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Exploring AKAPs in visual 
signaling
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The complex nature of the retina demands well-organized signaling to uphold 
signal accuracy and avoid interference, a critical aspect in handling a variety 
of visual stimuli. A-kinase anchoring proteins (AKAPs), known for binding 
protein kinase A (PKA), contribute to the specificity and efficiency of retinal 
signaling. They play multifaceted roles in various retinal cell types, influencing 
photoreceptor sensitivity, neurotransmitter release in bipolar cells, and the 
integration of visual information in ganglion cells. AKAPs like AKAP79/150 and 
AKAP95 exhibit distinct subcellular localizations, impacting synaptic transmission 
and receptor sensitivity in photoreceptors and bipolar cells. Furthermore, 
AKAPs are involved in neuroprotective mechanisms and axonal degeneration, 
particularly in retinal ganglion cells. In particular, AKAP6 coordinates stress-
specific signaling and promotes neuroprotection following optic nerve injury. 
As our review underscores the therapeutic potential of targeting AKAP signaling 
complexes for retinal neuroprotection and enhancement, it acknowledges 
challenges in developing selective drugs that target complex protein–protein 
interactions. Overall, this exploration of AKAPs provides valuable insights into 
the intricacies of retinal signaling, offering a foundation for understanding and 
potentially addressing retinal disorders.
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1 Introduction

A-kinase anchoring proteins (AKAPs), named for their role in anchoring signaling 
molecules, are a diverse family of proteins that share a common feature – the protein kinase 
A-kinase binding domain (Dodge-Kafka et al., 2005). This domain facilitates the interaction 
between AKAPs and the regulatory subunits of protein kinase A (PKA), a central player in 
retinal signaling. This interaction provides a platform for the spatial localization of PKA and 
other signaling components, allowing for a highly regulated and localized response to 
extracellular stimuli. The world of AKAPs is characterized by its diversity, both in terms of 
structure and function. While the A-kinase binding domain is a unifying factor, AKAPs vary 
widely in their overall structures and associated domains. This diversity allows different 
AKAPs to engage in distinct protein–protein interactions and participate in various signaling 
pathways. Some AKAPs, for example, contain domains that interact with ion channels, 
receptors, or other enzymes, broadening their influence on cellular responses (Dodge-Kafka 
et al., 2005; Wild and Dell'Acqua, 2018).

Different AKAPs may target PKA to specific subcellular compartments, such as the plasma 
membrane, mitochondria, or the endoplasmic reticulum (Oliveria et al., 2007; Wild and 
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Dell'Acqua, 2018, 2019; Boczek et al., 2021). This targeted localization 
ensures that PKA is strategically positioned to phosphorylate 
substrates in close proximity, optimizing the efficiency of signal 
transduction. By anchoring PKA and other signaling molecules to 
discrete locations, AKAPs contribute to the formation of 
microdomains where signaling events are confined, preventing 
crosstalk and ensuring that cellular responses are finely tuned and 
precisely regulated.

The interaction between AKAPs and PKA is central to the 
functional significance of AKAPs (Kapiloff et  al., 1999; Dodge-
Kafka et  al., 2005). In resting conditions, PKA is bound to the 
regulatory subunits, maintaining the enzyme in an inactive state. 
When AKAPs bind to the regulatory subunits, a conformational 
change occurs, releasing the catalytic subunits and activating 
PKA. This dynamic regulation ensures that PKA is activated 
precisely when and where it is needed, contributing to the specificity 
of cellular responses. AKAP-mediated spatial compartmentalization 
not only enhances signaling specificity but also allows for dynamic 
regulation and crosstalk between different signaling pathways. 
AKAPs can integrate signals from multiple pathways by assembling 
diverse signaling components in the same microdomain. This 
dynamic regulation and crosstalk provide cells with the flexibility 
to respond to a variety of stimuli and adapt to changing 
environmental conditions.

2 The multifaceted roles of AKAPs in 
different retinal cell types

2.1 AKAPs in photoreceptor signaling

Photoreceptor cells, the frontline sensors of the retina, play a 
pivotal role in the conversion of light into neural signals, forming the 
foundation of visual perception. AKAPs anchor critical signaling 
molecules to specific subcellular compartments within photoreceptor 
cells. This spatial organization allows for localized and precise 
phosphorylation events, influencing the sensitivity of 
phototransduction pathways. AKAPs may play a role in modulating 
the activity of rhodopsin, the light-sensitive protein in rod 
photoreceptors. By localizing PKA and other effectors, AKAPs 
contribute to the regulation of rhodopsin phosphorylation, affecting 
its sensitivity to light and influencing the efficiency of 
phototransduction. They are also involved in the spatial organization 
of signaling components associated with light-adaptive mechanisms. 
This organization ensures that adaptive responses, such as changes in 
photoreceptor sensitivity, are efficiently initiated and coordinated in 
response to alterations in ambient light levels. By anchoring signaling 
molecules to specific microdomains in cone cells, AKAPs participate 
in the fine-tuning of phototransduction cascades, influencing color 
discrimination. Beyond their role in signaling, AKAPs may play a role 
in maintaining the function of cone photoreceptors (Baden 
et al., 2020).

AKAP79/150 is prominently localized to the synaptic terminals of 
photoreceptor cells, specifically in the ribbon synapses. This strategic 
positioning enables it to influence synaptic transmission by anchoring 
protein kinase A (PKA) and other signaling effectors. AKAP79/150 
plays a crucial role in modulating the phosphorylation status of 
synaptic proteins, influencing neurotransmitter release. Its presence 

in photoreceptor terminals highlights its significance in shaping the 
initial stages of visual signal processing (Wang and Cortes, 2021).

AKAP450 is found in the inner segments of photoreceptor cells, 
adjacent to the connecting cilium. Its subcellular localization suggests 
a role in the regulation of processes occurring in this crucial region. 
The subcellular positioning of AKAP450 hints at its involvement in 
processes such as ciliogenesis. By influencing events in the inner 
segments, AKAP450 may contribute to the maintenance of 
photoreceptor structure and function (Subramanian and Sahoo, 2022).

2.2 AKAPs in bipolar cell signaling

In the complex landscape of retinal circuits, bipolar cells stand as 
pivotal intermediaries, translating signals from photoreceptors into 
meaningful neural information. AKAPs contribute to the fine-tuning 
of neurotransmitter release from bipolar cells (Bastola et al., 2023). By 
anchoring PKA and other effectors, AKAPs modulate the activity of 
calcium channels and vesicle release, influencing the strength and 
timing of synaptic transmission. AKAPs anchor signaling components 
in close proximity to receptors on bipolar cell dendrites. This spatial 
arrangement may influence the responsiveness of bipolar cells to 
signals received from photoreceptors, contributing to the modulation 
of receptor sensitivity. AKAPs also facilitate the integration of various 
signaling pathways. AKAP-mediated spatial organization contributes 
to the diversity of responses observed in different bipolar cell subtypes 
(Baden et al., 2020).

Dysregulation of AKAP-mediated signaling in bipolar cells may 
contribute to visual disorders affecting synaptic transmission. 
Investigating these mechanisms can provide insights into conditions, 
where altered signaling in bipolar cells plays a role, such as bipolar 
cell-associated retinal dystrophies. AKAP95 is an example of an 
anchoring protein found in bipolar cell dendrites, positioned near 
glutamate receptors. This subcellular localization allows AKAP95 to 
regulate receptor sensitivity and influence the responsiveness of 
bipolar cells to signals from photoreceptors. By tethering PKA and 
other effectors, AKAP95 contributes to the fine-tuning of receptor 
sensitivity, ensuring that bipolar cells can efficiently process and 
modulate signals before transmission to downstream neurons (Roa 
et al., 2021).

2.3 AKAPs in ganglion cells

AKAP150 is found in ganglion cells, positioning itself in the 
vicinity of ion channels and receptors crucial for signal transmission. 
This localization allows AKAP150 to influence the integration of 
signals within ganglion cells before they are transmitted to the brain. 
AKAP150 plays a key role in the integration of signals within ganglion 
cells, facilitating the convergence of inputs from various bipolar cells. 
Its presence near critical signaling components contributes to the 
orchestration of diverse visual information (Ostroveanu et al., 2007). 
Beyond their role in signaling, AKAPs may be  involved in 
neuroprotective mechanisms within ganglion cells (Boczek et  al., 
2019; Boczek and Kapiloff, 2020; Bastola et al., 2023). Their roles in 
regulating cellular processes associated with survival highlight the 
potential of AKAPs as key players in preservation of ganglion 
cell function.
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Recently, we have demonstrated that AKAP6-mediated signaling 
(Figure 1) in critical for survival of retinal ganglion cells (Boczek et al., 
2019). By using genetically engineered delocalizing peptides, 
we confirmed that local cAMP/PKA pro-survival signaling within the 
AKAP6 signalosome is mediated by anchored phosphodiesterase 4D3 
activity and enhanced ganglion cell survival can be  achieved by 
increasing perinuclear cAMP concentration (Boczek et  al., 2019). 
Furthermore, we have also developed a FRET-based technique to 
measure PKA signaling activity within AKAP6 signalosome that can 
be applied both in vitro and in vivo and help to monitor the changes 
in cAMP signaling following optic nerve injury. The expression of 
AKAPs in a particular cell type of retina, along with their binding 
partners, is summarized in Table 1.

3 AKAP in axonal degeneration in the 
retina

The insufficient trophic signaling has long been implicated as the 
cause of CNS neuronal regeneration failure (Goldberg and Barres, 
2000). Notably, the application of neurotrophic factors such as brain-
derived neurotrophic factor (BDNF), glial-derived neurotrophic 
factor (GDNF), ciliary neurotrophic factor (CNTF), and fibroblast 
growth factor (FGF) can delay the death of retinal ganglion cells 
(RGCs) (Unoki and LaVail, 1994; Mo et al., 2002). Trophic signaling 
can be enhanced by electrical activity and cAMP elevations, providing 
neuroprotection (Corredor et  al., 2012). The inhibition of PKA 

eliminates these protective effects, indicating a potential role for 
AKAP scaffolding (Goldberg et al., 2002). Recent research implicates 
muscle AKAP (mAKAP) in coordinating stress-specific signaling and 
axon growth in RGCs (Wang et al., 2015). mAKAP, with its three 
spectrin repeats, localizes to the outer nuclear membrane through 
interaction with the protein nesprin-1α. Two splice variants, 
mAKAPα and mAKAPβ, show tissue-specific expression patterns 
(Kapiloff et  al., 1999; Dodge-Kafka et  al., 2005). While mAKAPβ 
assembles signaling complexes in cardiomyocytes, mAKAPα, 
predominantly expressed in the brain, contains an additional 
anchoring site for 3-phosphoinositide-dependent kinase-1 (PDK1) 
(Michel et al., 2005).

Wang et al.’s study highlights the expression of mAKAPα in retinal 
ganglion cells and its crucial role in transducing pro-survival signaling 
induced by cAMP, BDNF, and CNTF. Knockout of mAKAPα hinders 
trophic signaling from promoting survival after optic nerve injury 
(Wang et al., 2015). Although the specific mechanisms of mAKAPα-
directed neuroprotective signaling remain unclear, it is plausible that 
the scaffold facilitates crosstalk between cAMP and MAPK pathways. 
mAKAPα-anchored PKA and PP2A positively and negatively 
modulate PDE4D3 activity, respectively, controlling the local cAMP 
concentration at the ONM. Additionally, ERK5 indirectly binds to 
mAKAPα through association with PDE4D3. While further studies 
are required to elucidate the exact cross-talk mechanisms, it is evident 
that mAKAPα signaling plays a central role in the neuroprotective 
effects of neurotrophins following RGC damage. A more 
comprehensive understanding of these processes could pave the way 

FIGURE 1

AKAP6 orchestrates the survival of retinal ganglion cells post-injury. (1) AKAP6 binds to PDE4D3, securing ERK5-MAPK pathway signaling elements, 
which respond to neurotrophic signaling; (2) AKAP6 tethers PKA, responsive to electrical activity; (3) the crosstalk of these pathways confers RGC 
survival after injury.
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for the development of neuroprotective interventions after neuronal 
injury and degeneration.

4 Targeting AKAPs as a therapeutic 
strategy in retinal degeneration

Disrupting AKAP signaling complexes to influence pathological 
signaling holds significant promise, particularly through the 
uncoupling of AKAP signaling components, allowing for targeted 
disruption within spatially confined nanodomains. With different 
AKAPs present in each cell type, each with distinct subcellular 
locations and functions (Kennedy and Scott, 2015), a key objective of 
future research is the development of agents that selectively target 
protein–protein interactions (PPIs) between specific AKAP isoforms 
and their binding partners. Currently, three classes of molecules—
peptides, peptidomimetics, and small molecule inhibitors—are 
employed to disrupt AKAP-PPIs.

The initial tool developed to disrupt the RII-AKAP binding was a 
24-amino acid peptide named Ht31, derived from the PKA binding 
domain of AKAP-Lbc (Carr et al., 1992). While Ht31 binds to all R 
subunit isoforms of PKA, it exhibits a higher affinity for RII and has 
been employed as a non-selective blocker of all AKAP-PKA 
interactions. Subsequent advancements have led to the development 
of more selective peptides with increased affinity for either RI or RII 
subunits. Notably, RIAD demonstrates a 1,000-fold higher affinity for 
RI, while superAKAP-IS exhibits a > 10,000-fold higher affinity for RII 
(Gold et al., 2006). Despite the utility of peptides in studying AKAP 
function in the nervous system by disrupting AKAP-PKA interactions, 
their instability within the cell and the potential for membrane 
retention, particularly with peptides like St-Ht31, place constraints on 
their therapeutic applicability (Kennedy and Scott, 2015).

Efforts have been made to improve the stability and permeability 
of peptides, leading to the emergence of peptidomimetics. This 
innovative category of inhibitors undergoes chemical modification 
with hydrocarbon positioned along the peptide backbone, 
accomplished by introducing non-natural amino acids into the 
peptide sequence, followed by chemical cross-linking (Wang et al., 

2014). The result is a peptide with a structurally constrained α-helical 
configuration, termed a Stapled Anchoring Disruptor (STAD). 
Importantly, these peptidomimetics demonstrate significantly 
enhanced membrane permeability and intracellular stability (Kennedy 
and Scott, 2015; Hanold et al., 2017). Isoform-selective STADs have 
been effectively crafted to target the AKAP binding pocket on both the 
RI- and RII-subunit D/D domain (Wang et al., 2014). Although the 
current applicability of these proteins is constrained, this strategy is 
poised to inform the future development of compounds targeted 
at AKAP.

From a therapeutic perspective, small molecule inhibitors present 
several advantages compared to larger peptide molecules, such as 
heightened oral bioavailability, enhanced intracellular stability, and 
cost-effectiveness. Nonetheless, the design of small molecules 
targeting protein–protein interactions comes with added challenges, 
given the typically expansive and discontinuous surface area involved 
in these interactions, encompassing multiple essential residues (Calejo 
and Taskén, 2015). The inaugural small molecule inhibitor of PKA, 
FMP-API-1, was introduced, binding to a site external to the D/D 
domain and exerting allosteric inhibition of the AKAP-PKA 
interaction (Christian et al., 2011). Originating from high-throughput 
screening, this molecule disrupted the binding of both RI or RII to 
AKAP18δ, although the precise mechanism remains incompletely 
elucidated. The allosteric effects also prompted PKA activation, 
potentially through interaction with the auto-inhibitory domain. 
Consequently, further refinement of the compound is deemed 
necessary (Christian et al., 2011).

5 Conclusion

The continuous quest for innovative drug targets is focused on 
selectively modifying pathologically active signaling pathways with 
subcellular precision. The goal of this approach is to develop 
compounds with fewer off-target effects in comparison to those 
designed for broadly expressed signaling molecules such as kinases, 
phosphatases, ion channels, and receptors. AKAP-mediated signal 
compartmentalization is crucial for the nervous system, as it 

TABLE 1 Expression of AKAPs in retinal cell types along with their potential binding partners.

AKAP Expression Potential proteins in complex

AKAP79/150 Photoreceptor cell 

ganglion cells

PKA (Coghlan et al., 1995), Protein kinase C (Coghlan et al., 1995), PP2B (Klauck et al., 1996), N-methyl-D-aspartate receptor 

(Colledge et al., 2000), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor (Colledge et al., 2000), 

postsynaptic protein of 95 kDa (PSD-95) (Colledge et al., 2000), synapse-associated protein-97 (SAP97) (Colledge et al., 2000), 

KCNQ2 channel (Hoshi et al., 2003), L-type voltage-gated Ca2+ channels (Gao et al., 1997), aquaporin water channels (Jo et al., 

2001)

AKAP450 Photoreceptor cells PKA (Westphal et al., 1999), PP1 (Westphal et al., 1999), NMDA receptor (Westphal et al., 1999), KCNQ1channel (Marx et al., 

2002), Inositol-1,4,5-trisphosphate receptor (Tu et al., 2004), Protein kinase Cε (Takahashi et al., 2000), Protein kinase N 

(Takahashi et al., 1999), Casein kinase-1 (Sillibourne et al., 2002), PP2A (Takahashi et al., 1999), Intracellular Cl− channels 

(CLIC) (Shanks et al., 2002), γ-tubulin-complex protein-2 and − 3 (Takahashi et al., 2002), PDE4D3 (Taskén et al., 2001)

AKAP95 Bipolar cells PKA (Asirvatham et al., 2004), p68 RNA helicase (Akileswaran et al., 2001), D-type Cyclins (Arsenijevic et al., 2004), PDE4A 

(Asirvatham et al., 2004), AMY-1 (Furusawa et al., 2002), ACAPD2/Eg7 (Steen et al., 2000), caspase-3 (Kamada et al., 2005), 

G1-S Cyclins (Arsenijevic et al., 2006), fidgetin (Yang et al., 2006), HDAC3 (Dirksen et al., 2006)

AKAP6 Ganglion cells PKA (McCartney et al., 1995), PDE4D3 (Dodge et al., 2001), RyR (Marx et al., 2000; Kapiloff et al., 2001), PP1 (Marx et al., 

2000), NCX1 (Schulze et al., 2003), PKC (Schulze et al., 2003), PP2A (Marx et al., 2000), nesprin-1α (Pare et al., 2005), Epac1 

(Dodge-Kafka et al., 2005), ERK5-kinase (Dodge-Kafka et al., 2005), PDK1 (Michel et al., 2005)
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co-localizes signaling molecules within nanodomain compartments, 
orchestrating various critical processes known to be  disrupted in 
injured retina. As a result, the acknowledgment of the therapeutic 
potential of targeting AKAP signaling complexes has 
gained momentum.

This review delves into the engagement of AKAPs in retinal 
functions. A growing body of evidence suggests that many insults 
leading to the degeneration of retinal ganglion cells could either be a 
consequence of AKAP dysfunction or have the potential to 
be  alleviated through the modification of AKAP interactions. 
However, conclusive proof-of-principle studies utilizing genetic 
manipulations (e.g., knockout, knock-in, RNAi approaches) to disrupt 
AKAP signaling functions in animal disease models are essential to 
further validate AKAPs as viable therapeutic targets for retinal 
neuroprotection and neuroenhancement. A significant challenge in 
AKAP-centered drug discovery lies in the development of stable drugs 
capable of targeting complex protein–protein interactions between 
individual AKAPs and their binding partners with high selectivity. 
Despite efforts to generate peptides and small molecules for 
understanding the role of AKAP-anchored enzymes in neuronal 
physiology and disease, their therapeutic utility is currently limited.
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