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Stroke is a devastating disease with high morbidity, disability, and mortality, 
among which ischemic stroke is more common. However, there is still a lack 
of effective methods to improve the prognosis and reduce the incidence of 
its complications. At present, there is evidence that peripheral organs are 
involved in the inflammatory response after stroke. Moreover, the interaction 
between central and peripheral inflammation includes the activation of resident 
and peripheral immune cells, as well as the activation of inflammation-related 
signaling pathways, which all play an important role in the pathophysiology of 
stroke. In this review, we  discuss the mechanisms of inflammatory response 
after ischemic stroke, as well as the interactions through circulatory pathways 
between peripheral organs (such as the gut, heart, lung and spleen) and the brain 
to mediate and regulate inflammation after ischemic stroke. We also propose 
the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes 
(CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In 
addition, we also summarize the mechanisms of anti-inflammatory drugs in the 
treatment of ischemic stroke.
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1 Introduction

Stroke is the second leading cause of death and the third leading cause of adult disability 
worldwide (Sacco et  al., 2013; Mozaffarian et  al., 2015). According to the results of 
radiological examination, stroke is classified as ischemic and hemorrhagic. The majority of 
strokes are ischemic, primarily due to arterial thrombosis or cardiogenic embolism. 
Hemorrhagic stroke includes cerebral hemorrhage and subarachnoid hemorrhage and is 
often caused by rupture of a cerebral artery or an intracranial aneurysm (Campbell and 
Khatri, 2020). Stroke can lead to central and systemic inflammatory responses (DeLong 
et al., 2022; Simats and Liesz, 2022; Ohashi et al., 2023). Inflammation plays an important 
role in the pathophysiological process of both ischemic stroke and hemorrhagic stroke, 
which can affect the clinical outcome of stroke patients (DeLong et al., 2022; Ohashi et al., 
2023). In this review, we will discuss the inflammatory response after ischemic stroke. In 
the acute phase of ischemic stroke, resident immune cells (such as microglia and astrocytes) 
in the brain are activated, and then circulating immune cells (such as neutrophils, 
lymphocytes, and monocytes/macrophages) can cross the damaged blood–brain barrier 
(BBB) and invade the lesion (Jayaraj et al., 2019; Lambertsen et al., 2019; Nakamura and 
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Shichita, 2019; Huang et al., 2020). Resident and infiltrating immune 
cells jointly coordinate the post-stroke inflammatory response and 
communicate with each other through cytokines and signaling 
pathways (Xu S. et  al., 2020; Zhang Z. et  al., 2022). Therefore, 
inflammation plays an important role in the pathophysiological 
mechanism after ischemic stroke.

Recently, it has been found that the interaction between brain and 
peripheral organs plays a key role in the occurrence and progression 
of diseases. Among them, the most famous is the brain-gut axis, which 
is related to inflammatory bowel disease (IBD), Parkinson’s disease 
(PD), stroke and other inflammation-related diseases (Bonaz and 
Bernstein, 2013; Pluta et al., 2021; Honarpisheh et al., 2022; Tan et al., 
2022). Recent studies also found that the crosstalk between meningeal 
lymphatic vessels (MLVs) and cervical lymph nodes (CLNs) is also an 
important pathway of brain-periphery interaction (Louveau et al., 
2015; Ma Q. et al., 2017; Louveau et al., 2018; Ahn et al., 2019; Hu 
et al., 2020). In this review, we discuss the role of brain-peripheral 
crosstalk in inflammation after ischemic stroke and summarize the 
potential role of anti-inflammatory drugs in the treatment of 
ischemic stroke.

2 Inflammation in the pathophysiology 
of ischemic stroke

2.1 Inflammatory activation pathways after 
ischemic stroke

Although the damage mechanisms of injury are different in both 
ischemic and hemorrhagic stroke, the release of damage-associated 
molecular patterns (DAMPs) follows similar pathways. These DAMPs 
can be recognized by inflammatory cells to activate the sterile immune 
inflammatory response in and outside the brain, which play a vital role 
in increasing cellular death. Common DAMPs include high-mobility-
group box 1 (HMGB1), peroxiredoxins (PRXs), adenosine 
5′-triphosphate (ATP), DNA, and RNA (Shichita et al., 2017; Gulke 
et al., 2018; Di Virgilio et al., 2020). When the blood–brain barrier 
(BBB) is impaired after a stroke, immune cells can easily enter the 
central nervous system (CNS) from the blood (Huang et al., 2020). 
The explosive activation of local immune cells promotes the invasion 
of peripheral immune cells. The accumulation of immune cells 
provides significant conditions for the occurrence of inflammation. 
Pattern recognition receptors (PRRs) on inflammatory cells recognize 
DAMPs, which activate immune cells through multiple signaling 
pathways. Subsequently, immune cells gradually release cytokines, 
which then attract and activate more immune cells through 
chemotaxis, forming a positive feedback loop (Kim et  al., 2019; 
Nakamura and Shichita, 2019; Gong et al., 2020; Maehara et al., 2021). 
Nowadays, there are mainly five types of PRRs have been described: 
Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like 
receptors (NLRs), RIG-I-like receptors (RLRs), and Cytoplasmic DNA 
sensors (CDSs) (Gong et  al., 2020). Once activated, PRRs initiate 
various innate immune signaling pathways, leading to the production 
of pro-inflammatory cytokines and type I interferons (IFN-I) (Gong 
et al., 2020). New evidence suggests that PRRs can be activated by 
endogenous DAMPs, resulting in cellular senescence and various 
human diseases (Roers et  al., 2016; Li and Chen, 2018; Mangan 
et al., 2018).

2.2 Immune cells activation after ischemic 
stroke

Studies have shown that peripheral immune cells and resident 
glial cells could play an essential role in the post-stroke immune 
response (Xu S. et al., 2020; Zhang Z. et al., 2022). After ischemic 
stroke, immune cells in the brain such as microglia and astrocytes are 
immediately activated in response to ischemic injury. Subsequently, 
peripheral immune cells are activated and recruited to the brain to 
assist in the immune response (Chu et al., 2014; Jones et al., 2018). 
We will give an introduction to these immune cells.

Evidence indicated that microglia and astrocytes, resident innate 
immune cells in the brain tissue, exert both beneficial and detrimental 
effects after ischemic stroke (Qin et al., 2019; Patabendige et al., 2021). 
DAMPs activate microglia and astrocytes through multiple pathways 
after ischemic stroke. The activated microglia have two distinct 
functional phenotypes. M1-type (classical) microglia produce 
pro-inflammatory mediators, including interleukin (IL)-1β, 
interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), 
IL-6, inducible nitric oxide synthase (iNOS), and proteases (MMP9, 
MMP3) (Yenari et  al., 2010). Conversely, M2-type (alternative) 
microglia are characterized by the production of IL-10, transforming 
growth factor b (TGF-b), insulin—like growth factor, and vascular 
endothelial growth factor (VEGF), which are pro-angiogenic and anti-
inflammatory (Ponomarev et al., 2013). It’s worth noting that this 
binary classification is oversimplified because microglia exist in many 
overlapping functional states. Microglia can either promote damage 
or facilitate repair, depending on the activation signals they receive 
(Ma Y. et al., 2017; Al Mamun et al., 2018). The dominant functional 
phenotype will change during the diverse period of stroke. (Jian et al., 
2019; Qin et  al., 2019; Ma et  al., 2021). Cerebral hypoperfusion 
induces microglial activation, production of associated 
pro-inflammatory cytokines, and priming of microglial polarization 
toward the M1 phenotype, while the immune modulator fingolimod 
attenuates microglia-mediated neuroinflammation after white-matter 
ischemia and promotes oligoden-drocytogenesis by shifting microglia 
toward M2 polarization (Qin et  al., 2017). Thus, shifting the 
phenotypic balance towards a restorative phenotype could be a novel 
therapeutic intervention for ischemic stroke.

After ischemic stroke, astrocytes perform multiple functions, 
which can be both harmful and beneficial to neuronal survival in the 
acute phase (Liu and Chopp, 2016). Astrocytic inflammatory 
responses to stroke may exacerbate ischemic lesions, yet astrocytes can 
also limit lesion expansion through anti-excitotoxic effects and release 
neurotrophic factors, thus providing neuroprotection (Markiewicz 
and Lukomska, 2006; Li et  al., 2008; Cekanaviciute et  al., 2014). 
Similarly, in the late recovery phase after stroke, glial scars may 
impede axonal regeneration, leading to diminished functional 
outcomes (Gris et al., 2007). However, astrocytes also contribute to 
angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, 
thereby promoting recovery of neurological function (Mauch et al., 
2001; Wang et  al., 2011, 2014). Therefore, the role of activated 
astrocytes following ischemic stroke is also a double-edged sword.

Neutrophils are the first peripheral immune cells to enter the 
brain after ischemic stroke. After activation, neutrophils produce 
cytokines to recruit other immune cells, engage in receptor-mediated 
phagocytosis to engulf microbes, and further release granular 
antimicrobial molecules as well as form neutrophil extracellular traps 

https://doi.org/10.3389/fnmol.2024.1400808
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fnmol.2024.1400808

Frontiers in Molecular Neuroscience 03 frontiersin.org

(NETs) (Amulic et al., 2012). Neutrophils can convert into N1 and N2 
subtypes in response to external stimuli. The N1 can secrete 
pro-inflammatory factors and proteases to aggravate ischemic brain 
damage, while the N2 may have neuroprotective effects (Kang et al., 
2020; Xie et al., 2022). The role of different neutrophil subsets in other 
points of neuroplasticity remains unclear.

Monocytes and macrophages are mononuclear phagocytes 
derived from macrophage/dendritic cell progenitors in the bone 
marrow (BM). During disease progression, they can enter the 
circulation in a C-C chemokine receptor 2 (CCR2)-dependent 
manner and migrate into tissues to generate tissue-resident 
macrophages termed monocyte-derived macrophages (MDMs), 
which express high levels of CD68.

Previous studies have shown that the number of monocytes peaks 
at Day 3 after ischemic stroke, and they differentiate into MDM (Fang 
et  al., 2018). During ischemic stroke, dying/dead neurons release 
DAMPs, such as ATP, HMGB1, damaged DNA and peroxiredoxin 
family proteins, which can be recognized by PRRs, including Toll-like 
receptor TLR-2 and TLR-4, expressed by some innate immune cells, 
such as monocytes and macrophages (MMs), microglia and 
neutrophils (Shichita et  al., 2012). Many studies have shown that 
activated MMs can polarize into distinct subtypes, including the well-
known M1 and M2 subpopulations. The M1 subtype secretes 
proinflammatory cytokines, such as tumor necrosis factor alpha 
(TNF-α), interleukin (IL)-1β, IL-12, and IL-6, and can be distinguished 
by cell surface markers CD16 and CD32. The M2 phenotype produces 
TGF-β, IL-4, IL-10, and IL-13, and expresses CD206 and Arg1. The 
activation of MM subpopulations and other innate immune cells leads 
to neuroinflammation (Wattananit et al., 2016; Fang et al., 2018), the 
role of which has been well characterized in the acute phase of 
ischemic brain injury (Qiu et  al., 2021). During the subsequent 
2 weeks, MMs gradually shift from the proinflammatory M1 
phenotype to the alternatively activated M2 phenotype, facilitating the 
resolution of inflammation (Wattananit et al., 2016; Fang et al., 2018). 
Moreover, phagocytosis of dying cells is another important function 
of MMs, which is associated with functional recovery of ischemic 
brain (Xiong et al., 2016; Han et al., 2020). During ischemic stroke, the 
inflammatory and phagocytic actions mediated by microglia and 
macrophages undergo dynamic changes. The inflammatory and 
phagocytic responses of microglia and macrophages vary over time in 
the acute, subacute, and chronic stages of ischemic stroke, and also 
vary depending on the location within the ischemic core or peri-
infarct region (Chen et al., 2022). Additionally, although both M1 and 
M2 phenotypes express phagocytic receptors, they possess different 
phagocytic capabilities. M2 phenotype is more efficient in clearing 
dead cells than M1 phenotype (Kapellos et al., 2016). Currently, it 
remains unclear how the inflammatory phenotype and phagocytic 
capacity of microglia and macrophages cross-regulate, and the 
detailed molecular mechanisms and their impact on functional 
recovery after ischemic stroke. Therefore, future research needs to 
consider the inflammatory phenotype and phagocytic actions of 
microglia and macrophages in the context of time and location to 
optimize therapies for improving functional recovery.

T cells are key participants in cellular adaptive immunity and play 
roles in various neurological disorders. According to previous reports, 
the peak of T cell infiltration occurs at different time points. Some 
studies indicate peak infiltration within 24 h, while others show it 
around day 3 to day 7, and some during the chronic phase. This 

variability may be due to different stroke models and testing methods 
(Grønberg et al., 2013; Chu et al., 2014). The role of different T-cell 
subsets in ischemic stroke in the acute damage phase remains 
controversial (Zhang D. et  al., 2021). The mode of CD4+ T-cell 
differentiation in response to brain injury ultimately determines 
stroke outcome. IFN-γ released from Th1 cells appears to either 
worsen outcomes or have an effect on brain infarct volume (Yilmaz 
et al., 2006; Shichita et al., 2009). The absence of IL-4 or neutralization 
of IL-4 (the main cytokine released by Th2 cells) can exert 
neuroprotective effects (Zhang et al., 2018). Similar to CD4+ T cells, 
CD8+ T cells also persist in the injured brain for weeks. The role of 
CD8+ T cells after ischemia is also controversial. The depletion of 
CD8+ T cells beginning 10 days post-tMCAO improved motor 
recovery (Selvaraj et al., 2021). However, Cai et al. (2022) discovered 
a new CD8+ T regulatory-like cells that could reprogram to upregulate 
leukemia inhibitory factor (LIF) receptor, epidermal growth factor–
like transforming growth factor (ETGF), and interleukin 10 (IL-10) to 
exert neuroprotection and promoted long-term neurological recovery. 
The role of T cells after stroke may vary depending on their subsets 
and the time window post-stroke.

B cells were initially identified through research on antibody-
producing cells. As key participants in humoral immunity, B cells 
promote immune responses through antigen presentation, antibody 
production, and cytokine secretion (Jain and Yong, 2022). The role of 
B cells during the acute phase of ischemic stroke remains inconclusive. 
Some studies have found no effect on infarct size and stroke outcomes 
(Schuhmann et al., 2017), while others have observed beneficial effects 
of B cells (Offner and Hurn, 2012). Considering that the adaptive 
immune response specific to central nervous system antigens occurs 
later than the innate immune response, the role of B cells in the 
subacute and chronic phases of ischemic stroke has drawn the 
attention of some researchers. Ischemic injury induces significant 
bilateral infiltration of B cells into remote brain regions, where they 
regulate motor and cognitive function by supporting neuronal vitality 
and dendritic branching (Ortega et  al., 2020). In a distal middle 
cerebral artery occlusion (dMCAO) model, it was found that B cells 
infiltrate the infarct area in the chronic phase after stroke and secrete 
IgA and IgG, which may directly affect post-stroke cognition (Doyle 
et al., 2015).

In summary, both resident immune cells within the brain and 
infiltrating immune cells from the periphery are markedly activated 
after ischemic stroke. Given the dual role of immune cells, gaining a 
deeper understanding of the dynamic functional changes of various 
immune cell populations throughout the disease course and seeking 
effective interventions to modulate immune cell subtype transitions 
will provide new theoretical foundations for immunotherapy in 
ischemic stroke. Importantly, interactions of peripheral immune cells 
and brain resident cells are essential for brain injury and recovery. 
They play an essential role in the brain-peripheral crosstalk in 
inflammation after ischemic stroke (Muhammad et al., 2021; Zhang 
Z. et al., 2022).

3 Inflammation in brain-peripheral 
crosstalk after ischemic stroke

The brain is the command post for all systems and organs of the 
body. Once something goes wrong, such as a stroke, it can affect 
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organs in multiple systems throughout the body. After a stroke, 
inflammatory response occurs in the CNS. The dysfunction of CNS 
and neuroinflammation can cause systemic inflammation (Wu et al., 
2022). In the same way, peripheral inflammation can also impact the 
CNS through some pathways to induce brain injury (Liu Q. et al., 
2019; Loppi et al., 2021). The review will discuss the mechanisms of 
brain-peripheral crosstalk in inflammation after ischemic stroke.

3.1 Inflammation and brain-gut axis in 
ischemic stroke

3.1.1 The association between inflammation and 
brain-gut axis

Although the communications between the gut and the brain have 
been recognized for decades, the brain-gut axis has become an 
emerging research hotspot. Researchers found that bidirectional 
interactions of inflammatory signals between the intestine and the 
brain occur through three pathways. They are humoral pathway, 
cellular immune pathway and neuronal pathway (Agirman 
et al., 2021).

In humoral pathway, intestinal inflammation can disrupt the 
intestinal barrier and cause intestinal inflammatory mediators to enter 
the blood through the damaged intestinal barrier, as well as affect BBB 
permeability and then enter the CNS to induce neuroinflammation 
(Parker et al., 2020; Mou et al., 2022). Gut microbiota also plays a 
critical role in the mechanism of brain-gut axis. Data have 
demonstrated that microbial diversity collapses in the days following 
ischemic stroke onset (Winek et al., 2016a). Microglia were major 
effectors of inflammatory injury encountered after stroke (Singh et al., 
2016). Gut microbiota control maturation and function of microglia 
throughout life through short-chain fatty acids (SCFAs) production, 
vagal transit, or by production of other metabolites that cross the 
BBB. Microbial tryptophan metabolites modulate microglial and 
astrocytic activation in an arylhydrocarbon receptor-dependent 
manner (Lee et al., 2015), such as modulation of TGFα and VEGFβ. 
In addition to crossing BBB, SCFAs seem to play an important role in 
maintaining its integrity, which is tightly associated with controlled 
passage of molecules and nutrients from the circulation to the brain, 
playing a central role in brain development and the preservation of 
CNS homeostasis (Braniste et  al., 2014). Additionally, the 
hypothalamic–pituitary–adrenal (HPA) axis is activated to release 
glucocorticoids, which can regulate intestinal function (Agirman 
et al., 2021).

In cellular immune pathway, immune cells are identified in the 
vicinity of the meningeal venous sinuses, and people also have found 
that these cells were derived from the gut through sequencing and can 
release cytokines or immunoglobulins to regulate neuroinflammation. 
But the mechanism of inducing immune cells migration remains 
undefined (Fitzpatrick et  al., 2020; Sanmarco et  al., 2021). Some 
people suppose that the stress response after CNS injury can change 
the composition of microbiota, which would stimulate migration of 
intestinal immune cells to the CNS (Cryan et  al., 2019). Some 
microbiota metabolites can also regulate the development and 
function of resident immune cells in the CNS (Rudzki and Maes, 2020; 
Mossad et al., 2022).

In neuronal pathway, neurons that connect the CNS to the gut can 
transmit signals bidirectionally (Agirman et al., 2021). Gut-derived 

inflammatory stimuli are transmitted to the CNS through the afferent 
fibers of the vagus nerve and the signal may activate multiple neural 
circuits. After the advanced CNS analysis, efferent fibers transmit 
signals to intestinal immune cell to limit the invasion of harmful 
microorganisms and promote the growth of probiotics to suppress 
intestinal inflammation (Fulling et al., 2019; Han et al., 2022).

Several inflammation-associated diseases are related to brain-gut 
axis. In inflammatory bowel disease (IBD), there is a bidirectional 
effect between psychological health and IBD progression (Gracie et al., 
2018). Psychological disorders may activate the hypothalamic–
pituitary-adrenocortical axis and sympathetic-adrenal medulla system 
to increase the secretion of glucocorticoids and catecholamines to 
regulate gastrointestinal function. In turn, inflammatory activity in 
the gut can also influence the CNS by increasing intestinal 
permeability, changing the composition of intestinal microbes and 
stimulating the vagus nerve, which can cause psychological disorders 
(Brzozowski et  al., 2016; Gracie et  al., 2018, 2019). Additionally, 
depressive symptoms can be alleviated by improved dietary structure 
and supplementation with probiotics (Reininghaus et al., 2020; Marx 
et al., 2021). Inflammation also plays a vital role in brain-gut crosstalk 
in neurodegenerative diseases. Gut dysbiosis and intestinal 
inflammation can facilitate inflammatory factors to enter the 
circulation through the highly permeable intestinal wall, which causes 
BBB damage and neuroinflammation to promote the occurrence and 
progression of Alzheimer’s disease (AD) and Parkinson’s disease (PD) 
(Doifode et al., 2021; Tan et al., 2022). Animal studies have also found 
that fecal transplantation and supplementation of specific metabolites 
could improve the motor symptoms of PD mice by relieving intestinal 
inflammation while inhibiting neuroinflammation in the substantia 
nigra (Sampson et al., 2016; Perez-Pardo et al., 2019; Zhao et al., 2021). 
Fecal transplantation and probiotic intervention are also considered 
be new treatment of AD (Doifode et al., 2021). In multiple sclerosis 
(MS), specific microorganisms in the gut and their metabolite can 
induce peripheral CD4+ T cells to be polarized into pro-inflammatory 
Th1 cells and Th17 cells or anti-inflammatory regulatory T cells. These 
T cells can migrate to the CNS through circulation and regulate 
neuroinflammation to affect the progression of MS (Kadowaki and 
Quintana, 2020; Ghezzi et al., 2021). With the involvement of gut 
microbes, mice fed a high-fat diet will activate microglia to develop 
hypothalamic inflammation (Valdearcos et  al., 2014). 
Neuroinflammation can lead to leptin resistance and feeding behavior 
disorder to induce obesity, which implies that obesity is also associated 
with inflammatory signaling in the brain-gut axis (Valdearcos et al., 
2014; Torres-Fuentes et al., 2017; Heiss et al., 2021). Targeting the 
inflammatory signals of the gut-brain axis will probably become an 
effective therapy for these inflammation-related diseases.

3.1.2 The role of brain-gut axis in inflammation 
after ischemic stroke

In recent years, a large number of studies verify the relationship 
between inflammation after ischemic stroke and brain-gut axis, in 
which gut microbiota is the most critical player. The following will 
separately introduce the bidirectional influence between the brain and 
the gut after a stroke (Figure 1).

The gut is the largest microbial reservoir in the human body, and 
these microbes contain far more genes than the human genome 
(Gilbert et al., 2018). Many animal experiments have found that the gut 
microbiota in the mice stroke model has undergone significant changes 
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(Crapser et al., 2016; Stanley et al., 2018; Xu et al., 2021). Crapser et al. 
found that after transient middle cerebral artery occlusion (MCAO), 
mice have increased intestinal permeability and ectopic gut bacteria, 
and only young mice could cope with the infection caused by these 
ectopic bacteria, while old mice were more likely to develop sepsis 
(Crapser et  al., 2016). Stanley et  al. also found that stroke caused 
significant changes in the microbial composition of the intestinal 
mucosa in mice. There was an increased abundance of Akkermansia 
muciniphila and an excessive abundance of clostridial species after 
stroke (Stanley et al., 2018). Xu et al. also found that acute ischemic 
stroke (AIS) could cause mice intestinal ischemia during a short period 
of time, which would produce excessive nitrate in the gut to lead to 
intestinal dysbiosis (Xu et al., 2021). At present, more than one clinical 
study has found that there was specific upregulated or downregulated 

gut microbiota in stroke patients (Benakis et al., 2020; Peh et al., 2022). 
Some studies illustrated the same conclusion that there showed a higher 
abundance in Streptococcus, Lactobacillus and Escherichia, and a lower 
abundance in Eubacterium, Roseburia in stroke patients compared to 
healthy participants (Peh et al., 2022). In addition to changes in the 
intestinal microbiota, stroke can also cause cecal dysbiosis, loss of 
goblet cells and decreased mucus (Houlden et al., 2016).

The gut microbiota can also manipulate the inflammation state 
of the brain and the severity of cerebral infarction in some ways (Peh 
et al., 2022). One study found that cerebral ischemia induces an 
increasing abundance of Enterobacteriaceae. In turn, these harmful 
bacteria aggravate the neuroinflammation of the ischemic brain by 
enhancing systemic inflammation and aggravate the degree of 
cerebral infarction (Xu et al., 2021). Benakis et al. showed that the 

FIGURE 1

The interaction between brain and gut in the inflammation after ischemic stroke. Ischemic stroke would damage intestinal epithelial cells to increase 
the intestinal permeability, which further aggravated the translocation of intestinal bacteria. In addition, it could also cause flora dysbiosis. In turn, gut 
microbiota could also affect ischemia brain through regulating circulating immune cells, BBB permeability, as well as serum levels of TMAO and SCFAs.
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change of intestinal flora caused by antibiotics improved the severity 
of brain damage in ischemic stroke. Changes in the intestinal flora 
lead to an increase in regulatory T cells and a decrease in interleukin-
17-positive γδ T cells, which inhibits the transport of effector T cells 
to the leptomeninges after stroke (Benakis et al., 2016). Winek et al. 
found that extensive depletion of the gut microbiota could reduce 
survival in experimental stroke mice and exhibited systemic 
immunosuppression on day 5 after cerebral ischemia. However, 
continuous preventative antibiotic treatment or restoration of 
commensal microbiota in microbiota depleted mice could improve 
the situation (Winek et al., 2016b). Another study demonstrated that 
normal gut microbiota could reduce BBB permeability in mice by 
up-regulating the expression of tight junction proteins, which 
implied that the changes of gut microbiota could influence the 
regulation of BBB permeability after stroke to affect the progression 
of neuroinflammation (Braniste et al., 2014). The alteration of gut 
microbiota can cause changes in the levels of some important 
metabolites to affect the brain. Trimethylamine (TMA) is produced 
by the action of TMA cleaving enzymes in the gut microbiome. TMA 
is then further oxidized to trimethylamine N-oxide (TMAO) (Nam, 
2019). TMAO can promote atherosclerosis and thrombosis through 
promoting macrophage-derived foam cell formation, enhancing 
platelet reactivity, altering bile acid and cholesterol transport, and 
activating inflammatory pathways (Peh et al., 2022). Studies have 
also found that high levels of TMAO can increase the risk of stroke 
and the size of cerebral infarction. And changes in gut bacteria cause 
up-regulation or down-regulation of TMAO levels to affect the risk 
and severity of ischemic stroke (Nam, 2019; Zhu et al., 2021). Other 
important metabolites of gut microbiota, short-chain fatty acids 
(SCFAs), have the positive effect on ischemic brain (Peh et al., 2022). 
Animal studies have shown that transplantation of SCFAs-producing 
bacteria increased the levels of SCFAs in serum, gut and brain to 
repair the intestinal barrier, inhibit inflammation and improve 
neurological dysfunction (Chen et al., 2019; Lee et al., 2020). In 
addition to affecting the brain, the imbalance of the intestinal 
microbiota after a stroke can also cause infections in various organs 
of the body, such as pneumonia. These infections also affect the 
prognosis of stroke (Stanley et  al., 2016). In the future, it might 
become a new means to treat stroke to restore the normal intestinal 
microbial composition and supplement beneficial metabolites.

3.2 Inflammation and brain-heart axis in 
ischemic stroke

Cardiovascular complications are the second leading cause of 
death after stroke (Chen et  al., 2017). The most common cardiac 
complications include cardiac arrhythmias, myocardial infarction, 
congestive heart failure, neurogenic stress cardiomyopathy (NSC), and 
Takotsubo cardiomyopathy. Additionally, multiple cardiac diseases 
and AIS share the same risk factors. Thus, it will be  necessary to 
research the brain-heart syndrome and there is even a neurocardiology 
major (Samuels, 2007; Battaglini et al., 2020). The mechanisms for 
brain-heart interactions after stroke are complex, which include 
activation of the HPA axis, enhanced sympathetic and parasympathetic 
activity, catecholamine release, gut dysbiosis and inflammation (Chen 
et  al., 2017). The following will discuss the role of inflammatory 
signaling in the brain-cardiac axis after stroke.

Disruption of the BBB is a vital alteration of the pathophysiological 
cascade after ischemic stroke, which plays an important role in the 
progression of systemic inflammation (Chen et al., 2017; Varatharaj 
and Galea, 2017; Galea, 2021). After a stroke, in addition to the 
immune response of resident immune cells in the brain, peripheral 
macrophages and neutrophils also infiltrate into lesions through the 
damaged BBB because of chemotaxis. This not only enhances the local 
inflammatory response in the ischemic brain but also further 
aggravates the BBB damage (Battaglini et al., 2020; Scheitz et al., 2022; 
Ziaka and Exadaktylos, 2023). This is a vicious cycle. Disruption of the 
BBB promotes the entry of inflammatory cells and factors into the 
brain, while local inflammation increases BBB permeability. The severe 
damage of BBB may facilitate inflammatory factors and immune cells 
in the inflammatory response area as well as brain-derived antigens 
from injured brain cells into the circulation, which lead to the 
inflammatory response of the heart (Battaglini et al., 2020; Scheitz 
et al., 2022; Ziaka and Exadaktylos, 2023). In addition, the brain-gut 
axis plays a mediating role in the brain-heart axis. Intestinal barrier 
damage and flora dysbiosis after a stroke cause intestinal bacterial 
translocation and endotoxin release, which further aggravates systemic 
inflammation to lead to myocardial injury (Chen et al., 2017; Battaglini 
et al., 2020). TMAO, a metabolite derived from gut microbes, also 
adversely affects cardiomyocytes and coronary endothelial cells (Peh 
et  al., 2022). An animal study illustrated that the number of 
granulocytes in myocardial tissue increased, and the concentrations of 
proinflammatory cytokines IL-1β and IL-6 were also nearly doubled 
in mice after transient middle cerebral artery occlusion (tMCAO), 
which could lead to cardiac dysfunction and hemodynamic 
impairment (Vornholz et al., 2021). Hermanns et al. found that in 
middle cerebral artery occlusion (MCAO) mice, the severity of 
neuroinflammation correlated with cardiac function. Sustained 
neuroinflammation was associated with a further decline in left 
ventricular systolic function. In the process of stroke progression, 
inhibition of microglia activation could also affect cardiac systolic 
function (Hermanns et al., 2022). Additionally, studies demonstrated 
that stroke not only damaged the contractility of the heart, but also 
made the myocardium more sensitive to ischemia (Meloux et  al., 
2018). Neuroinflammation after ischemic stroke can affect the heart, 
but the molecular mechanisms induced myocardial changes remain to 
be determined. In patients after acute ischemic stroke, researchers also 
detected significantly increased levels of biomarkers of myocardial 
injury, such as cardiac troponin (cTn), brain natriuretic peptide (BNP) 
(Agewall et al., 2011; Xu C. et al., 2020; Scheitz et al., 2021). The most 
easily observed after a stroke is the tachycardia caused by sympathetic 
excitement. Studies showed that there is a crosstalk between 
sympathetic excitement and inflammation (Winklewski et al., 2014; 
Chen et al., 2017). After an ischemic stroke, damaged neurons and glial 
cells stimulate the hypothalamus through releasing inflammatory 
factors to induce the intense activation of sympathetic nervous system 
and the release of catecholamines. These can regulate the number and 
function of lymphocytes and monocytes to affect cardiomyocyte 
inflammation and myocardial injury (Kenney and Ganta, 2014; 
Winklewski et al., 2014; Chen et al., 2017). In turn, hemodynamic 
changes caused by cardiac dysfunction will also impact cerebral 
perfusion to aggravate neuroinflammation in the ischemic lesions, 
which forms a vicious circle (Samuels, 2007; Chen et  al., 2017; 
Battaglini et al., 2020). It will improve the prognosis of ischemic stroke 
and reduce the risk of death to further explore brain-heart syndrome.
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3.3 Inflammation and brain-lung axis in 
ischemic stroke

Pulmonary dysfunction after brain injury is common. Patients 
with stroke often present with pulmonary complications such as 
pneumonia, pleural effusion, acute respiratory distress syndrome, 
pulmonary edema, and respiratory failure (Robba et al., 2019; Herpich 
and Rincon, 2020). The pathophysiological mechanism of acute lung 
injury in patients with severe brain injury (such as stroke and 
traumatic brain injury) is complex, but inflammatory response may 
play an important role in brain-lung crosstalk (Mascia, 2009).

Stroke can lead to cerebral and systemic inflammatory response 
(Xiong et al., 2016; Han et al., 2020; Muhammad et al., 2021; Xie et al., 
2022). Inflammation can promote neutrophils and activated 
macrophages to migrate into the alveolar space as well as cause the 
damage to alveolar type II epithelial cells (Robba et al., 2019). Samary 
et al. found that the damage to type 2 pneumocytes and endothelial cells, 
inflammatory cell infiltration and decreased phagocytic capacity of 
alveolar macrophages in the lung of rats with focal ischemic stroke. And 
the levels of proinflammatory mediators in brain, lung, and plasma all 
increased (Samary et al., 2018). Another animal experiment showed that 
the dysregulation of hepatocyte growth factor (HGF), transforming 
growth factor-α (TGF-α), and C-C motif chemokine ligand 2 (CCL2) 
were the characterization of lung injury in MCAO mice. These proteins 
all had the function of regulating inflammation (Faura et al., 2022). In 
turn, lung injury can also affect the brain through the autonomic 
nervous system and immune pathways, which aggravate the secondary 
brain injury after ischemic stroke (Robba et al., 2019). The role of brain-
lung crosstalk in stroke is unquestionable, but the molecular mechanisms 
of brain-lung axis need to be further explored, which will help in the 
management of assisted ventilation in patients with severe stroke.

3.4 Inflammation and brain-spleen axis in 
ischemic stroke

Spleen is an important immune organ in human body. In recent 
years, people begin to focus on the role of spleen activation in 
inflammation and immune response after an ischemic stroke (Han 
et al., 2021). Regarding the connection between brain and spleen, the 
spleen is almost always innervated by sympathetic nerve fibers. 
Norepinephrine is the main neurotransmitter, and no evidence of 
cholinergic innervation has been found (Verlinden et al., 2019). A large 
number of animal experiments and clinical experiments proved that the 
spleen volume decreased significantly in the acute phase of ischemic 
stroke (Han et al., 2021). A human experiment proved that the spleen 
would shrink to its smallest size within 1 day after an ischemic stroke. 
The state would continue until the third day after the stroke, and then 
the spleen would gradually increase in size until it returned to its 
original size (Sahota et al., 2013). In an animal experiment, the size of 
the spleen was significantly reduced 24 to 48 h after MCAO in rats. After 
96 h, the volume of the spleen recovered to be no statistically different 
from that of the sham-operated rats (Seifert et al., 2012a). The sharp 
reduction in volume is mainly due to the activation of sympathetic 
nervous system after a stroke, which releases a large amount of 
catecholamines, which act on the α1-adrenergic receptor (α1-AR) of the 
spleen (Shephard, 2016; Han et al., 2021). The relationship between the 
change of spleen volume and the size of infarct is still controversial (Han 

et al., 2021). An animal experiment showed that the size of the spleen 
had nothing to do with the infarct size (Chiu et al., 2016). But more 
researchers agreed that the spleen volume was negatively correlated 
with the infarct size--the more severe the spleen atrophy, the larger the 
infarct size (Han et al., 2021). Severe atrophy of spleen in stroke patients 
were associated with poor prognosis (Sahota et al., 2013). And a large 
number of studies indicated that splenectomy before stroke could 
reduce the size of infarction and inhibited neuroinflammation (Ajmo 
et al., 2008; Seifert et al., 2012b; Chauhan et al., 2018; Seifert and Offner, 
2018; Sternak et al., 2022). Although the blood volume of the spleen is 
not high, the spleen is the largest immune organ in the body, and its 
reduction in size will inevitably lead to a large number of immune cells 
overflowing (Liu et  al., 2015). The overflowing immune cells are 
activated. New antigens that activate immune cells in the spleen include 
microtubule-associated protein 2 (MAP  2), N-methyl-D-aspartate 
receptor subunit 2 (NR-2A), myelin basic protein (MBP) and myelin 
oligodendrocyte glycoprotein (MOG) (Becker, 2009; Miro-Mur et al., 
2016). Activated immune cells are recruited by chemokines CC and 
CXC released from ischemic brain to cross the impaired BBB and enter 
the CNS from the spleen mainly through the CCL2-CCR2 signaling 
axis, causing adverse effects (Mirabelli-Badenier et al., 2011).

In this vicious cycle after ischemic stroke, sympathetic nerves are 
activated to release catecholamines, causing the decrease in spleen 
volume. Subsequently, immune cells and cytokines are released into 
the circulation from the spleen. These immune cells are activated and 
recruited to migrate into the CNS by antigens and chemokines 
released from ischemic brain and aggravate the inflammatory 
response. Thus, modulation of the spleen is likely to be an effective 
strategy to suppress inflammation after ischemic stroke.

3.5 Systemic inflammatory response 
syndrome (SIRS) after ischemic stroke

SIRS is a systemic inflammatory state because of the response to 
stimuli (Singer et al., 2016). Studies showed that patients with more 
severe acute ischemic stroke have higher rates of SIRS (Pedersen et al., 
2004; Boehme et al., 2013; DeLong et al., 2022). For example, the 
pneumonia mentioned above is actually the most common type of 
infection after stroke and the lung is also the first organ to be hit in 
SIRS (Winklewski et al., 2014; Elkind et al., 2020). The occurrence of 
SIRS has an important impact on clinical outcome (Elkind et al., 2020).

As mentioned above, stroke can lead to local and systemic 
inflammatory response, which need the brain and multiple organs of 
the whole body to interact with each other. This suggests that people 
not only focus on the brain, but also pay more attention to the whole 
body for the treatment and management of stroke, so as to further 
improve the prognosis of stroke patients.

3.6 Inflammatory signals disseminated 
through the lymphatic pathway in 
brain-peripheral crosstalk in ischemic stroke

Inflammation that is transmitted through circulation in brain-
peripheral crosstalk has been described above. In addition, 
inflammatory signals disseminated through the lymphatic pathway 
have also received attention. It used to be widely believed that the 
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brain lacked lymphatic vessels. In 2015, Louveau et al. discovered the 
structure of meningeal lymphatic vessels (MLVs) in the dura mater of 
mice and demonstrated that MLVs could drain CSF to peripheral 
cervical lymph nodes (CLNs) (Louveau et al., 2015). According to the 
anatomical location, MLVs can be divided into dorsal MLVs and basal 
MLVs (Ahn et al., 2019). Studies illustrated that the basal MLVs were 
mainly responsible for draining CSF, while the dorsal MLVs mainly 
mediated inflammatory factors and immune cells to enter CLNs (Ma 
Q. et al., 2017; Louveau et al., 2018; Ahn et al., 2019; Hu et al., 2020). 
MLVs are important structures that link the CNS to the peripheral 
immune system (Jacob et al., 2022). A large number of studies found 
that MLVs played a vital role in the occurrence, progression and 
prognosis of neurodegenerative diseases, traumatic brain injury, brain 
tumors and stroke (Da Mesquita et al., 2018; Rasmussen et al., 2018; 
Bolte et al., 2020; Song et al., 2020; Chen S. et al., 2021; Wang et al., 
2023). Next, we will discuss the pathophysiological role of MLVs in 
the brain-peripheral crosstalk of inflammation in stroke.

Meningeal lymphatics has been shown to be  involved in the 
transport of macromolecules in the brain to CLNs (Aspelund et al., 
2015). One study found an increase of brain-derived antigens in CLNs 
after acute stroke, which could activate immune cells in lymphoid 
tissues. CD68+ macrophages expressing MHC class II receptors and 
CD69+ T cells were the main cells in the immune response. And 
increased reactivity of lymphoid tissue to different classes of brain-
derived antigens might be associated with better or worse clinical 
outcomes (Planas et al., 2012). Dendritic cell (DC) is an important 
antigen-presenting cells (APC) after stroke. DC can take up antigens 
and migrate to secondary lymphoid tissues. This promotes the 
generation of Tregs or effector T cells to induce immune tolerance or 
immune response (Miro-Mur et al., 2016). B cells can also produce 
corresponding brain antibodies (Chen J. et al., 2021). The molecules 
involved in DC migration to CLNs are mainly chemokine receptor 
CCR7 and its chemokine ligand CCL21 (Arasa et  al., 2021). The 
CCR7-CCL21 axis is also an important pathway for T cells to migrate 
to CLNs (Louveau et al., 2018). Then, immune cells that are activated 
in CLNs can enter the circulation and infiltrate the lesion of the brain 
and exert proinflammatory or anti-inflammatory effects. VLA-4 and 
LFA-1 integrins or other molecules expressed by immune cells can 
contribute to migration (Schlager et al., 2016). In summary, cerebral 
ischemia causes cells death to releases brain antigens. Brain antigens 
are drained to the CLNs. APC can recognize brain antigens and 
migrate to the CLNs to activate T cells and B cells. Activated T cells, 
monocytes/macrophages and brain antibodies enter the blood 
circulation. Lastly, they infiltrate into the brain tissue from cerebral 
vessels (Figure 2).

An animal study showed that VEGFR3 was phosphorylated in 
CLNs after focal cerebral ischemia, which regulate lymphatic 
endothelial cell proliferation to promote macrophage proliferation and 
increased IL-β expression. Blocking VEGFR3 signaling and lymph 
node dissection can reduce the infiltration of pro-inflammatory 
macrophages in the ischemic area (Esposito et al., 2019). Another 
animal experiment demonstrated that VEGFR3 signaling controlled 
the development of MLVs (Yanev et  al., 2020). Thus, VEGFR3 
signaling play an important role in brain-peripheral lymphatic 
crosstalk. Toh et  al. illustrated that patients with ischemic stroke 
would have lymphatic dysfunction and this disorder took some time 
to gradually recovers after the attack (Toh and Siow, 2021). Bai et al. 
showed that cranial bone transport (CBT) could improve the drainage 

of meningeal lymph and reduce the infiltration of T cells in MCAO 
rats, which relieved neuroinflammation and improved neurological 
deficits (Bai et  al., 2022). Meningeal lymphatic hypoplasia also 
increased infarct volume of mice after tMCAO (Yanev et al., 2020). 
The conclusion of these studies suggested that maintaining the normal 
function and complete structure of MLVs might have a positive effect 
on ischemic stroke. Exploring the MLVs-CLNs axis will facilitate our 
understanding of the inflammatory response after stroke. It also 
provides a new potential therapeutic target.

4 Anti-inflammatory drugs in ischemic 
stroke

At present, it is generally believed that inflammation plays an 
important role in the pathogenesis of ischemic stroke, and the 
significance of anti-inflammatory drugs in the treatment and 
prevention of ischemic stroke has also attracted more and more 
attention (Kelly et al., 2021) (Table 1).

4.1 Common drugs with anti-inflammatory 
effects

Antiplatelet drugs and statins (HMG-CoA reductase inhibitors) are 
the most common drugs used for the prevention and treatment of 
ischemic stroke, and they have anti-inflammatory effects (Toyoda, 
2009; Kelly et al., 2021). Aspirin is the first antiplatelet agent approved 
for secondary stroke prevention (Toyoda, 2009). For patients with 
non-cardioembolic ischemic stroke or transient ischemic attack (TIA), 
the use of low-dose aspirin (alone or in combination) can reduce the 
risk of recurrent stroke and other advent cardiovascular events (Russo 
et al., 2016). Low-dose aspirin can irreversibly inhibit cyclooxygenase-1 
(COX-1) in platelet to lead to decreasing production of TXA2, which 
suppresses platelet aggregation and preventing thrombosis. When 
platelet activation in vascular lesions is inhibited, it may also play an 
indirect role, such as reducing the release of inflammatory cytokines 
and reactive oxygen species (ROS) (Russo et al., 2016; Montinari et al., 
2019). In addition, the formation of aspirin-triggered lipoxins could 
inhibit the activity of granulocytes (Amann and Peskar, 2002). Sodium 
salicylate, the biotransformation product of aspirin, could regulate 
cyclooxygenase-2 (COX-2) expression, increase the release of 
adenosine into the extracellular fluid, and scavenge hydroxyl radicals 
(Amann and Peskar, 2002). These mechanisms are most likely also 
related to the anti-inflammatory effects of aspirin. Statins such as 
atorvastatin and rosuvastatin also play the positive role in the 
prevention and treatment of ischemic stroke (Vaughan and Delanty, 
1999). In addition to lowering cholesterol levels, statins also have a 
variety of effects, such as improving endothelial function, antioxidant, 
anti-inflammatory, and anti-platelet effects (Cimino et  al., 2007; 
Malfitano et  al., 2014). Statins can reduce the bioavailability of 
isoprenoids, which may reduce the expression of adhesion molecules 
on the surface of immune cells and the production of proinflammatory 
proteins (Vaughan and Delanty, 1999). A clinical study showed that 
statins treatment before stroke could decrease the levels of 
pro-inflammatory factors after stroke, and RhoA GTPase as well as its 
downstream effectors might be the targets for statins to exert anti-
inflammatory effects (Schultz et al., 2019). Alikiaii et al. also found that 
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statins treatment could reduce the level of C-reactive protein (CRP) in 
stroke patients (Alikiaii et al., 2021).

Some compounds derived from plants can exert anti-
inflammatory effects by inhibiting the production of ROS, regulating 
inflammatory factors and microglia (Chen H. et al., 2020; Tao et al., 
2020). Studies demonstrated that the use of these drugs can reduce the 
neuroinflammatory cascade caused by cerebral ischemic injury (Tao 
et al., 2020). Curcumin, a polyphenolic compound, could inhibit the 
activation of microglia and the NF-κB signaling pathway to reduce the 
release of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and 
apoptosis (Ullah et al., 2017; Bhat et al., 2019). Thus, it could play a 
neuroprotective role in cerebral ischemia. Flavonoids also belong to 
the group of polyphenols. In vitro studies, flavonoids could inhibit the 
activation of the TLR4/NF-κB signaling pathway and the expression 
of NLRP3 inflammasome and proinflammatory cytokines such as 
IL-1β and IL-6. In animal experiments, flavonoids played an anti-
inflammatory role and reduce infarct volume and neurological deficits 
(Martinez-Coria et al., 2023). Li et al. also suggested that polyphenols 
derived from natural plants could exert anti-inflammatory activities 
in ischemic stroke by regulating the TLR4/NF-κB pathway to regulate 
the polarization of microglia (Li R. et al., 2022).

Melatonin is also one of the potential neuroprotective agents. 
Melatonin is a neurohormone mainly synthesized and released by the 
pineal gland, which mainly regulates the circadian rhythm (Vasey 
et  al., 2021). In cerebral ischemia, melatonin can also play a 
neuroprotective role through a variety of pathways (Ramos et al., 
2017). We mainly discuss its anti-inflammatory effects in ischemic 
stroke. Rancan et al. found that melatonin treatment could reduce the 
levels of TNF-α and IL-1β in the ischemic region in aging rats with 
cerebral ischemia (Rancan et al., 2018). Chen et al. demonstrated that 
melatonin could inhibit TLR4-mediated inflammatory signaling 
pathway to exert anti-inflammatory effects (Chen K. H. et al., 2020). 
Agomelatine, a melatonin receptors agonist, suppressed the activation 
of microglia and reduced the NLRP3 inflammasome through TLR4/
NLRP3 signaling pathway in MCAO rats (Chumboatong et al., 2022). 
Another animal experiment illustrated that melatonin could promote 
microglia to switch from pro-inflammatory to anti-inflammatory 
phenotype through regulating STAT3 signaling pathway (Liu 
Z. J. et  al., 2019). In rats with transient focal cerebral ischemia, 
intravenous melatonin effectively reduced the migration of circulating 
neutrophils and macrophages/monocytes into the brain, and inhibited 
the activation of microglia in the lesion area (Lee et al., 2007). In 

FIGURE 2

The brain-peripheral lymphatic crosstalk in the inflammation after ischemic stroke. Brain antigens were released from damaged neurons in the infarction 
area. APCs that bind and recognize brain antigens could migrate to peripheral CLNs through MLVs. APCs activated T cells and B cells in CLNs. Activated 
immune cells and brain antibodies could enter the cerebral vessels through the blood circulation and then infiltrate in the ischemic brain.
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addition, melatonin could inhibit the activation and expression of 
matrix metalloproteinase-9 (MMP-9) after cerebral ischemia, which 
would maintain the BBB integrity and reduce the infiltration of 
peripheral immune cells into lesion (Hung et al., 2008; Tai et al., 2010).

4.2 Anti-inflammatory therapies associated 
with brain-peripheral crosstalk

Melatonin and statins, already mentioned above, can exert anti-
inflammatory effects indirectly through regulating the brain-gut axis. 
Melatonin has been shown to interact with gut microbiota 
(Ghareghani et al., 2018; Zhang Y. et al., 2022). Studies showed that 
regulating the composition of gut microbiota by supplementing 
prebiotics and other means could promote gut microbes to produce 
more melatonin or tryptophan metabolites, which might play an anti-
inflammatory role in ischemic stroke (Li S. et al., 2022; Lian et al., 
2023). Zhang et al. found that atorvastatin was also able to regulate gut 
microbiota and promote butyrate production. These protected the 

function of intestinal barrier and reduced the release of endotoxin as 
well as harmful bacteria into the circulation, which inhibited 
neuroinflammation mediated by microglia around the infarct area 
(Zhang P. et al., 2021). Studies also illustrated that direct exogenous 
supplementation of probiotics or prebiotics could increase the growth 
of beneficial bacteria and inhibit the growth of harmful bacteria, 
which maintained normal intestinal barrier function and increased 
the levels of neuroprotective metabolites to mitigate the inflammatory 
response in the brain and gut (Yuan et al., 2021; Savigamin et al., 
2022). Experiments about traditional Chinese medicine demonstrated 
that some traditional Chinese medicine prescription, such as Tong-
Giao-Huo-Xue Decoction and Dihuang Yinzi, contained a variety of 
pharmacological components, which reduced neuroinflammation 
through regulating intestinal flora to promote the recovery of 
intestinal immune homeostasis (Zhang et al., 2020; Wang et al., 2022). 
Kurita et  al. illustrated that oral administration of nonabsorbable 
antibiotics, such as polymyxin B, modulated gut microbiota and 
improved the outcome of endotoxemia and neuroinflammation in 
mice with regional cerebral ischemia (Kurita et al., 2020).

TABLE 1 Anti-inflammatory therapies in the treatment of ishemic stroke.

Anti-inflammatory 
therapy

Anti-inflammatory mechanism References

Aspirin Indirectly reduced release of inflammatory cytokines and ROS by inhibiting COX-1 to suppress platelets.

Inhibition of granulocytes by triggering the formation of lipoxins.

Increasing release of adenosine into extracellular fluid to scavenge hydroxyl radicals by regulating COX-2.

Russo et al., (2016), Montinari et al. 

(2019), Amann and Peskar (2002)

Statins Decreased expression of adhesion molecules on the surface of immune cells and proinflammatory 

proteins.

Decreased level of pro-inflammatory factors and CRP.

Vaughan and Delanty (1999), 

Schultz et al. (2019) Alikiaii et al. 

(2021)

Curcumin Inhibition of the activation of microglia and the NF-κB signaling pathway as well as reduced release of 

IL-1β, IL-6 and TNF-α.

Bhat et al. (2019), Ullah et al. (2017)

Flavonoids Inhibition of activation of TLR4/NF-κB signaling pathway and the expression of NLRP3 

inflammasome and IL-1β as well as IL-6.

Martinez-Coria et al. (2023)

Melatonin Reduced levels of TNF-α and IL-1β in the ischemic region.

Inhibition of TLR4 inflammatory signaling pathway.

Transformation of the phenotype of microglia through regulating STAT3 signaling pathway.

Inhibition of the migration of neutrophils and macrophages/monocytes into the brain as well as the 

activation of microglia.

Inhibition of MMP-9.

Rancan et al. (2018), Chen K. H. 

et al. (2020), Chumboatong et al. 

(2022), Liu Z. J. et al. (2019), Lee 

et al., (2007), Hung et al. (2008), Tai 

et al. (2010)

Probiotics/Prebiotics Indirectly mitigation of inflammatory response in the brain and gut by maintaining intestinal barrier 

function and the levels of neuroprotective metabolites.

Yuan et al. (2021), Savigamin et al. 

(2022)

Polymyxin B Regulation of gut microbiota and improvement of endotoxemia. Kurita et al. (2020)

Lipopolysaccharide 

precondition

Inhibition of splenic atrophy, decreased levels of pro-inflammatory immune cells as well as increasing 

levels of regulatory B cells.

Wang et al., (2018)

Stem cell therapy Inhibition of splenic atrophy, decreased levels of TNF-α and IFN-γ as well as regulation of T cells in 

the spleen.

Wang et al. (2019), Acosta et al. 

(2015)

Anti-CD147 antibody Inhibition of monocyte/macrophage and reduced levels of TNF-α, IL-6 and IL-1β in the spleen. Jin et al. (2019)

XPro1595 and etanercept 

(anti-TNF agents)

Regulation of the number of peripheral splenic T cells and inhibition of the infiltration of granulocytes 

into the brain.

Clausen et al. (2014)

Albumin Inhibition of the expression of TLR4 and increased levels of regulatory T cells and IL-10 in the spleen. Wang et al. (2013)

Cocaine and amphetamine 

regulated transcript (CART)

Regulation of CD4+/CD8+ ratio in the blood and spleen. Chang et al. (2011)

Acetylcholine and nicotine 

(α7nAChRs agonists)

Inhibition of the synthesis and release of pro-inflammatory cytokines from macrophages in the spleen 

and gut.

Hoover (2017)
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Wang et al. found that lipopolysaccharide preconditioning mice 
had milder splenic atrophy after MCAO, with decreased levels of 
pro-inflammatory immune cells and increased levels of regulatory B 
cells in the spleen, which mitigated neuroinflammation and improved 
neurological function. Lipopolysaccharide preconditioning might 
activate the anti-inflammatory protective mechanism of the spleen 
after ischemic stroke (Wang et al., 2018). Intravenous administration 
of stem cells is also a novel approach to modulate post-stroke 
inflammation. The spleen plays an important role on stem cell therapy 
for cerebral ischemia (Wang et al., 2019). Acosta et al. demonstrated 
that in rats with cerebral ischemia, intravenous human bone marrow 
stromal cells (hBMSCs) rapidly migrated to the spleen and reduced the 
levels of TNF-α in the spleen, as well as reduced infarct volume and 
inflammatory response in infarct area (Acosta et al., 2015). Intravenous 
administration of human umbilical cord blood cells (hUCBs) could 
inhibit splenic atrophy, regulate the number and function of T cells in 
the spleen and reduce the levels of inflammatory cytokines TNF-α and 
IFN-γ (Wang et al., 2019). An animal experiment illustrated that anti-
CD147 antibody could inhibit the inflammatory response of 
monocyte/macrophage in the spleen after cerebral ischemia in mice 
and reduce the levels of TNF-α, IL-6 and IL-1β in the spleen (Jin et al., 
2019). Another animal experiment showed that systemic 
administration of anti-TNF agents (XPro1595 and etanercept) could 
inhibit neuroinflammation by regulating the number of peripheral 
splenic T cells and reducing the infiltration of granulocytes into the 
brain (Clausen et  al., 2014). Modulating cytokines can regulate 
peripheral immune responses to exert neuroprotective effects. Wang 
et al. found that intravenous administration of albumin in MCAO 
mice reduced the expression of TLR4 in the spleen and increased the 
levels of regulatory T cells and anti-inflammatory cytokine IL-10 in 
the spleen (Wang et al., 2013). Chang et al. showed that cocaine and 
amphetamine regulated transcript (CART) regulated CD4+/CD8+ ratio 
in the blood and spleen, reduced the expression of pro-inflammatory 
factors, and promoted the expression of anti-inflammatory factors in 
MCAO mice, which reduced infarct volume and improved 
neurological function (Chang et al., 2011). Targeting the cholinergic 
anti-inflammatory pathway (CHAIP) for immunomodulation is also 
a potential method to treat post-stroke inflammation (Duris et al., 
2017). Acetylcholine and nicotine are agonists of α7 nicotinic ACh 
receptors (α7nAChRs). These α7 agonists may stimulate α7nAChRs 
on macrophages in the spleen and gut to inhibit the synthesis and 
release of pro-inflammatory cytokines (Hoover, 2017).

5 Conclusion

Stroke can lead to the activation of resident immune cells in the 
brain and peripheral immune cells, and activate inflammatory 

cascades through a series of inflammatory signaling pathways. Both 
neuroinflammation and peripheral inflammation play important roles 
in the pathophysiology of stroke. The interaction between brain and 
peripheral organs (such as gut, heart, lung and spleen) involves the 
release of cytokines and the activation of signaling pathways, which 
further coordinate the mutual communication of central and 
peripheral immune cells. This can promote or inhibit the inflammatory 
response after stroke. Therefore, a further exploration of the brain-
peripheral crosstalk mechanism will help people to better understand 
stroke. At the same time, using anti-inflammatory therapy may bring 
more benefits to stroke patients through intervening brain-peripheral 
axis to regulating central and peripheral inflammation. In addition, 
we also guess that the drainage and transportation of the MLVs may 
play a crucial role in the spread of inflammation after stroke, but more 
studies are needed to demonstrate the pathophysiological mechanism 
of central lymphoid tissues in inflammation after stroke.
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