
animal’s potential errors in self-localization once placed in the rotating 
arena (Cimadevilla et al., 2000; Stuchlik et al., 2013; Cimadevilla et al., 

2001). From this pool of animals 3 trained (2 females, 1 male) and 3 
untrained (1 female, 2 male) were utilized in Bulk RNA-sequencing 
experiments and 1 trained and 1 untrained animal (2 males) were 
utilized in spatial transcriptomic experiments.

3.2 Hippocampal subregional 
transcriptomes are stratified by training 
condition

To explore the molecular mechanisms following memory 
retention test across the dorsal hippocampus, bulk RNA-sequencing 
was performed on the Dentate Gyrus (DG), CA3, and CA1 
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hippocampal subregions collected from trained and untrained mice 
(trained: 2 females, 1 male; untrained: 1 female, 2 male). Principal 
component analysis (PCA) from all 3 subregions combined reveals a 
separation of samples by behavioral cohort (Figure 2A), indicating 
that differences in training contribute substantially to the overall 
variability of gene expression in our samples. Separation between 
samples is further accentuated when PCA is performed separately on 
data from each subregion (Figures 2B–D). Consistently, hierarchical 
clustering of gene expression profiles reliably grouped samples by their 
behavioral cohort (Figure 2E).

3.3 Hippocampal subregional enrichment 
of learning and memory-related biological 
processes

We carried out differential gene expression analysis comparing 
APA-trained to untrained mice. We detected 1,663, 606, 315, and 350 
differentially expressed genes (DEGs) (adjusted p-value <0.05) in the 
combined hippocampal subfields, CA1, CA3 and DG respectively, 
when contrasting APA-trained and untrained mice (Figures 3A–D 
and Supplementary Figures  1A–D). Despite high statistical 
significance (FDR < 0.005), most DEG in each trained versus untrained 
comparison exhibited modest fold change (|log2 fold| < 1.0) difference. 
Next, we  investigated the overlap of regionally detected DEGs 
(FDR < 0.05) to elucidate the distribution of DEGs across hippocampal 
subregions. We  found the largest overlap of upregulated DEGs 
between the CA3 and CA1 subregions with a total of 127 intersecting 
genes (Figure 3E and Supplementary Figure 1E).

GO enrichment analysis was conducted to identify 
overrepresented biological process among DEGs from the trained 
versus untrained comparison and identified within each 
hippocampal subregion (The Gene Ontology Consortium, 2019). 
Among the DEGs detected in the combined hippocampal 
subregions, we found overrepresentation of genes involved in the 
modulation of neurotransmitter signaling (Figure 3F). These DEGs 
included Ywhag, Bsn, and Nup153, which have been previously 
implicated in these cellular functions (Wachi et  al., 2017; 
Annamneedi et al., 2021; Leone et al., 2019). DEGs detected in both 
the CA3 and CA1 were also enriched with genes involved in the 
modulation of neurotransmitter signaling. The genes Snap25, 
Shank1, Shank 3, Bsn and Ywhag were identified in the overlap of 
upregulated DEGs between these regions and have been studied for 
their involvement in synaptic transmission (Irfan et al., 2019; Mao 
et al., 2015; Shi et al., 2017; Kouser et al., 2013). DEGs detected in 
the DG were enriched with genes involved in neurogenesis and 
transcriptional regulation. Among these DEGs were Kit, H2afz, and 
Kmt2e, which have been studied for their relationship to 
neurogenesis and transcriptional regulation (Katafuchi et al., 2000; 
Ferreira et al., 2016; Barbieri et al., 2018; Zovkic et al., 2014; Collins 
et al., 2019). When enrichment analyses were separated by up- and 
down-regulated DEGs, the differences separating the CA1 and CA3 
from the DG became more striking with no significant enrichment 
of biological processes among the downregulated DEGs of the CA1 
and CA3. These data reveal a spatial distribution of gene expression 
across the dorsal hippocampus of trained animals, defined by a 
greater degree of similarity between the CA1 and CA3 than between 
either of these subregions and the DG.

3.4 RT-qPCR validation of regionally 
detected DEGs

We performed targeted gene expression analyses using RT-qPCR 
on DG, CA3, and CA1 subregion samples collected from similarly 
behaviorally conditioned (i.e., trained and untrained) animals 
(Supplementary Figures 3A,B). We probed a total of 8 genes (with 
Gapdh as an internal control), each identified for their high statistical 
significance and relatively large positive fold change of expression in 
one of the region-specific comparisons between trained and untrained 
samples. In the DG, we identified significant differential expression of 
the gene Kit between trained and untrained animals, which replicates 
our results from bulk RNA sequencing comparisons of in this region 
(Supplementary Figure  3C). In the CA3 we  identified significant 
differential expression of the gene Rasal1 between trained and 
untrained animals, replicating our results from bulk RNA sequencing 
(Supplementary Figure 3D). In the CA1, Homer3 and Crym were 
significantly differentially expressed (Supplementary Figure  3E). 
Differential expression of Homer3 in the CA1 was an expected 
validation of our bulk RNA sequencing findings, but the detection of 
Crym differential expression was unexpected as it was selected as a 
candidate DEG from the DG. In sum, RT-qPCR allowed us to validate 
the differential expression of select target genes with the largest 
expression fold changes in our bulk RNA-seq dataset. Consistent with 
prior reports, some of our target genes which exhibited comparatively 
lower fold changes of expression escaped detection because of the 
limitation in RT-qPCR relative to RNA-sequencing approaches 
(Coenye, 2021; Everaert et al., 2017; Reshetnikov et al., 2020).

3.5 Differences in the spatial distribution of 
hippocampal gene expression between 
trained and untrained animals

To further investigate the spatial distribution of DEGs associated 
with APA memory training across the hippocampus, we performed 
spatial transcriptomics on coronal sections containing the dorsal 
hippocampus from one trained (male) and one untrained (male) mouse. 
Computational analyses of integrated capture spots in the hippocampal 
slices from trained and untrained animals revealed distinct clusters 
(seen in a Uniform Manifold Approximation and Projection (UMAP) 
plot) which map along anatomical boundaries in a spatial transcriptomic 
plot (Figures 4A,B). Spatial transcriptomics data were integrated with 
the Allen Brain Atlas (Yao et al., 2021) to computationally annotate each 
spot with the cell-type most prominently detected (Figures 4C,D).

Differential gene expression analysis between trained and untrained 
mice identified a total of 352 DEGs in all hippocampal spots, with 
further stratification by subregional cell layers detecting 75 DEGs in the 
CA1, 72 DEGs in the CA3, and 187 DEGs in the DG (Figures 4E–I and 
Supplementary Figure 2). GO enrichment analyses of the DEGs detected 
between all hippocampal spots identified biological processes related to 
energy production and protein expression (Figure 4J). DEGs detected 
in the analysis of the CA1 cell layer were enriched with biological 
processes related to energy production and synaptic function. In the 
CA3, DEGs were enriched with genes involved in neurotransmitter 
release and energy production. And in the DG, DEGs were enriched 
with genes involved in energy production and translational machinery. 
Notably, the biological process “regulation of synaptic plasticity” (GO: 
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FIGURE 2

APA training results in substantial changes in hippocampal subregion gene expression profiles. (A–D) Left, principal component analyses of all 
hippocampal subregions (A), CA1 (B), CA3 (C), DG (D) illustrate a clear separation between samples collected from trained (red) and untrained (blue) 
mice along the axis that explains the most variance. Hippocampal regions are also indicated by the point shape, squares refer to the CA1, circles to the 
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0048167) was enriched among the DEGs detected between all 
subregional comparisons between trained and untrained animals.

These spatial transcriptomics data are concordant with our bulk 
RNA sequencing data. The overlap of DEGs detected in each 
hippocampal region between the two techniques was lower than 
expected (10, 10, 22, in the CA1, CA3, and DG, respectively). 
Notwithstanding, there is stronger concordance between the biological 
process enrichment detected with the two techniques. We  found 
upregulation of genes involved in the regulation of synaptic plasticity 
across all three hippocampal subregions in both experiments. These 
findings reinforce a subregion-specific model of memory-associated 
transcriptional activation following memory recall.

3.6 Arc-expressing hippocampal spots 
exhibit changes in the expression of 
memory-associated genes and biological 
processes

Our data suggest that differences in behavioral conditioning 
contributed to variations in the spatial distribution of synaptic 
plasticity related gene expression across the hippocampal network. It 
is well established that a surge of Arc expression accompanies memory 
associated processes such as consolidation and retrieval, and 
differences in behavioral conditioning affect the recruitment of Arc-
expressing hippocampal neurons which form the memory-associated 
neuronal ensemble (Gouty-Colomer et al., 2016; Gallo et al., 2018; 
Carrillo-Reid, 2022; Gouty-Colomer et al., 2016; Hsieh et al., 2021; 
Chia and Otto, 2013). As such, we studied the Arc-expressing spatial 
transcriptomics spots to assess changes in biological processes within 
the memory associated neuronal ensemble following APA memory 
recall. Spatial transcriptomic spots with detectable expression of Arc 
mRNA (>0 copies) were determined to be Arc + in this experiment. 
Given the resolution and capture efficiency of spatial transcriptomics 
(Asp et al., 2020), these spots represent regions of space with high 
expression of Arc mRNA across one or more cells/cellular 
compartments. Hence, we utilized these Arc + spots as a proxy for the 
location of the putative memory-associated neuronal populations with 
induced expression of Arc following the retrieval of the active place 
avoidance memory.

We observed a sparse distribution of Arc + spots in our samples 
consistent with the characteristic expression of Arc protein in the 
hippocampus from studies investigating memory associated 
ensembles (Mayford, 2014; Chia and Otto, 2013; Gouty-Colomer 
et al., 2016). Out of the 542 spots in the hippocampus from the trained 
animal, 195 spots had detectable expression of Arc mRNA (Arc+). The 
untrained animal, 169 Arc +  spots out of 568 hippocampal spots 
(Supplementary Figure 4C). In both samples, spots with the highest 
level of Arc expression concentrated primarily in the CA1 cell layer 
(Figures 5A,B).

To assess synaptic plasticity-related transcriptional changes in 
these Arc +  spots, we  conducted multiple differential expression 
comparisons: (1) across sets of Arc + or Arc− spots between the trained 
and untrained animal (Figures 5C,D), and (2) within the trained or 
untrained animal between sets of Arc + and Arc− (Figures 5E,F). The 
comparison of Arc +  spots across trained and untrained animals 
detected 174 significant DEGs, and comparison of Arc− spots across 
trained and untrained animals detected 353 significant DEGs. GO term 
enrichment analysis of DEGs detected across Arc + spots in the trained 
and untrained animal revealed enrichment with biological processes 
related to ribosomal function and energy production (Figure 5H). A 
finding which is consistent with the regionalized differences observed 
between the trained and untrained animals through spatial 
transcriptomics (Figure 4J). Rpl4 and Rpl5 were differentially expressed 
in the analysis across Arc + spots in the trained and untrained, and are 
known for their roles in ribosomal biogenesis (Robledo et al., 2008). 
Enrichment analyses of DEGs detected in Arc− spots across training 
conditions revealed a similar set biological processes related to energy 
production as those detected in the analysis of Arc + spots. Differences 
between the two comparisons are accentuated when enrichment 
analyses are performed separately on up- and down-regulated DEGs.

101 DEGs were detected within Arc + and Arc− spots in the 
trained animal, and 78 DEGs were detected within Arc + and Arc− 
spots in the untrained animal. Notably, substantially more biological 
processes related to synaptic plasticity and neuronal excitability were 
enriched in the DEGs Arc + spots of the trained animal as compared 
to Arc + spots of the untrained animal. This difference is enhanced 
when the enrichment analyses are separated by up- and down-
regulated DEGs, where only the upregulated DEGs within the 
Arc +  spots of the trained animal demonstrate enrichment of any 
biological processes (Figure 5G). Prkcb and Dkk3, known for their role 
in synaptic plasticity (Weeber et al., 2000; Martin-Flores et al., 2024), 
were detected amongst upregulated genes in the comparison of 
Arc + and Arc− spots in the trained animal. In summary, enrichment 
analyses in Arc + spots across training conditions detected biological 
processes related to energy metabolism and ribosomal biogenesis, 
while Arc +  spots within the trained sample revealed biological 
processes related to synaptic plasticity and transmission.

3.7 IEG-expressing hippocampal spots 
comprise distinct gene expression profiles

Our findings demonstrate that behavioral training induces discrete 
transcriptional changes in the population of spots marked by Arc 
expression. However, memory traces are likely comprise overlapping yet 
molecularly distinct neuronal populations tagged by IEGs (Sun et al., 
2020; Nambu et al., 2022; Okuno, 2011; Gallo et al., 2018). We sought to 
examine spots marked by the expression of the IEG most and least 
correlated with the expression of Arc to evaluate the functional 

CA3, and triangles to the DG. Right, heatmap with top 20 contributing genes to the first two principal components of each are reported in the heat 
map to the right of each plot. Sample size for the CA1 was 3 trained and 3 untrained. Sample size for the CA3 was 3 trained and 2 untrained. And 
Sample size for the DG was 3 trained and 2 untrained. Two samples from separate untrained animals (1 DG, 1 CA3) did not pass sequencing quality 
control and were excluded from PCA analyses. (E) Normalized gene expression of the top 2000 most significant DEGs. Hierarchical clustering of gene 
expression profiles plotted as a dendrogram clusters samples by training condition.
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FIGURE 3

Bulk RNA-seq of hippocampal subregions reveals similar expression profiles in CA1 and CA3 regions in trained samples. (A–D) Volcano plot of DEGs 
between trained and untrained animals in all hippocampal subregions combined (A), and in the CA1 (B), CA3 (C), and DG (D) subregions individually. 
Sample size for the CA1 was 3 trained and 3 untrained. Sample size for the CA3 was 3 trained and 2 untrained. And Sample size for the DG was 3 
trained and 2 untrained. Two samples from separate untrained animals (one DG, one CA3) did not pass sequencing quality control and were excluded 
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relationship between these subsets of the memory-associated ensemble. 
Pairwise correlations identified Egr1 and c-Jun as the IEGs most and 
least correlated with Arc, respectively (Supplementary Figures 4A,B, 5A–F).

Unlike Arc, which codes for a cytoskeleton regulating protein, 
both Egr1 and c-Jun code for transcription factors. IEGs which 
function as transcription factors are thought to promote the expression 
of activity related genes which execute the cellular level changes 
necessary for memory storage (Yap and Greenberg, 2018; Sun et al., 
2020; Kim et al., 2018; Yelhekar et al., 2024). Genes downstream of 
Egr1-driven transcription are involved in vesicular release, 
neurotransmitter metabolism, receptor expression, and synaptic 
plasticity (Duclot and Kabbaj, 2017; Sekiya et  al., 2019). Genes 
downstream of c-Jun-driven transcription in the brain are involved in 
neurite growth, axonal regeneration, and synaptic long term 
depression (Raivich and Behrens, 2006; Haeusgen et al., 2009).

We performed differential gene expression analyses on Egr1 and 
c-Jun expressing spots across and within behavioral conditions. As 
described in the previous section, spatial transcriptomic spots were 
determined as positive if they had detectable expression of the IEG 
(either Egr1 or c-Jun). In total, 380 out of 542 spots in the hippocampus 
of the trained animal and 256 out of 568 spots in the untrained 
animal were found to express detectable levels of Egr1 
(Supplementary Figure 3G). In both samples, spots with the highest 
level of Egr1 expression were located predominantly in the CA1 cell 
layer, following the spatial distribution of Arc expression 
(Figures 6A,B). Detectable levels of c-Jun were seen in 308 out of 542 
spots in the hippocampal sample from the trained animal and 175 out 
of 568 spots in the untrained animal (Supplementary Figure 3G). In 
both samples, spots with the highest level of c-Jun expression were 
located predominantly in the DG granule cell layer (Figures 6C,D).

In the analysis of Egr1+ or Egr1- spots across training conditions, 
295 DEGs were detected in the Egr1+ spots, and 327 DEGs in the 
Egr- spots (Figures 6E,F). In the analysis of c-Jun + or c-Jun- spots 
across training conditions, 298 DEGs were detected in the 
c-Jun + spots, and 314 DEGs in the c-Jun- spots (Figures 6I,J). GO 
enrichment analyses of all three IEG expressing spot populations 
across trained and untrained conditions revealed similar sets of 
enriched biological processes (Supplementary Figure 3D), namely 
those involved in ribosomal function and energy production. A 
finding which is consistent with the regionalized differences 
observed between the trained and untrained animals through spatial 
transcriptomics (Figure 4J).

In the analysis between Egr1+ and Egr- spots, 555 DEGs were 
identified within the trained animal, and 196 DEGs within the 
untrained animal (Figures 6G,H). In the analysis between c-Jun + and 
c-Jun- spots, 480 DEGs were identified within the trained animal, and 
166 DEGs within the untrained animal (Figures 6K,L).

Due to the high degree of correlation between the expression of 
Arc and Egr1, and the low correlation between the expression of Arc 
and c-Jun, we expected that Arc and Egr1-expressing spots would 
appear more functionally similar to one another than they would to 
c-Jun-expressing spots, within the same sample. Counterintuitively, 
comparisons of IEG+ and IEG- spots within each sample revealed 
distinct collections of biological processes overrepresented in the Arc, 
Egr1, and c-Jun expressing populations. Additionally, in contrast to the 
within sample analyses of Arc spots (Figure  5G), within sample 
analyses of Egr1 and c-Jun spots were enriched with numerous 
biological processes in both trained and untrained mice. This effect is 
enhanced when enrichment analyses are stratified by up- and down-
regulation. Biological processes enriched among DEGs in the Egr1 
spots within the trained and untrained mice were both involved in 
synaptic organization and plasticity (Figure 6M). Biological processes 
involved in RNA splicing, synaptic plasticity, and axonal growth were 
overrepresented in c-Jun spots in both trained and untrained mice. 
Together, these data suggest that IEG-expression following the 
memory retention test marks subsets of neurons which are enriched 
with distinct sets of biological processes.

4 Discussion

In this study, we used a combination of bulk RNA sequencing and 
spatial transcriptomics to identify changes in gene expression between 
APA-trained and untrained conditions, across each major subregion 
of the dorsal hippocampus and within IEG-expressing spots following 
memory recall elicited during retention test. A recent study utilizing 
spatial transcriptomics found distinct transcriptomic signatures in the 
hippocampal subregions following training in a spatial object 
recognition task (Vanrobaeys et al., 2023). This finding illustrates the 
power of using novel transcriptomic analyses to explore the spatial 
distribution of gene expression profiles when investigating memory-
associated neuronal networks.

4.1 Regionalization of molecular 
mechanisms following memory recall

Different brain regions are recruited depending on the type of 
memory training an animal is exposed to Rolls (2000) and Tonegawa 
et al. (2018). We found evidence supporting the regionalization of 
gene expression in trained compared to untrained animals resulting 
in overrepresentation of GO terms across the dorsal hippocampus 
following spatial memory recall. A finding consistent with prior 
reports demonstrating enrichment of biological processes related to 

from differential gene expression analyses. In all hippocampal subregions combined, 966 genes were upregulated and 697 were downregulated. 393 
genes were upregulated and 213 were downregulated in the CA1, 273 genes were upregulated and 42 were downregulated in the CA3, and 117 genes 
were upregulated and 223 were downregulated in the DG. See Supplementary Figures 1A–D for full sized plots. (E) Overlaps in regional DEGs 
demonstrate greatest similarity between CA1 and CA3 subregions. DEGs from each regional analysis were stratified by direction of fold change. 
Overlaps in DEGs between the CA3 and CA1 subregions were significant (Fisher’s Exact Test). See Supplementary Figure 1E for further details. 
(F) Regional enrichment of biological processes detected amongst all DEGs (left) and stratified by up- (middle) and down-regulated (right) DEGs. The 
top 10 biological processes detected in each analysis are shown on the y-axis. Biological processes are ordered based on their statistical significance in 
the left-most column in which they are detected. Dot color reflects the statistical significance [−log10(FDR)] of the biological process enrichment. Dot 
size reflects the number of detected DEGs mapped to the genes involved in a given biological process.
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FIGURE 4

DEGs detected between trained and untrained animals within hippocampal subregions using spatial transcriptomics are enriched with genes involved 
in similar biological processes to those seen in bulk RNA-seq. (A,B) UMAP plot (A) and spatial transcriptomic maps of hippocampal spots (B) from 
trained and untrained mouse samples (n  =  1 per group). Discrete color scale displays unsupervised graph-based clustering of hippocampal spots. 
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transcription and synaptic differentiation in the DG following APA 
recall (Harris et  al., 2020). In our study, comparative bulk RNA 
sequencing analyses between trained and untrained animals revealed 
abundant overlap of detected DEGs and enriched biological processes 
between the CA1 and CA3 subregions. However, the transcriptional 
landscape observed in the DG exhibited divergence from both CA 
subregions, suggesting recruitment of specialized molecular pathways 
in the trained animals in a subfield specific manner following 
memory recall.

Cells in the CA1 and CA3 subregions share similar morphologies 
and ontology as compared to the dentate gyrus (Stanfield and Cowan, 
1979; Khalaf-Nazzal and Francis, 2013; Cembrowski and Spruston, 
2019), which could account for our regionalized findings in the bulk 
RNA sequencing analysis. During memory recall, the functional 
coupling of the CA3 and CA1 subregions (Montgomery and Buzsaki, 
2007; Carr et al., 2012) is also reflected by the gene expression changes 
observed in this analysis. Our findings support the role of neurogenesis 
and protein synthesis in the DG (Alam et al., 2018; Kitamura et al., 
2009; Kitamura and Inokuchi, 2014; Deng et al., 2010), as well as the 
memory-associated increases in efficacy in CA3-CA1 synaptic 
connections (Aksoy-Aksel and Manahan-Vaughan, 2013; Pavlowsky 
and Alarcon, 2012) associated with the APA training experience. 
Furthermore, our data also implicate enhanced energetic requirements 
in the DG during periods of high cognitive demand that enable 
accurate spatial navigation and memory recall (Mendez-Lopez et al., 
2010; Christie and Schrater, 2015), evidenced by the enrichment of 
ATP metabolic pathways with the trained condition.

4.2 Technical considerations of using 
spatial transcriptomics

We employed an integrative approach combining bulk RNA 
sequencing and spatial transcriptomics to determine the 
transcriptomic profile elicited in the hippocampus following the recall 
of a consolidated spatial memory. Both methodologies provided 
unique utility and insight into the transcriptomic changes in the brain 
following memory and have proven to be highly compatible (Li and 
Wang, 2021; Vanrobaeys et  al., 2023). Our bulk RNA sequencing 
uncovered robust hippocampal subregion-specific distinctions in 
biological process enrichment between trained and untrained 
conditions. Meanwhile, spatial transcriptomic analyses revealed 
anatomical stratification of DEGs but convergence on overlapping sets 
of enriched biological processes across the CA1, CA3, and DG cell 

layers. The apparent differences between the results obtained from 
these two results were unexpected. Between the two techniques, few 
of the regionalized DEGs were overlapping yet, we found that DEGs 
detected in each region were involved in the regulation of synaptic 
plasticity. This finding indicates that both techniques are detecting 
similar biologically significant changes supporting APA memory recall.

The distinct results noted by the bulk and spatial transcriptomic 
experiments potentially arise from key chemical and technical 
variances between the two methodologies. First, the 55 μm capture 
spots of the 10x Visium spatial transcriptomics platform permits a 
more granular analysis of gene expression differences between 
specifically annotated populations of cells, as opposed to the entirety 
of a bulk section (Stahl et  al., 2016). Second, relative to bulk 
sequencing, 10x’s Visium spatial transcriptomics requires more tissue 
processing before RNA extraction and has lower RNA detection 
sensitivity (Asp et al., 2020), which might skew the genes detected 
between the two studies. Nevertheless, we surmise that our dual omics 
approach leverages the combined strength and resolution of these 
emerging technologies to explore the gene expression changes 
following spatial memory recall simultaneously within individual cell 
populations and across a spatially distributed neuronal network.

4.3 Arc-expressing spots are enriched with 
genes involved in synaptic plasticity

Using spatial transcriptomics, we examined the spatial distribution 
of IEG expression in the dorsal hippocampus to infer the location of 
neurons involved in memory formation. We  hypothesized that 
spatially restricted subsets of IEG-expressing memory-associated 
neurons would be detected amongst these spots and enriched with 
genes related to synaptic plasticity. To test this, mice were sacrificed 
following retention test during the temporal window comprising the 
peak expression of IEGs as well as the initial upregulation phase of late 
response genes (Yap and Greenberg, 2018; Sheng and Greenberg, 
1990). This approach enabled concurrent transcriptional profiling of 
both the rapid and delayed genomic responses linked to memory 
formation. The spatial patterning of IEG induction and overlap with 
plasticity-related genes could reveal the locations of neurons recruited 
to the memory trace with the dorsal hippocampus.

Comparisons of Arc + spots across the trained and untrained 
animal revealed enrichment of biological processes related to energy 
metabolism and ribosomal function. Critically, comparisons of 
Arc + versus Arc− spots within the trained animal were substantially 

Clusters are labeled 1 through 7 from greatest (1) to least (7) number of spots belonging to each unbiased cluster. Unbiased clustering groups spots 
along anatomical boundaries reflecting natural transcriptomic differences between morphologically distinct regions in the hippocampus. (C,D) UMAP 
plot (C) and cell-type annotated spatial transcriptomic maps of hippocampal spots (D) in samples from the trained and untrained mouse. Discrete 
color scale reflects the predominant cell type surveyed by each capture spot which was determined by cell-type annotation of hippocampal capture 
spots through automated integration of our data with the single cell Allen Brain Atlas for mice. (E–H) Volcano plot of DEGs between all hippocampal 
(E), CA1 (F), CA3 (G), and DG (H) cell-layer spots from trained and untrained mice (n  =  1 per group). In the analysis of all hippocampal combined, 205 
genes were upregulated and 147 were downregulated. 55 genes were upregulated and 20 were downregulated in the CA1 cell layer, 54 genes were 
upregulated and 18 were downregulated in the CA3 cell layer, and 129 genes were upregulated and 58 were downregulated in the DG cell layer. 
(I) Overlap of regionally detected DEGs stratified by direction of fold change. Overlaps were tested with Fisher’s exact test. See Supplementary Figure 2 
for further details. (J) Regional enrichment of biological processes detected amongst all DEGs (left) and stratified by up- (middle) and down-regulated 
(right) DEGs. The top 10 biological processes detected in each analysis are shown on the y-axis. Biological processes are ordered based on their 
statistical significance in the left-most column in which they are detected. Dot color reflects the statistical significance [−log10(FDR)] of the biological 
process enrichment. Dot size reflects the number of detected DEGs mapped to the genes involved in a given biological process. See 
Supplementary Figure 2 for enrichment of Cellular Component and Molecular Function GO terms.
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FIGURE 5

Arc-positive spots in the trained sample are enriched with genes involved in synaptic plasticity. (A,B) UMAP plot (A) and spatial transcriptomic maps of 
hippocampal spots (B) in the trained and untrained samples colored to reflect normalized expression of Arc. Arc positivity is determined by detectable 

(Continued)
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different from those in the untrained animal. Specifically, Arc + spots 
in the trained animal displayed upregulation of biological processes 
related to synaptic plasticity, several of which were also enriched in the 
bulk analyses. These data imply that the significant functional 
modulation occurring selectively in the Arc-expressing neuronal 
population following learning may largely drive the transcriptional 
differences observed between training conditions in the analysis of 
bulk hippocampal subregions.

We found that the expression of Arc mRNA was only detectable 
in a subset of spatial transcriptomic spots in the hippocampus. This 
spatial distribution of Arc expression differs from reference atlases 
measuring the expression of Arc in the hippocampus through in situ 
hybridization (Kasukawa et  al., 2011; Lein et  al., 2007). This 
discrepancy can be  accounted for by the lower RNA detection 
sensitivity of spatial transcriptomics, which would bias detectable Arc 
mRNA to the regions of space with the highest expression (Asp et al., 
2020). As discussed previously, Arc expression is induced following 
robust memory-related neuronal activity (Ryan et al., 2015; Guan 
et al., 2016; Chen et al., 2019; Guzowski et al., 1999; Ramirez-Amaya 
et al., 2005; Lee et al., 2022). In our data we find the regions of space 
with the highest expression of Arc are mainly along the principal cell 
layer of the CA1 subregion. This finding indicates that this 
hippocampal subregion has the highest density of strongly activated 
Arc + neurons belonging to the memory associated neuronal ensemble.

10x Visium spatial transcriptomics permits a resolution of 55 μm, 
given the size of an individual capture spot. The density of cell bodies 
varies across regions of the hippocampus meaning that a spot of this 
size covers approximately 10–50 cell bodies and countless packed 
nerve fibers. Neuronal activity and IEG expression also vary by region 
and layer. In the densely packed granule cell layer of the DG, a small 
fraction of cells are active and strongly expressing IEGs (including 
Arc) after learning (Ramirez-Amaya et al., 2006). In contrast, the large 
pyramidal cells of the CA1 and CA3 principal cell layers are recruited 
in greater relative proportions following memory and have higher 
basal level of Arc expression (Guzowski et al., 2001). Therefore, the 
number of neighboring Arc-expressing cells required to reach a 
detectable level with spatial transcriptomics correspondingly varies by 
region. For example, the number of small granule cells required per 
capture spot might be greater than the number of required pyramidal 
cells. As such, we cannot determine the cellular composition of the 
spots (e.g., spots containing many cells expressing Arc versus spots 
containing one or few cells highly expressing Arc) across the regions 
of the hippocampus. Although the approach is not single-cell 
resolution, and multiple steps of the protocol decrease the sensitivity 

of the mRNA detection, we do reason that this spatial transcriptomic 
approach is suitable for the detection of highly expressed mRNAs, like 
the IEG mRNAs elicited by the reactivation of a memory. With 
discretion, we speculate that the training experience tunes molecular 
processes in cell populations (i.e., spatial spots), which we can define 
as microenvironments, to encode learned information.

We put forward the notion that the organization of the sparsely 
recruited Arc-expressing spots that we investigate in this paper may 
be constituted by subsets of memory engram cells neighbored by a 
network of complementary cells that creates a mesh of sinks and 
sources in neural activity (i.e., microenvironments) with the purpose 
of information coding. It is not yet known if the functional changes 
that distinguish cells in a memory-associated neuronal ensemble 
from surrounding cells are the same functional changes that 
distinguish these cells across training conditions. Our data suggest 
that there are two defining features of the Arc + spots: the exclusive 
upregulation of synaptic plasticity mechanisms relative to Arc- spots 
in the trained animal, and the upregulation of energy production and 
ribosomal function in the trained versus the untrained animal. In 
support of these findings, a recent study identified synaptic plasticity 
as a defining feature of a neuron in a memory-associated neuronal 
ensemble (Jeong et  al., 2021). Additionally, increases in energy 
production and ribosomal biogenesis have been found during 
periods of high cognitive demand (Magistretti and Allaman, 2015; 
Hernández et al., 2015), which corresponds to the trained avoidance 
behavior of the APA paradigm (Cimadevilla et al., 2000; Wesierska 
et al., 2005).

4.4 Egr1- and c-Jun-expressing spots 
exhibit distinct transcriptomic profiles

Extensively studied for its role in memory storage, the Arc-tagged 
neuronal ensemble represents only a fraction of neurons activated 
during a memory event (Lacagnina et al., 2019; Sun et al., 2020; Sweis 
et al., 2021). Distinct subgroups of the neurons activated during a 
memory event are marked by several Immediate Early Genes (IEGs), 
which are associated with different patterns of intense neuronal 
activity (Okuno, 2011; Sun and Lin, 2016; Sheng et al., 1993; Guzowski 
et al., 2001; Tonegawa et al., 2018). This IEG expressing neuronal 
ensembles could encode multiple memory traces for a specific 
behavioral experience (Kitamura et al., 2017; Tonegawa et al., 2018; 
Tonegawa et  al., 2015; Terranova et  al., 2023). Using spatial 
transcriptomics, we  assessed the gene expression profiles of spots 

expression (>0 copies) of Arc mRNA in a spatial transcriptomic spot. (C,D) Volcano plots of differential gene expression of Arc positive (C) and negative 
(D) spots across behavioral conditions. In the analysis of Arc  + spots across behavioral conditions 85 upregulated and 89 downregulated genes were 
detected. In the analysis of Arc- spots across behavioral conditions 113 upregulated and 240 downregulated genes were detected. (E,F) Volcano plots 
of differential gene expression between Arc positive and negative spots within trained (E) and untrained (F) samples. In the analysis of Arc spots within 
the trained animal 95 upregulated and 6 downregulated genes were detected. In the analysis of Arc spots within the untrained animal 47 upregulated 
and 31 downregulated genes were detected. (G) Biological processes overrepresented in the analysis of Arc-expressing spots within trained and 
untrained samples amongst all DEGs (left) and stratified by up- (middle) and down-regulated (right) DEGs. The top 10 biological processes detected in 
each analysis are shown on the y-axis. Biological processes are ordered based on their statistical significance in the left-most column in which they are 
detected. Dot color reflects the statistical significance [−log10(FDR)] of the biological process enrichment. Dot size reflects the number of detected 
DEGs mapped to the genes involved in a given biological process. (H) Biological processes overrepresented in the analysis of Arc-expressing spots 
across trained and untrained samples amongst all DEGs (left) and stratified by up- (middle) and down-regulated (right) DEGs. The top 10 biological 
processes detected in each analysis are shown on the y-axis. Biological processes are ordered based on their statistical significance in the left-most 
column in which they are detected.
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FIGURE 6

Spatial transcriptomics reveals distinct collections of biological processes enriched among Arc, Egr1, and c-Jun-expressing spots. (A,B) UMAP plot 
(A) and spatial transcriptomic maps (B) of hippocampal spots in the trained and untrained sample colored to reflect the normalized expression of Egr1. 
(C,D) UMAP plot (C) and spatial transcriptomic maps (D) of hippocampal spots in the trained and untrained samples colored to reflect normalized 
expression of c-Jun. Egr1 and c-Jun positivity is determined by detectable expression (>0 copies) of Egr1 or c-Jun mRNA in a spatial transcriptomic 
spot. (E–H) Volcano plots of differential gene expression of Egr1 positive (E) and negative (F) spots across behavioral conditions and within trained 
(G) and untrained (H) samples. In the analysis of Egr1+ spots across behavioral conditions 135 upregulated and 160 downregulated genes were 
detected. In the analysis of Egr1- spots across behavioral conditions 216 upregulated and 111 downregulated genes were detected. In the analysis of 
Egr1 spots within the trained animal 509 upregulated and 46 downregulated genes were detected. In the analysis of Egr1 spots within the untrained 

(Continued)
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expressing the IEGs Egr1 and c-Jun, which were the IEGs most and 
least correlated with Arc expression, respectively.

Arc+, Egr1+, and c-Jun + spots displayed enrichment for largely 
distinct sets of biological processes within both trained and untrained 
animals. In contrast to the within sample comparisons of Arc spots, 
numerous biological processes were overrepresented within the 
trained and untrained animal for both Egr1 and c-Jun spots. 
Specifically, Egr1 spots displayed enrichment of biological processes 
related to synaptic organization and synaptic plasticity, whereas c-Jun 
spots displayed enrichment of biological processes related to RNA 
splicing, synaptic plasticity, and axonal projection. Additionally, the 
spatial distribution of Arc and Egr1 shows high levels of expression in 
the CA1 cell layer of trained and untrained samples, while the 
expression of c-Jun is high in the DG. In one study, Egr1 protein was 
shown to have higher expression in the CA1 following 1 day old spatial 
memory retrieval, relative to later time points (Barry et al., 2016). In 
the same study, Arc protein was difficult to detect in the CA1 due to 
low staining contrast in trained and control animals. While our data 
replicated the finding for Egr1 mRNA, they also point toward the 
utility of spatial transcriptomic studies to investigate the memory 
trace as it evolves over time.

Differing IEG induction likely relates to unique patterns of 
neuronal activation (Lyons and West, 2011; Madabhushi and Kim, 
2018; Tyssowski et  al., 2018; Flavell and Greenberg, 2008) and 
downstream circuit engagement (Roy et al., 2017), highlighting the 
functional and spatial diversity amongst recruited cells within 
memory associated neuronal ensembles. Both Egr1 and c-Jun code for 
transcription factors whose downstream genes have been linked with 
synaptic plasticity and memory processes (Yelhekar et  al., 2024). 
Genes downstream of Egr1-driven transcription are involved in 
vesicular release, neurotransmitter metabolism, receptor expression, 
and synaptic plasticity (Duclot and Kabbaj, 2017; Sekiya et al., 2019). 
Genes downstream of c-Jun-driven transcription in the brain are 
involved in neurite growth, axonal regeneration, and synaptic long 
term depression (Raivich and Behrens, 2006; Haeusgen et al., 2009). 
At the behavioral level, Egr1 and c-Jun expression has been reported 
in response to fear memory and acute stress, respectively, while Arc 
expression has been linked to the encoding of contextual information 
(including location), in spatial memory tasks (Cheval et al., 2012; 
Maddox et al., 2011; Sherrin et al., 2010; Kubik et al., 2007; Gouty-
Colomer et al., 2016; Cleland et al., 2017; Ramirez-Amaya et al., 2005).

It is well described that different patterns of neuronal activity can 
differentially trigger the expression of distinct IEGs (Okuno, 2011, Sun 
and Lin, 2016, Sheng et al., 1993, Guzowski et al., 2001, Tonegawa 
et al., 2018). And that different patterns of neuronal activity impinging 
on the same or distinct subsets of a neuronal population are also seen 

during the acquisition and retrieval of a memory experience (Lyons 
and West, 2011; He et al., 2019; Kim et al., 2018). While the direct link 
between types neuronal activity and IEG expression has yet to 
be established, it is plausible to model their connection as a continuous 
feature space that could describe cellular mechanisms across neuronal 
populations encoding of the various components of a memory 
experience (Kitamura et al., 2017; Tonegawa et al., 2018; Tonegawa 
et  al., 2015; Terranova et  al., 2023). In our study, the differences 
observed amongst the Egr1, c-Jun, and Arc expressing spots could 
be related to emotional, temporal, and spatial components inherent to 
both memory experiences of trained and untrained animals in the 
APA apparatus (Sun et al., 2020).

Presently, we cannot make specific connections between particular 
IEG-driven mechanisms and specific behavioral components of a 
memory experience. This remains a core gap in our knowledge of how 
the brain stores memory. Addressing this gap in knowledge would 
necessitate an approach linking molecular mechanisms and neuronal 
networks to simultaneously identify biological pathways associated 
with behavioral features (e.g., aversive or rewarding, early-term or 
long-term), the subset of neurons enhancing/repressing those 
pathways and, importantly, the connectivity of these neurons (inputs 
and outputs) within brain circuits.

4.5 Investigating memory across multiple 
scales in the brain

In summary, we  performed an integrated investigation of 
hippocampal transcriptional dynamics following spatial memory 
recall leveraging the high sensitivity bulk RNA sequencing to 
complement the high spatial resolution of spatial transcriptomics. 
Regionally restricted expression patterns were observed with the CA1 
and CA3 subregion exhibiting enrichment for synaptic plasticity and 
transmission pathways, while the DG was more prominently 
categorized by enrichment for protein synthesis and energy 
metabolism pathways. We identified a specialized signature of Arc 
expressing spots in trained mice categorized by upregulation of genes 
involved synaptic plasticity and transmission. Additionally, 
functionally distinct IEG expressing populations were revealed with 
Arc, Egr1, and c-Jun expressing spots exhibiting differential pathway 
enrichment and anatomical distribution.

The hippocampal transcriptional landscape captured in this study 
of APA memory recall represents a single transitionary state over the life 
of a memory. Networks in the hippocampus undergo complex spatio-
temporal tuning in flow of information depending on memory phase, 
valence, and cognitive load (Terranova et al., 2022; Roy et al., 2017; 

animal 150 upregulated and 46 downregulated genes were detected. (I–L) Volcano plots of differential gene expression of c-Jun positive (I) and 
negative (J) spots across behavioral conditions and within trained (K) and untrained (L) samples. In the analysis of c-Jun  + spots across behavioral 
conditions 123 upregulated and 175 downregulated genes were detected. In the analysis of c-Jun- spots across behavioral conditions 193 upregulated 
and 121 downregulated genes were detected. In the analysis of c-Jun spots within the trained animal 440 upregulated and 40 downregulated genes 
were detected. In the analysis of c-Jun spots within the untrained animal 138 upregulated and 28 downregulated genes were detected. (M) Biological 
processes overrepresented between the IEG+ and IEG- spots within each sample. Analysis of GO term overrepresentation is stratified by all DEGs (left), 
up- (middle), and down-regulated (right) DEGs. The top 10 biological processes detected in each analysis are shown on the y-axis. Biological 
processes are ordered based on their statistical significance in the left-most column in which they are detected. Dot color reflects statistical 
significance [−log10(FDR)] of biological process enrichment. Dot size reflects number of detected DEGs mapped to the genes involved in a given 
biological process.
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Marks et al., 2022). As a memory evolves through systems consolidation, 
the neural ensembles, cellular properties, and molecular profiles 
supporting the memory trace are thought to transform correspondingly 
(Tonegawa et al., 2018; Alberini and Kandel, 2014). However, capturing 
this gradual reshaping of memory representations across hippocampal 
subregions has remained challenging. Emerging spatial molecular 
profiling techniques offer unmatched resolution for mapping distributed 
neuronal populations while preserving native tissue context. Looking 
forward, studies exploring the molecular memory trace would benefit 
from employing multiple transcripomic technologies on the same 
neuronal system to gather vital information across spatial scales, as 
we have done here. By applying transcriptomic methods to concurrently 
inspect spatial loci and neuronal populations, the topological features 
of the molecular signatures supporting memory could be elucidated.
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