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Alzheimer’s disease (AD) affects the elderly population by causing memory

impairments, cognitive and behavioral abnormalities. Currently, no curative

treatments exist, emphasizing the need to explore therapeutic options that

modify the progression of the disease. MicroRNAs (miRNAs), as non-coding

RNAs, demonstrate multifaceted targeting potential and are known to be

dysregulated in AD pathology. This mini review focuses on two promising

miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential

regulation in AD. By employing computational predictions and referencing

published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA

target relationships associated with hsa-miR-132 and hsa-miR-129. Our review

consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in

AD brains as a non-coding RNA molecular signature across studies conducted

over the past 15 years in AD research.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia, presenting a significant
socioeconomic burden within aging societies. AD is a progressive disorder that manifests
at the molecular level long before clinically observable dementia symptoms emerge (Aisen
et al., 2017; Knopman et al., 2021). It commences with a preclinical phase, characterized
by the absence of symptoms, followed by mild cognitive impairment (MCI), progressing
through mild, moderate, and severe late AD stages (Aisen et al., 2017; Jack et al., 2018). In
over 95 percent of the cases, AD develops later in life (above 65 years) and does not directly
result from genetic inheritance (Andrieu et al., 2015). Neuropathologically, AD is identified
by the presence of extracellular amyloid plaques primarily composed of amyloid beta (Aβ)
peptides and intracellular neurofibrillary tangles (NFTs) consisting of hyperphosphorylated
tau (p-tau) in the hippocampus and cortex (Glenner and Wong, 1984; Brion et al., 1991;
Buée et al., 2000; Congdon and Sigurdsson, 2018; Panza et al., 2019). The complex nature of
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the disease has posed challenges in pinpointing its exact cause,
leading to a lack of curative treatments. Consequently, there is an
urgent need to explore neuroprotective strategies that can modify
the disease progression during its early stages. Noncoding RNAs
are known for their regulatory roles in fine tuning the transcription
and translation processes (Szafranski et al., 2015; Idda et al., 2018).
MicroRNAs (miRNAs) are a subclass of short RNA molecules
that regulate gene expression following transcription. On average
they have 22 nucleotides, and they are expressed ubiquitously.
They bind to specific regions of target genes [primarily at the 3′

untranslated region (UTR), though not limited to it], resulting in
reduced expression of target genes through degradation of mRNA
or inhibition of translation (Bartel, 2018; Nagaraj et al., 2021).
Emerging evidence suggests that miRNAs undergo dysregulation in
the brain, cerebrospinal fluid (CSF), and blood of individuals with
AD (Nagaraj et al., 2019; Takousis et al., 2019; Yoon et al., 2022).

Consistent downregulation of
hsa-miR-132 and hsa-miR-129 in
Alzheimer’s disease brain

Several miRNAs are dysregulated in the brains of AD patients
across various brain regions compared to non-demented controls
(Nagaraj et al., 2019; Takousis et al., 2019). Most promising miRNAs
dysregulated in AD brains and their predictions to bind mRNA
targets involved in tau pathology are shown in Figure 1A. Of
note, only few of these predictions are experimentally validated
and demands further deciphering. Interestingly, recent studies
validated hsa-miR-132 and hsa-miR-129 as standout miRNAs in
terms of downregulation in AD patients (Patrick et al., 2017;
Wingo et al., 2022). In this mini review article, we focus primarily
on two miRNAs (hsa-miR-132 and hsa-miR-129) and discuss
about their constant downregulation across different brain regions
in AD, according to diverse cohorts (Figures 1B–E). We shed
lights on their location, expression level and miRNA-mRNA target
relationship in the post-mortem brains.

The gene for hsa-miR-132 is located on chromosome 17 in the
p arm (17p13.3). The transcribed hsa-miR-132 stem loop hairpin
precursor is then processed to generate two mature miRNAs:
hsa-miR-132-3p (UAACAGUCUACAGCCAUGGUCG) and hsa-
miR-132-5p (ACCGUGGCUUUCGAUUGUUACU) (Figure 1B).
On the other hand, hsa-miR-129-5p is a mature miRNA derived
from two possible stem loop hairpin precursors, each located
on different chromosomes. The first precursor, hsa-miR-129-
1, is situated on chromosome 7 in the q arm (7q32.1). After
processing, it produces two mature miRNAs: hsa-miR-129-
5p (CUUUUUGCGGUCUGGGCUUGC) and hsa-miR-129-1-
3p (AAGCCCUUACCCCAAAAAGUAU). The second precursor,
hsa-miR-129-2, is located on chromosome 11 in the p arm
(11p11.2). Upon processing, it generates two mature miRNAs:
hsa-miR-129-5p (CUUUUUGCGGUCUGGGCUUGC) and hsa-
miR-129-2-3p (AAGCCCUUACCCCAAAAAGCAU) (Figure 1C).

There is consensus about the downregulation of hsa-miR-
132 in AD across several studies (Figure 1D). Those focusing on
the hippocampus, an early affected region, have yielded valuable
insights into the differential expression level of miRNAs in this

brain region. Cogswell et al. (2008) conducted qPCR experiments,
revealing downregulation of hsa-miR-132 in the hippocampus,
the frontal cortex and the cerebellum. Similarly, several studies
have investigated miRNA expression with different methodologies
in both hippocampal and cortical regions of the brain. For
instance, Lau et al. (2013) employed nCounter, qPCR, and RNA
sequencing techniques, detecting downregulation of hsa-miR-
132 not only in the hippocampus but also in the prefrontal
cortex and the temporal cortex. Likewise, Smith et al. (2015)
performed qPCR and observed downregulation of hsa-miR-132
in the hippocampus, the frontal cortex, and the temporal cortex.
Also, Annese et al. (2018) used qPCR and RNA sequencing,
revealing downregulation of hsa-miR-132-5p and hsa-miR-132-3p
not only in the hippocampus but also in the temporal gyrus and the
frontal gyrus. In a different cohort, Hadar et al. (2018) performed
qPCR experiments and found downregulation of hsa-miR-132
in the hippocampus.

Due to limitation in post-mortem hippocampal tissue
availability, most of the studies focused solely on the cortex
to identify the change in expression of miRNAs along the course
of disease development. For example, Hébert et al. (2013) used
qPCR and RNA sequencing, identifying downregulation of
hsa-miR-132-5p in the temporal cortex. Wong et al. (2013)
also found downregulation of hsa-miR-132 using qPCR in the
temporal cortex. Pichler et al. (2017) utilized microarray and
qPCR, detecting downregulation of hsa-miR-132 in the frontal
cortex and temporal cortex. Additionally, Patrick et al. (2017)
employed nCounter and found downregulation of hsa-miR-132
in the prefrontal cortex. Li and Cai (2021) used RNA sequencing,
detecting downregulation of hsa-miR-132-5p and hsa-miR-132-3p
in the inferior frontal gyrus and superior temporal gyrus (Li and
Cai, 2021). Similarly, Dobricic et al. (2022b) used qPCR and RNA
sequencing to identify the downregulation of hsa-miR-132-5p in
the superior temporal gyrus and entorhinal cortex. In addition to
hippocampus and cortex, other regions have been explored. For
instance, Zhu et al. (2016) conducted in situ hybridization (ISH)
experiments, identifying downregulation of hsa-miR-132 in the
Nucleus basalis of Meynert. In a separate study by Hadar et al.
(2018) using qPCR demonstrated significant downregulation of
hsa-miR-132 in the olfactory bulb.

hsa-miR-129 is another miRNA that is consistently
downregulated in AD (Figure 1E). Wang et al. (2011) observed
downregulation of hsa-miR-129-3p and hsa-miR-129-5p in the
superior and middle temporal gyri using microarray. In another
study, Lau et al. (2013) reported downregulation of hsa-miR-129-
5p and hsa-miR-129-2-3p in the hippocampus and in the cortex
using nCounter, qPCR, and RNA sequencing techniques. A study
from Weinberg, Mufson, and Counts used microarray and detected
downregulation of hsa-miR-129∗ (hsa-miR-129-5p) and hsa-miR-
129-3p in the frontal cortex (Weinberg et al., 2015). Pichler
et al. (2017) performed microarray, identifying downregulation
of hsa-miR-129-3p and hsa-miR-129-5p in the temporal cortex.
In another study, Patrick et al. (2017) and Wingo et al. (2022)
utilized nCounter, finding downregulation of hsa-miR-129-5p and
hsa-miR-129-3p in the prefrontal cortex. Additionally, Dobricic
et al. (2022b) reported downregulation of hsa-miR-129-5p in the
superior temporal gyrus and entorhinal cortex through qPCR and
RNA sequencing.
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FIGURE 1

miRNA-mRNA target predictions and expression of hsa-miR-132 and hsa-miR-129 in post-mortem AD brain tissue. (A) On Y-axis of the heatmap,
most promising dysregulated miRNAs in AD brain are shown (Patrick et al., 2017; Nagaraj et al., 2019; Takousis et al., 2019) and on X-axis of the
heatmap, mRNA targets involved in direct and associated pathways in tau pathology. Blue gradient is used to visualize the prediction strengths based
on TargetScan context score. Darker blue indicates the stronger predictions (most negative TargetScan context score) and light blue indicates the
weaker predictions (least negative TargetScan context score) (B,C) Chromosomal location of hsa-miR-132 (B) and hsa-miR-129 (hsa-miR-129-1 and
hsa-miR-129-2) (C) with the subsequent process to obtain mature miRNAs. (D,E) hsa-miR-132 (D) and hsa-miR-129 (E) differential expression level
in various brain regions across AD studies. Green for downregulation in AD brains compared to control brains. Study characteristics show the cohort
comparisons and techniques used in respective studies. “miR-” indicated in the figure refer to “hsa-miR.”
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FIGURE 2

hsa-miR-132 and hsa-miR-129 target predictions and evaluation of mRNA levels in the ROSMAP dataset. (A) Venn diagram illustrating the targets
identified for hsa-miR-132-3p, hsa-miR-132-5p, and hsa-miR-129-5p in the TargetScan database. A total of 10 targets common to all three miRNAs
are shown. (B) Among the 10 targets identified in (A), only one (ZBTB34) exhibited changes across the Braak stages in the ROSMAP dataset. (C) Venn
diagram depicting the targets identified for hsa-miR-129-5p and hsa-miR-132-3p in the TargetScan database. The scatter plot shows 79 targets
common to these two miRNAs, based on the TargetScan context score. Three selected targets, ZBTB20, CACNG2, and GALNT4, are highlighted
with rectangles in the blue shaded area with total context score less than –0.25. (D) None of the three selected targets mentioned in (C)
demonstrated changes across the Braak stages in the ROSMAP dataset. (E) miR-132 validated targets found in the literature. (F) Two targets, SIRT1
and ITPKB1, identified in (E), exhibited changes across the Braak stages in the ROSMAP dataset. A one-way ANOVA with Tukey’s post hoc analysis
was utilized. The symbol “*” indicates a p-value of less than 0.05. “miR-” indicated in the figure refer to “hsa-miR.”
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Complexity in miRNA and mRNA
target relationship– focus on
hsa-miR-132 and hsa-miR-129

Based on the aforementioned evidence, we have concluded that
there is widespread downregulation of hsa-miR-132 and hsa-miR-
129 in AD. As a result, we aimed to predict the targets of hsa-miR-
132-3p, hsa-miR-132-5p, and hsa-miR-129-5p from TargetScan
database1 (Agarwal et al., 2015). Subsequently, we assessed the
levels of these predicted mRNA targets in dorsolateral prefrontal
cortex using data from the ROSMAP cohort dataset (Jager et al.,
2018).2 For hsa-miR-132-3p, hsa-miR-132-5p, and hsa-miR-129-
5p, a total of 10 common targets were identified: KCNJ6, SOX11,
NFIA, MEX3A, STX16, GPR37L1, ZBTB34, MAPK1, SOCS2, and
HIC2 (Figure 2A). Upon analyzing the differences in their levels
across Braak stage comparisons, only the mRNA of ZBTB34
exhibited increased levels in Braak 5-6 compared to Braak 0-
1 (Figure 2B). Of note, in an independent study, increase of
ZBTB34 mRNA levels have been showed in AD cortex compared
to controls (Salta et al., 2016). Further, based on published studies
we found that in contrast to hsa-miR-132-3p, the expression of
hsa-miR-132-5p was found to be lower in AD brains (7.5 times)
and in frontotemporal lobar degeneration with TDP-43 inclusions
(FTLD-TDP) brains (50 to 100 times) (Chen-Plotkin et al., 2012;
Lau et al., 2013). Therefore, we focused on investigating the
common targets of hsa-miR-132-3p and hsa-miR-129-5p, that are
abundantly expressed. Out of 79 identified targets, three targets
(CACNG2, ZBTB20, and GALNT4) that displayed most negative
total context score in TargetScan (less than cut off value of −0.25
for both hsa-miR-132-3p and hsa-miR-129-5p targets) (Figure 2C).
However, none of these three mRNA targets showed increased
levels as the disease progressed (based on Braak stages) (Figure 2D).
Alternatively, numerous studies have validated various targets
for miR-132 in AD literature (Salta and Strooper, 2017; Fatimy
et al., 2018; Zhang and Bian, 2021). So, we wondered about the
validated targets of miR-132 (such as MAPT, FOXO1, FOXO3,
EP300, A2BP1, MAPK3, CAPN2, SIRT1, ITPKB, NOS1, HDAC3,
PTEN, GSK3B, PTBP2) (Figure 2E) and how they might change
in the ROSMAP dataset. After examining this, we found that
SIRT1 and ITPKB levels increased as the disease progressed (based
on Braak stages) (Figure 2F). Interestingly, while ITPKB protein
levels demonstrated a corresponding increase in the AD cortex and
hippocampus (Stygelbout et al., 2014; Salta et al., 2016), reports
suggest a contrasting decrease in SIRT1 protein levels in later
stages of AD (Julien et al., 2009). The role of ZBTB34 in AD
is not clearly understood; however, the function of ITPKB as a
regulator of extracellular signal-regulated kinases 1/2 activation is
well established (Stygelbout et al., 2014). Additionally, the role of
SIRT1 as a deacetylase, known for deacetylating tau protein at
multiple residues, is documented (Min et al., 2018).

1 www.targetscan.org

2 https://www.synapse.org/#!Synapse:syn3800853

Conclusion

Overall, these studies consistently demonstrate, through
different methodologies, the downregulation of hsa-miR-132 and
hsa-miR-129 in various regions of the AD brain, including the
hippocampus, the cortex, and the olfactory bulb. While the
downregulation of hsa-miR-132-3p and hsa-miR-129-5p is notably
observed in AD, similar downregulation patterns are also identified
in the brains of other neurodegenerative conditions, including
Parkinson’s disease (Dobricic et al., 2022a). The regulatory
effects of these miRNAs in both pathologies are yet to be fully
understood. Furthermore, our observations indicate that only
a few of the predicted targets exhibit an inverse relationship
with the corresponding miRNA, while most of them remain
unchanged. This intricate miRNA-mRNA interactions require
further investigation to comprehend the mechanisms underlying
AD. Additionally, factors such as the RNA integrity number
(RIN) value may introduce bias into the findings. Moreover,
a comprehensive understanding of proteomics data is highly
necessary to properly identify the relevant core hub for these
hsa-miR-132 and hsa-miR-129 targets in AD. Furthermore, most
of the literature identifying dysregulated miRNAs in human AD
post-mortem samples has used bulk sequencing techniques (Lau
et al., 2013; Patrick et al., 2017; Dobricic et al., 2022a). This
type of sequencing does not provide information about cell-type-
specific miRNAs and their mRNA target expressions. To advance
our knowledge in this area, single-cell sequencing is necessary
in human AD post-mortem samples. Moreover, a recent single-
cell sequencing study in the mice hippocampus, although not in
an AD-relevant model, suggested that mmu-miR-132 regulates
cell-type-specific microglial homeostasis (Walgrave et al., 2023).

Most predominant mature miRNAs, such as hsa-miR-
132-3p and hsa-miR-129-5p, are evolutionarily conserved.
The sequences of hsa-miR-132-3p and mmu-miR-132-3p
are identical (UAACAGUCUACAGCCAUGGUCG), as are
the sequences of hsa-miR-129-5p and mmu-miR-129-5p
(CUUUUUGCGGUCUGGGCUUGC). However, their predicted
targets in humans and mice vary. For hsa-miR-132-3p, there are
673 predicted targets according to miRDB3 and 474 according to
TargetScan (see text footnote 1), whereas for mmu-miR-132-3p,
there are 573 predicted targets according to miRDB and 414
according to TargetScan. For hsa-miR-129-5p, there are 1,417
predicted targets according to miRDB and 732 according to
TargetScan, whereas for mmu-miR-129-5p, there are 845 predicted
targets according to miRDB and 582 according to TargetScan.
In terms of regulation, numerous studies have demonstrated the
beneficial impact of miR-132-3p in mice (Smith et al., 2015; Salta
et al., 2016; Fatimy et al., 2018), especially in modulating tau
pathology, indicating its potential translatability from mouse to
human. Additional research is needed to elucidate the impact of
miR-129-5p in AD mice models.

In comparison to hsa-miR-132 (Figure 2E; Smith et al.,
2015; Salta et al., 2016; Fatimy et al., 2018; Zhang and Bian,
2021), the functional role of hsa-miR-129-5p in AD has received
less exploration therefore needs further investigation. However,
there is evidence for harmonized expression of hsa-miR-132 and

3 www.mirdb.org
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hsa-miR-129 in neurodegenerative disorders. For instance, the
downregulation of hsa-miR-132-3p, hsa-miR-129-3p and hsa-miR-
129-5p in frozen cerebellar samples of multiple-system atrophy
(MSA) patients were reported (Lee et al., 2015). In another
cohort a downregulation of hsa-miR-132-3p and hsa-miR-129-
5p in formalin-fixed paraffin-embedded samples of cerebellum
from MSA patients compared to controls was also observed
(Wakabayashi et al., 2016). Furthermore, Parkinson patients treated
with dopamine receptor agonists (Pramipexole/ piribedil, L-dopa,
amantadine) showed elevated levels of hsa-miR-132 and hsa-miR-
129 in the peripheral blood lymphocytes (Alieva et al., 2015).
Additionally, in mature primary rat hippocampal neurons, a
treatment with GABA-A receptor blocker picrotoxin (PTX) for 48 h
resulted in synaptic downscaling and miR-132-3p, miR-132-5p and
miR-129-5p were upregulated (Rajman et al., 2017). Intriguingly, in
mouse hippocampal neurons both mmu-miR-132 and mmu-129-
5p showed neuroprotective mechanisms against Aβ and glutamate
toxicity (Fatimy et al., 2018). Untangling in depth mechanisms
about the interplay between these two miRNAs in terms of their
biogenesis is warranted.

Collectively, these findings significantly enhance our
understanding of the dysregulation of specific miRNAs in
Alzheimer’s disease. Further investigation into cell-specific miRNA-
mRNA target relationships and the associated regulatory pathways,
as well as exploring the utility of miRNA expression changes as
biomarkers throughout the disease’s progression, may pave the way
for potential therapeutic interventions.
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