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Wnt signaling pathway in spinal 
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Spinal cord injury (SCI) denotes damage to both the structure and function 
of the spinal cord, primarily manifesting as sensory and motor deficits caused 
by disruptions in neural transmission pathways, potentially culminating in 
irreversible paralysis. Its pathophysiological processes are complex, with 
numerous molecules and signaling pathways intricately involved. Notably, the 
pronounced upregulation of the Wnt signaling pathway post-SCI holds promise 
for neural regeneration and repair. Activation of the Wnt pathway plays a crucial 
role in neuronal differentiation, axonal regeneration, local neuroinflammatory 
responses, and cell apoptosis, highlighting its potential as a therapeutic target 
for treating SCI. However, excessive activation of the Wnt pathway can also 
lead to negative effects, highlighting the need for further investigation into its 
applicability and significance in SCI. This paper provides an overview of the latest 
research advancements in the Wnt signaling pathway in SCI, summarizing the 
recent progress in treatment strategies associated with the Wnt pathway and 
analyzing their advantages and disadvantages. Additionally, we  offer insights 
into the clinical application of the Wnt signaling pathway in SCI, along with 
prospective avenues for future research direction.
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1 Introduction

Spinal Cord Injury (SCI) pertains to the impairment of spinal cord structure and function 
due to external trauma or internal pathological factors. As a component of the central nervous 
system nestled within the spinal canal, the spinal cord facilitates the transmission of sensory 
and motor signals between the brain and various bodily regions. SCI can lead to partial or 
complete loss of sensory and motor functions in specific body regions, potentially accompanied 
by dysfunction of the autonomic nervous system (Tarvonen-Schröder et al., 2018). This not 
only inflicts severe physical and psychological damage upon the affected individuals but also 
imposes a substantial economic burden on society (GBD Spinal Cord Injuries Collaborators, 
2023). Currently, the global annual incidence of SCI is estimated to be between 40 to 80 cases 
per million population, with statistical data indicating that the majority of SCI cases occur in 
young adults, constituting approximately 80% of those below the age of 40. Gender-specific 
incidence rates vary across regions, yet the overall male incidence rate of SCI remains higher. 
The male-to-female ratio of SCI incidence ranges from 1.6:1 to 8:1 (Ding et  al., 2022). 
Annually, approximately 250,000 to 500,000 individuals worldwide suffer from SCI, with up 
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to 90% of cases resulting from traumatic causes, such as traffic 
accidents, falls, or acts of violence (Thietje et al., 2011; GBD Spinal 
Cord Injuries Collaborators, 2023).

SCI are categorized into primary and secondary types, each 
characterized by distinct features and developmental trajectories. 
Primary SCI refers to the immediate damage to the spinal cord 
incurred during traumatic events such as accidents, falls, or sports 
injuries. This type of injury occurs instantaneously at the moment of 
trauma and is typically caused by mechanical forces such as 
compression, stretching, or torsion exerted on the spinal cord, leading 
to nerve fiber rupture, spinal cord cell damage, and vascular rupture. 
Secondary SCI, encompasses the subsequent injury progression and 
functional impairments following the primary injury. Secondary 
injury often arises from inflammation, cellular swelling, and lipid 
oxidation triggered by the primary injury. These inflammatory and 
cellular damages may exacerbate the initial SCI, resulting in further 
neuronal death and functional loss (Alizadeh et al., 2018; Sterner and 
Sterner, 2023; Figure 1).

The pathological mechanisms underlying SCI are remarkably 
intricate, involving numerous signaling pathways such as the Wnt 
signaling pathway, NF-κB signaling pathway, Hedgehog signaling 
pathway, PI3K/Akt signaling pathway, and Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) pathway (Ge 
et al., 2021; Hamilton et al., 2021; Wang et al., 2023; Gao et al., 2024; 
Zhao et  al., 2024). Among these, the Wnt signaling pathway 
contributes to processes including neurodevelopment, cell 
proliferation, and fate determination of neural stem cells, playing a 
crucial role in the pathological changes of central nervous system 
diseases (Xu et al., 2022). Extensive research reports underscore the 
pivotal role of the Wnt signaling pathway in SCI. In the early stages 
of SCI, ischemia and necrosis are the primary events, where the 

Wnt signaling pathway promotes neuronal regeneration under 
hypoxic conditions (Lu P. et al., 2019; Chen M. et al., 2023). During 
the oxidative stress and neuronal apoptosis phases, the Wnt 
signaling pathway enhances neuronal survival (Yang W. et  al., 
2022). In the chronic phase of SCI, the Wnt signaling pathway 
participates in scar formation, axonal regeneration, and neural 
network reconstruction (Chen T. et al., 2024). Additionally, the Wnt 
signaling pathway gaining prominence for its involvement in 
regulating inflammation, cellular apoptosis and survival, as well as 
neural regeneration and repair (Zhang M. et al., 2020; Gao et al., 
2024). For example, CHIR99021 is a drug that selectively inhibits 
GSK3β to stabilize β-catenin and promote Wnt signaling 
transmission (Chambers et  al., 2009). Studies have found that 
CHIR99021 promotes the reprogramming of neural glial cells and 
stem cells into neurons, thereby revealing the direct impact of Wnt 
signal modulators on neuronal repair without introducing 
exogenous genetic factors. Subsequent in vivo experiments further 
validate the efficacy of these results (Li et al., 2015; Tan et al., 2024). 
Overall, the Wnt signaling pathway demonstrates substantial 
potential in SCI treatment.

However, the Wnt signaling pathway may also lead to adverse 
effects. For example, excessive activation of the Wnt pathway can 
cause an overreaction of astrocytes, leading to the formation of 
extensive glial scars that impede axonal regeneration and functional 
recovery (Sareddy et al., 2009). In some cases, Wnt pathway activation 
may promote the release of inflammatory factors, exacerbating 
inflammation and neuronal damage (An et al., 2024). Overactivation 
of the Wnt signaling pathway might also result in abnormal 
proliferation and differentiation of neural stem cells, leading to tumor 
formation or other pathological tissues (Yang Y. et al., 2022). Therefore, 
it is imperative to continue researching its mechanisms and develop 

FIGURE 1

Schematic representation of the pathophysiological processes following spinal cord injury. Following primary injury, local bleeding and necrosis occur 
at the wound site. In secondary injury, central immune cells aggregate and activate, inducing further expansion of the injury zone. As the pathology 
advances, primary glial scars form, isolating inflammation. Ultimately, glial scars mature, accompanied by central infiltrative inflammation.
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safe and effective regulatory methods to fully harness its 
therapeutic potential.

In conclusion, SCI remains a major threat to human health, 
characterized by high incidence, severe clinical manifestations, and 
poor prognosis, making it a significant challenge in the medical field. 
With ongoing research, scientists have recognized the crucial role of 
the Wnt signaling pathway in neural regeneration and repair following 
SCI. This review highlights the latest advancements and potential 
therapeutic strategies involving both canonical and non-canonical 
Wnt signaling pathways in SCI. Additionally, it discusses the clinical 
applications of the Wnt signaling pathway in SCI and explored future 
research directions. The goal of this review is to offer novel and 
valuable approaches for the restoration of neurological function 
following SCI.

2 Wnt singling pathway

The Wnt signaling pathway maintains core functionality and 
mechanism conservation across various species. This conservation 
ensures the pathway’s critical role in regulating fundamental biological 
processes such as cell proliferation, differentiation, migration, and 
survival, while allowing different species to adaptively regulate the 
pathway according to their specific biological requirements (Xu et al., 
2022). Based on whether it relies on β-catenin for signal transduction 
to regulate downstream gene expression, it is classified into canonical 
and non-canonical pathways (Albrecht et al., 2021; Cooney et al., 
2023). The canonical Wnt signaling pathway relies on Wnts to initiate 
the degradation of the β-catenin complex, facilitating cascades of 
signal transduction and subsequently regulating cellular physiological 
activities. In contrast, the non-canonical Wnt signaling pathway does 
not involve β-catenin in signal transduction.Their primary signaling 
routes include the Wnt/planar cell polarity (PCP) pathway and the 
Wnt/Ca2+ pathway, which play crucial roles in regulating cytoskeletal 
organization, cell movement, cell polarity, and calcium ion signaling 
(Bell et al., 2022; Rim et al., 2022).

Currently, 19 different Wnt proteins, 10 Frizzled receptors (FZDs), 
5 secreted Frizzled-related proteins (Sfrps), and 4 Dickkopfs (DKKs) 
have been identified (Ring et al., 2011). Generally, Wnt ligands (Wnt1, 
Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, 
Wnt9b, Wnt10a, Wnt10b) and Wnt receptors (FZD1, FZD4, FZD7, 
FZD8) mediate the canonical Wnt signaling pathway. Wnt4, Wnt5a, 
Wnt5b, Wnt6, Wnt11, Wnt16, FZD2, FZD3, FZD6, FZD10, ROR1/2, 
and RYK participate in the non-canonical Wnt signaling pathway 
transmission (Sonavane and Willert, 2021; De Almeida et al., 2024). 
Secreted Frizzled-related proteins (sFrps) (sFrp1-5) and Dickkopfs 
(DKK1-4) are common inhibitors of the Wnt signaling pathway. 
Notably, sFrps and FZDs compete to bind Wnt ligands to inhibit Wnt 
signal transduction, while DKKs interact with the auxiliary receptor 
low-density lipoprotein receptor-related protein 5/6 (LRP5/6) to 
inhibit Wnt/β-catenin signal transduction (Kawano and Kypta, 2003).

In the canonical Wnt signaling pathway, when Wnt ligands do not 
bind to receptors, intracellular GSK3β and ck1α induce 
phosphorylation of β-catenin, making phosphorylated β-catenin more 
prone to ubiquitination and degradation in the cytoplasm (Shah and 
Kazi, 2022). When Wnt ligands bind to FZD receptors, along with the 
co-receptor LRP5/6, they recruit cytoplasmic Disheveled (DVL) 
around FZD. Subsequently, the conformation of DVL changes, 

triggering the phosphorylation of LRP5/6 (Qi et al., 2017). AXIN is 
recruited to phosphorylated LRP5/6, collectively inhibiting GSK3β 
phosphorylation activation. This facilitates the disintegration of the 
AXIN-GSK3β-APC-β-Catenin complex, leading to an increase in 
cytoplasmic β-Catenin concentration, subsequently entering the cell 
nucleus. There, it binds to T-cell factor/lymphoid enhancer factor 
(TCF/LEF) and recruits transcriptional co-activators such as cAMP 
response element-binding (CREB) and CREB-binding protein (CBP), 
forming an active transcription complex that activates downstream 
target gene expression including Axin2, c-Myc, Cyclin-D1 (Ccdn1), 
Cd44, Mmp2/9, and vegf (Zeng et  al., 2018; Hayat et  al., 2022; 
Figure 2).

The Wnt/Ca2+ signaling pathway is a non-classical Wnt signaling 
pathway that leads to an increase in intracellular calcium ion (Ca2+) 
concentration through specific signaling molecules and steps. Unlike 
the classical Wnt/β-catenin pathway, this pathway does not depend on 
the stability of β-catenin and its transcriptional activity (Wang et al., 
2024). Upon binding of Wnt ligands (Wnt4, Wnt5a, Wnt5b, Wnt6, 
Wnt7a, Wnt11, etc.) and receptors FZDs, the activation of the DVL 
leads to the activation of heterotrimeric G proteins, further activating 
phospholipase C (PLC). This induces a transient increase in 
intracellular calcium ion concentration, and Ca2+ induces the 
activation of calcium-calmodulin-dependent kinase (CaMKII) and 
protein kinase C (PKC). Notably, the activation of CaMKII stimulates 
the TAK1-NLK pathway, inhibiting gene expression induced by 
wnt/β-catenin in the cell nucleus (Abdolmaleki et al., 2020; Yu et al., 
2023; Figure 2).

The non-canonical planar cell polarity pathway, Wnt/PCP, is 
involved in regulating cell polarity and directional growth. Wnt 
ligands (Wnt5a, Wnt5b, Wnt11, etc.) can activate DVL when binding 
to receptors FZD, ROR, or Ryk. Activated DVL participates in the 
activation of small GTPase proteins RhoA and Rac, subsequently 
activating stress kinases JNK and ROCK. This results in the formation 
of the cell skeleton and cell adhesion and movement, regulating the 
asymmetric distribution and polarization of cells (Vivancos et al., 
2009; Nagaoka et al., 2023; Figure 2).

3 Role of the Wnt signaling pathway in 
SCI

3.1 Variations in Wnt pathway expression 
among species in SCI

SCI represents a complex molecular-mediated pathological 
process, exhibiting distinct pathophysiological responses across 
different species and genders (Stewart et al., 2021; Zrzavy et al., 2021). 
For instance, rats and mice demonstrate varying degrees of occurrence 
and magnitude of lymphocyte and dendritic cell infiltration following 
SCI (Sroga et  al., 2003). In contrast to rodents, the degree of 
lymphocyte infiltration in the injured spinal cord of humans is notably 
less during both the acute and chronic phases of SCI (Zrzavy et al., 
2021). Inflammatory responses in rodents tend to be more intense, 
characterized by significant infiltration of inflammatory cells and 
release of inflammatory factors. Conversely, human inflammatory 
responses may be  relatively subdued but prolonged. Additionally, 
rodents may demonstrate more pronounced nerve regeneration and 
tissue reconstruction following SCI, whereas humans often exhibit 
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limited nerve regeneration capacity, leading to the formation of scar 
tissue and hindering effective tissue regeneration. These differences 
can be attributed to various factors, including physiological structures, 
immune system responses, gene expression, and environmental 
influences (Dietz and Schwab, 2017; Han et al., 2019). Given its role 
as a key molecular pathway regulating neuroinflammation and 
neuroregeneration following SCI, it is not surprising to observe 
differential expression of the Wnt signaling pathway across 
different species.

With the advancement of research, scientists have found that in 
rats, zebrafish, and salamanders, the Wnt signaling pathway is widely 
activated in the tissues post-SCI (Gonzalez et al., 2012; Ponomareva 
et al., 2015; Fu et al., 2019). In these model organisms, the activation 
of the Wnt signaling pathway may be involved in processes such as 
proliferation and differentiation of neural progenitor cells, neuronal 
anti-apoptosis, activation of oligodendrocytes, and axonal 
regeneration following SCI. In contrast, mice exhibit an opposing 
expression pattern of the Wnt signaling pathway. Following SCI in 
mice, the sustained upregulation of Wnt inhibitory factor 1 (Wif1) 
expression and the continuous downregulation of Wnt3a expression 
imply a progressive increase in neuronal death. Specifically, the 
prominent peak of Wif1 upregulation in mice after SCI coincides with 
the peak of neuronal death, precisely illustrating the crucial role of the 
Wnt signaling pathway in neuronal survival following SCI (González-
Fernández et al., 2014). These data highlight the crucial role of the 
Wnt protein family in both healthy and damaged spinal cords, and the 

genes with differentially expressed patterns could potentially serve as 
therapeutic targets post-SCI. However, further research is needed to 
elucidate the expression patterns and molecular mechanisms of all 
Wnts and their mediated pathways in various cell types in SCI.

Here, we have summarized six research directions with potential 
application value concerning the Wnt signaling pathway in SCI 
(Figure  3), and we  provide an overview of the mechanisms and 
functions of different Wnt proteins on target organs (Table 1).

3.2 Induction of proliferation and 
differentiation of neural stem cells

By inducing the proliferation and differentiation of stem cells to 
replace damaged cells, tissue repair is the most effective mode of the 
body’s response to injury. The Wnt signaling pathway is involved in 
the proliferation and differentiation of neural stem cells in the brain 
and spinal cord (Willert et al., 2003). Canonical and non-canonical 
Wnt signaling pathways are involved in the proliferation and 
differentiation of spinal cord neural stem cells, playing distinct roles 
in SCI (Chenn and Walsh, 2002; Yun et al., 2007).

In adult spinal cord tissue, Wnts expression are scarcely expressed. 
However, during SCI, Wnt1 plays a pivotal role in orchestrating the 
activation of ependymal cells from their quiescent state. This activation 
drives ependymal cell proliferation, which in turn contributes to SCI 
repair, ensuring the stability of the spinal cord environment and the 

FIGURE 2

The intracellular components and signaling transduction of canonical and non-canonical Wnt signaling pathways.
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structural integrity of the injured site (Shinozuka et al., 2019). The 
canonical Wnt signaling pathway mediated by Wnt3a also plays a 
crucial role in inducing proliferation and differentiation of neural 
stem cells. Activation by Wnt3a enhances the proliferative capacity of 
neural stem cells, typically by increasing the number of cells in the S 
phase of the cell cycle, thereby expanding the neural stem cell 
population (Wang et al., 2023). Wnt3a promotes differentiation of 
neural stem cells toward a neuronal lineage, potentially through 
modulation of specific gene expression patterns such as neurogenic 
markers (e.g., NeuroD1,β-tubulin; Somredngan et  al., 2023). 
Furthermore, following SCI, Wnt3a can significantly inhibit neuronal 
apoptosis and inflammatory responses, reduce the loss of motor 
neurons in the anterior horn of the spinal cord, and promote the 
repair of damaged tissue. This creates a favorable microenvironment 
for the restoration of motor neuron function, ultimately facilitating 
the recovery of motor function (Li W. et al., 2023; Gao et al., 2024). 
Wnt/β-catenin signaling transduction significantly enhances the 
proliferative capacity of sensory interneurons, preserving their ability 
to differentiate into specific sensory neurons as needed (Gupta et al., 
2022). It has also been reported that activating Wnt/β-catenin can 
promote the proliferation and differentiation of other types of stem 
cells into neuron-like cells. When the Wnt pathway is inhibited, the 
proliferation and differentiation of neuron-like cells are eliminated 
(Hu et al., 2019).

Both the canonical and non-canonical Wnt signaling pathways 
play crucial roles in neurogenesis and neuronal maturation. Research 
indicates that GDE2, a canonical Wnt signaling transducer, regulates 
a neuronal pathway that signals to oligodendrocytes, promoting their 
maturation (Choi et al., 2020). In another study of the non-canonical 
Wnt pathway, BML-281 was found to induce the differentiation of 
SH-SY5Y cells into mature neurons by activating this pathway. 
BML-281 is suggested as a novel drug target that regulates the 
non-canonical Wnt signaling pathway to reduce neuronal cell death 
and promote differentiation into neurons (Choi et  al., 2023). The 
non-canonical signaling pathway mediated by Wnt5a demonstrates a 
promoting role in neurite outgrowth in spinal cord-derived neural 
stem/progenitor cells (NSPCs). Additionally, it may facilitate 
functional recovery and repair of the nervous system by potentially 
inhibiting the accumulation of astrocytes (Zhao B. et al., 2021).

In summary, the canonical Wnt signaling pathway primarily 
promotes functional recovery and injury repair of neural stem cells 
through regulation of cell proliferation, differentiation, and self-
renewal abilities. In contrast, the non-canonical Wnt signaling 
pathway may be  more involved in processes such as cell polarity 
regulation and cell migration, which are equally crucial for neural 
stem cell differentiation and neuroregeneration. Therefore, in the 
treatment of SCI, a comprehensive consideration and modulation of 
the activities of these two signaling pathways may represent an 

FIGURE 3

Activation of canonical and non-canonical Wnt signaling pathways following spinal cord injury, mediated by different Wnt proteins, leads to reciprocal 
regulation and induces pathophysiological changes in the body.
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TABLE 1 Mechanisms and effects of different Wnt proteins on various target organ.

Pathway types Wnt molecular target organs Mechanisms and functions

Canonical Wnt signaling pathways Wnt1 Inflamation cell Inducing microglial polarization to the M2 phenotype inhibits the inflammatory response.

Wnt/β-catenin Neural stem cells Promote the proliferation and differentiation of other stem cell types into neuron-like cells

Inflamation cell Inhibit microglial activation to protect spinal cord neurons

Vascular endothelial cell Promote the generation and maturation of endothelial cells

Cell apoptosis Inhibit apoptosis to protect spinal cord neurons

Axonal egrowth Induce morphological changes in astrocytes to activate axonal regeneration

Wnt3a Neural stem cells Promote proliferation and differentiation of neural stem cells while inhibiting apoptosis

Inflamation cell Inducing microglial polarization to the M2 phenotype inhibits the inflammatory response

Cell apoptosis Inhibit autophagy in motor neurons to reduce cell apoptosis

Axonal egrowth Induce differentiation of oligodendrocyte precursor cells to promote remyelination.

Chronic Pain Induce activation of astrocytes to promote release of inflammatory cytokines, leading to pain

Wnt7a Vascular endothelial cell Promote blood-spinal cord barrier repair

Chronic Pain Alleviate hyperalgesia and neuropathic pain following spinal cord injury

Wnt10a Chronic Pain Induce astrocyte activation leading to pain hypersensitivity

Non-canonical Wnt signaling pathways Wnt5a Neural stem cells Promote synaptic growth following spinal cord injury

Inflamation cell Induce inflammation activation of microglial cells

Vascular endothelial cell Promote blood-spinal cord barrier repair.

Chronic Pain Elevating chronic inflammation levels and leading to hyperalgesia

Wnt/PCP Cell apoptosis Trigger cell cytoskeleton reorganization and stress response, inducing apoptosis

Wnt/Ca2+ Cell apoptosis Activating calcium-dependent effector molecules leads to cell apoptosis

Wnt/Ryk Vascular endothelial cell Causing changes in vascular endothelial cell morphology and increased permeability

Chronic Pain Elevating chronic inflammation levels and leading to hyperalgesia

Axonal egrowth Inhibiting axonal growth following spinal cord injury

Wnt/PKc Axonal egrowth Causing retraction of corticospinal tract axons from the lesion site and inhibiting growth of proximal axon 

segments.

Wnt/Ror Axonal egrowth Involved in neuronal migration, extension, and axon pruning.

Chronic Pain Elevating chronic inflammation levels and leading to hyperalgesia
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effective therapeutic strategy. This approach aims to enhance the 
proliferation and differentiation of neural stem cells, thereby 
promoting repair and functional recovery of the nervous system.

3.3 Activated microglia regulate the 
inflammatory response

After SCI, the inflammatory response occurs within minutes and 
can persist for several days, months, or even years (Wichmann et al., 
2022). Microglials are a type of specialized mononuclear phagocyte 
originating from the embryonic yolk sac, maturing within the central 
nervous system (Ginhoux and Prinz, 2015). The activation of 
microglia is a crucial hallmark of the inflammatory response in 
SCI. As intrinsic immune cells in spinal cord tissue, microglia can 
differentiate into various subtypes and play essential roles in the 
inflammatory response at different stages of SCI (Milich et al., 2012). 
Research indicates the involvement of the Wnt signaling pathway in 
the activation of microglia in SCI (Van Steenwinckel et al., 2019). In 
SCI, different subtypes of microglials undergo dynamic changes. The 
M1 subtype can release interleukin-6 (IL-6), interleukin-1β (IL-1β), 
tumor necrosis factor alpha (TNF-α), thereby promoting 
inflammation. Conversely, the M2 subtype plays a crucial role in 
immune regulation and neural regeneration (Xu et al., 2018). Studies 
have found significant differences in the expression of Wnts in 
different subtypes of microglia and macrophages, indicating an 
association between Wnts and the activation status of various 
microglial subtypes (González et al., 2022). M1-polarized microglials 
release Wnt5a, promoting inflammation. Conversely, M2-polarized 
microglials secrete Wnt7a, wherein Wnt7a/β-catenin plays a crucial 
role in the differentiation of microglials progenitor cells and neural 
repair (Mecha et al., 2020). The non-canonical Wnt signaling pathway 
mediated by Wnt5a can induce inflammatory activation of microglials, 
thereby increasing the infiltration area of microglials (Jiangxue et al., 
2023). Wnt1 and Wnt3a induce the transformation of microglials into 
an M2 phenotype, suppressing inflammatory responses, and 
promoting neural repair (Matias et  al., 2019; Gao et  al., 2022). 
Generally, the activation of the non-canonical Wnt signaling pathway 
promotes microglial activation and induces an inflammatory response, 
while the activation of the canonical Wnt signaling pathway inhibits 
microglial proliferation and alleviates inflammation.

In the early stages of SCI, the upregulation of inflammation is 
beneficial for clearing damaged cells and stimulating neuronal 
regeneration, providing neuroprotection. Research has shown that 
SIRT1 may have a neuroprotective effect by suppressing microglial 
activation via downregulation of the Wnt/β-catenin signal following 
SCI (Lu T. et al., 2019). Microglia can also secrete Wnt5a to stimulate 
neuronal growth and synapse structure maturation (Yeh et al., 2023). 
In the subacute phase of SCI, M2 macrophages release Wnt3a, 
inducing the migration and activation of astrocytes, participating in 
the formation of neuroglial scars, effectively limiting the spread of 
inflammation and preventing the enlargement of the inflammatory 
area into the surrounding tissue (Sonn et al., 2020). Therefore, the 
relationship between the Wnt signaling pathway and microglial 
inflammation is complex, and its specific role may change with time, 
injury type, and environmental factors. Furthermore, studies have 
found that depletion of microglia following SCI disrupts the formation 
of glial scars, enhances immune cell infiltration, reduces neuronal 

survival, and impairs neural function recovery (Fu et  al., 2020). 
Considering the impact of Wnt signaling on microglia, depleting Wnt 
signaling pathway members in microglia may potentially lead to 
uncontrolled inflammation, reduced neuroprotective effects, 
diminished repair capabilities, and increased cell death, thereby 
exacerbating the pathological state after spinal cord injury and 
affecting the recovery process. However, the specific mechanisms 
underlying these outcomes are currently unclear, which could serve 
as a valuable direction for future exploration.

3.4 Induction of vascular neogenesis and 
stability

The actue SCI results in local vascular damage and disruption of 
the blood-spinal cord barrier (BSCB), leading to increased vascular 
permeability. These changes not only induce spinal tissue ischemia 
and hypoxia but also exacerbate inflammatory responses, triggering 
cellular apoptosis, among other consequences (Ge et al., 2021). Thus, 
maintaining vascular integrity is crucial for sustaining the balance of 
the blood-spinal fluid microenvironment.

Under both normal and pathological conditions, canonical Wnt 
and non-canonical Wnt signals play pivotal roles in angiogenesis (Lin 
et  al., 2024). During development, Wnt5a/PCP participates in the 
polarization of endothelial cells, promoting the formation of tight 
junctions (Langford et al., 2020). The high expression of β-catenin in 
endothelial cells transforms them into a high-permeability state, 
contributing to the barrier-type status (Wang et al., 2018; Wang Y. et al., 
2019). Therefore, the Wnt signaling pathway plays a crucial role in the 
formation and maturation of the BSCB. In central nervous system 
injuries, endothelial cell Wnt/β-catenin signal transduction stimulates 
angiogenesis and maturation (Chavali et al., 2020). In models of neural 
injury, the inactivation of the Wnt/β-catenin signaling pathway may 
be a cause of early blood vessel barrier disruption (Moreau et al., 2017). 
Additionally, Wnt7a and Wnt5a have been shown to participate in the 
repair of BSCB damage in amyotrophic lateral sclerosis (Ouali Alami 
et al., 2020). However, whether the Wnt signaling pathway is involved 
in BSCB repair after SCI remains to be investigated.

The generation of new blood vessels can provide substantial 
nutritional support for the homeostasis of neuronal networks post-
SCI, and regenerated blood vessels can serve as a scaffold for axonal 
growth (Rauch et al., 2009). Simultaneously, appropriately increasing 
spinal cord vascular density can promote functional recovery after SCI 
(Widenfalk et  al., 2003). Exogenous induction of Wnt/β-catenin 
reactivation can stimulate endothelial cells to secrete vascular growth 
factors such as VEGF, IL-8, Cyclin D1, and DLL4, effectively regulating 
vascular regeneration and neural functional recovery after SCI (Luo 
et al., 2021). Concerning the non-canonical Wnt signaling pathway, 
SCI induces the activation of macrophages and the secretion of Wnt5a 
(González et al., 2021). However, the activation of endothelial cell 
Wnt5a/Ryk induces changes in cell morphology and increased 
permeability (Skaria et al., 2017). Meanwhile, macrophages express 
the effective anti-angiogenic molecule VEGF-R1 through an internal 
non-canonical Wnt-dependent pathway, thereby limiting abnormal or 
excessive angiogenesis (Stefater et al., 2013). Thus, the non-canonical 
Wnt signaling pathway holds exceptional significance in tissue 
vascular neogenesis and vascular structural remodeling. Inducing the 
activation of both canonical Wnt and non-canonical Wnt signaling 
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pathways after SCI has positive implications for maintaining BSCB 
stability and promoting vascular neogenesis post-SCI.

3.5 Inhibition of neuronal apoptosis

Cell apoptosis induced by SCI occurs within hours to weeks and 
is a significant factor contributing to the expansion of damage and 
hindering neural recovery (Kuzhandaivel et al., 2011). SCI-induced 
cell apoptosis can be  categorized into endogenous apoptosis and 
exogenous apoptosis. The primary mechanical injury to cells at the site 
of SCI activates their endogenous apoptotic pathways when these cells 
sustain sufficient damage. In contrast, surrounding neural cells 
undergo exogenous cell apoptosis due to local ischemia and oxidative 
stress reactions induced by injury (He et al., 2023b).

Research has revealed that the Wnt signaling pathway regulates 
neuronal apoptosis through various mechanisms, including the 
Wnt/β-catenin signaling pathway and Wnt activation of the BMP or 
NF-κB signaling pathways (Pinto et al., 2013; Tiong et al., 2019; Ozalp 
et al., 2021). In both in vivo and in vitro models of traumatic SCI, 
activation of the Wnt/β-catenin signaling pathway suppresses the 
expression of apoptosis proteins Bax, caspase-9, and caspase-3 (He 
et al., 2023a). The circRNA/miRNA/mRNA network plays a role in the 
physiological and pathological processes of SCI (Wang et al., 2021; Li 
Y. et al., 2022). MiR-137 is a crucial molecule in delaying neuronal 
apoptosis. It reduces neuronal apoptosis not only through the Src/
MAPK and JAK/STAT1 axes but also by downregulating apoptosis 
levels through the KDM4A/SFRP4/Wnt3a/β-catenin axis (Tian et al., 
2020; Zhang T. et al., 2020; Li Y. et al., 2023). Circ-Ctnnb1 activates 
the miR-205-5p/Ctnnb1/Wnt2a/β-catenin signaling pathway, 
suppressing neuronal apoptosis (Qi et al., 2022). MiR-381 induces the 
activation of the BRD4/Wnt5a axis in dorsal root ganglion cells, 
inhibiting apoptosis and rescuing injured neurons (Jia et al., 2021).

The non-canonical Wnt signaling pathway also plays a crucial role 
in promoting apoptosis. Researchers have found that the knockdown 
of CaMKII, a downstream target of the non-canonical Wnt pathway, 
can inhibit apoptosis (Zhang et al., 2015). Activation of the Wnt/PCP 
signaling pathway can lead to cytoskeletal reorganization and stress 
responses, potentially inducing apoptosis by affecting cell survival 
signals (Hu et al., 2020; Qin et al., 2024). Furthermore, after SCI, 
intracellular calcium levels may increase, and through the Wnt/Ca2+ 
signaling pathway, various calcium-dependent effector molecules are 
activated.These molecules can regulate apoptosis-related gene 
expression, thereby inducing cell apoptosis (Liu J. et al., 2022; Wang 
et al., 2024). It is noteworthy that apoptosis in SCI is closely related to 
autophagy, which can exert neuroprotective effects by inhibiting cell 
apoptosis in acute SCI rats. Wnt3a in the SCI region inhibits mTOR-
mediated autophagy in motor neurons to reduce apoptosis, preserving 
surviving neurons (Gao et al., 2020). Therefore, the regulation of cell 
apoptosis by the Wnt signaling pathway is a crucial mechanism in 
adapting to the microenvironment of SCI and maintaining 
cellular homeostasis.

3.6 Promotion of axonal growth

Following SCI, local axons and synapses of neurons are damaged. 
Over time, the injured neural axons undergo complete degeneration 

in the distal segments, while the proximal parts retract over a relatively 
short distance. This phenomenon hinders the regeneration of neuronal 
axons and the reconstruction of functional connections. Wnt was 
initially discovered as a axon guidance molecule, directing neural 
axons to grow along the anterior–posterior axis of vertebrates (Hua 
et  al., 2014; Wang Y. et  al., 2022). The Wnt signaling pathway is 
involved in the formation and function of synaptic structures. In 
adulthood, as the nervous system matures and stabilizes, the 
expression level of the Wnt signaling pathway in axons significantly 
decreases. However, in the early stages of SCI, neurons and glial cells 
surrounding the injury site release cytokines, including Wnt proteins. 
These Wnt proteins can activate the Wnt signaling pathway on 
receptor cells to promote axonal regeneration and synaptic 
reconstruction. Upregulation of the Wnt signaling pathway can 
enhance axonal growth and regeneration by regulating the expression 
of axon guidance molecules (McLeod et  al., 2018). However, the 
impact of Wnt ligands on axonal function is complex, as their 
concentration-dependent effects, when binding to different receptors, 
can lead to opposing activities.

In SCI, canonical Wnt signaling transduction can induce axonal 
regeneration and neurite outgrowth. Wnt3a in the SCI zone can 
induce the differentiation of oligodendrocyte precursor cells, 
promoting myelin sheath repair in axonal injuries (Yin et al., 2008). 
Simultaneously, the Wnt/β-catenin pathway in fibroblast-like cells in 
the injury zone is reactivated, inducing changes in the morphology of 
astrocytes and activating axonal regeneration through the secretion of 
regenerative collagen XII (Wehner et  al., 2017). However, the 
inhibition of the Wnt/β-catenin signaling pathway severely diminishes 
axonal regeneration in the damaged spinal cord and the formation of 
glial bridges, impeding functional improvement in motor skills 
(Strand et al., 2016).

Conversely, activation of the Wnt/Ryk signaling pathway is 
detrimental to axonal regeneration. Local activation of the Wnt/Ryk 
signaling transduction system in SCI causes the retraction of 
corticospinal tract axons from the lesion and inhibits the growth of 
proximal axon segments (Liu et al., 2008). Massive activation of the 
non-canonical pathways Wnt/Ryk and Wnt/aPKC in motor neurons 
induces the loss of axonal growth function (Tury et al., 2014). Despite 
the non-canonical Wnt signaling pathway being unfavorable for 
axonal regeneration after SCI, it plays a crucial role in neural circuit 
reconstruction post-SCI (Simonetti and Kuner, 2020). For example, 
the wnt5a/Ryk pathway is deemed essential for the proper formation 
of neuromuscular junctions (Liebl et al., 2008). The Wnt/Ror pathway 
is expressed in neural circuits and is involved in processes such as 
neuronal migration and extension, as well as axonal pruning 
(Kennerdell et al., 2009; Peysson et al., 2024). The balance between the 
canonical and non-canonical Wnt signaling pathways is pivotal for 
axonal repair after SCI.

3.7 Induction of chronic pain

Chronic neuropathic pain following SCI has been a complex 
condition, characterized not only by multiple potential 
pathophysiological mechanisms but also linked to sociopsychological 
factors. Studies have revealed an upregulation of both canonical and 
non-canonical Wnt signaling pathways in SCI-induced neuropathic 
pain and the dorsal horn of the spinal cord (Shi et al., 2012; Yuan et al., 
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2012; Wang et  al., 2021). The implicated mechanisms involve the 
upregulation of the Wnt signaling pathway, leading to increased 
inflammation levels in neurons and inducing the reshaping and 
amplification of synaptic connections, thereby magnifying pain 
signaling (Ru et al., 2019; Lu et al., 2023). Research has identified the 
activation of non-canonical signaling pathways in the spinal dorsal 
horn, such as Wnt5a/Ryk/Ror2, Wnt5a/CaMKII/NFAT, and Wnt5a/
ROR2/MMP2, which elevate chronic inflammation levels and 
contribute to hyperalgesia (Simonetti et al., 2020; Liu X. et al., 2022; 
Lu et  al., 2023). Components of the canonical signaling pathway, 
including Wnt3a, Wnt10a, and β-catenin, exhibit increased expression 
levels associated with chronic neuropathic pain (Kim et al., 2021). 
Wnt3a has been found to stimulate the activation of spinal astrocytes 
in a neuropathic pain model, leading to the release of pro-inflammatory 
cytokines TNF-α and IL-18. Simultaneously, Wnt10a/β-catenin is 
involved in kindlin-1 mediated astrocyte activation during the later 
stages of SCI. Knockdown of Wnt10a can reduce hyperalgesia and 
allodynia following SCI (Kim et al., 2021; Zhao C. G. et al., 2021). 
However, the expression patterns of canonical and non-canonical Wnt 
pathways in the pathological process of chronic pain differ, likely 
involving distinct biological functions (Shi et  al., 2012). Further 
exploration of the relationship between different Wnt signaling 
pathways and the induction of chronic pain post-SCI will aid in the 
development of therapeutic targets for chronic pain.

4 Treatment

Within the context of SCI, the Wnt signaling pathway plays a 
crucial role in inducing the proliferation and differentiation of neural 
stem cells, regulating levels of inflammation and apoptosis, promoting 
vascular neogenesis and repair, as well as axonal regeneration and 
repair. The evident clinical potential of the Wnt signaling pathway in 
treating SCI is apparent. The following summarizes recent therapeutic 
approaches targeting the Wnt signaling pathway in the context of SCI.

4.1 Glucocorticoids

Glucocorticoids currently stand as the sole pharmacological 
intervention directly employed in acute SCI. In rat SCI models, 
methylprednisolone activation of the Wnt/β-catenin signaling 
pathway has demonstrated effective neuronal protection (Lu et al., 
2016). Notably, the impact treatments with methylprednisolone 
sodium succinate (MPSS) and methylprednisolone hemisuccinate 
(MF) in SCI induce downstream anti-inflammatory gene PPARγ 
expression within the Wnt/β-catenin pathway. This, in turn, inhibits 
pro-inflammatory factor levels, seemingly correlating with the 
extent of Wnt pathway activation (Libro et al., 2016). However, the 
side effects associated with glucocorticoid therapy should not 
be  underestimated. Several studies have found that excessive 
glucocorticoids upregulate Wnt signaling pathway inhibitors, such 
as sFRP-1, DKK-1, and SOST, affecting skeletal structure and 
metabolism and potentially leading to osteoporosis (Mak et  al., 
2009; Nelson et  al., 2019;). Additionally, excessive use of 
glucocorticoids in SCI has been shown to directly inhibit 
neuroregeneration in zebrafish (Nelson et al., 2019). Clinical debates 
persist regarding the therapeutic use of glucocorticoid drugs for SCI 

(Bowers et  al., 2016; Evaniew et  al., 2016). On one hand, 
glucocorticoids offer anti-inflammatory, antioxidant, edema-
reducing, and membrane-stabilizing effects. On the other hand, 
their use may lead to a range of side effects, including increased risk 
of infection, gastrointestinal bleeding, and hyperglycemia (Pofi et al., 
2023). Therefore, clinical application should be  tailored to the 
patient’s specific conditions for a personalized treatment plan. In 
addition, the combined application of glucocorticoid drugs with 
other treatment strategies has demonstrated enhanced efficacy, 
including the use of nanomaterials (Chio et  al., 2021; Lin et  al., 
2022). Given the substantial connection between glucocorticoid 
drugs and the treatment mechanisms of SCI, the exploration of 
combined interventions involving glucocorticoids and the Wnt 
signaling pathway remains limited. Nevertheless, such an approach 
holds promise in improving the therapeutic outcomes of SCI and 
mitigating complications.

4.2 Stem cell transplantation

Cell transplantation therapies hold potential for post-SCI repair 
and functional plasticity. Transplanted stem cells not only provide 
structural support and promote remyelination at the SCI site but also 
enhance the expression of neuroprotective factors, improve the spinal 
cord microenvironment, and facilitate the improvement of neural 
function (Zipser et  al., 2022). Research indicates that the Wnt 
signaling pathway can enhance the proliferation and directional 
differentiation of neural stem cells (Wang Y. et al., 2019). In rat models 
of SCI, compared to the transplantation of solely neural stem cells, the 
overexpression of Wnt4 or Wnt5a in neural stem cells demonstrates a 
more efficient capability to promote neuronal differentiation, and it 
holds an advantage in motor function recovery following SCI (Li et al., 
2015, 2020a,b; Chen J. et al., 2023).

Simultaneously, the Wnt signaling pathway significantly enhances 
the differentiation potential of stem cells from other sources, driving 
their differentiation into neurons and repairing the depleted neuronal 
population in the injury site. Transplantation of adipose-derived stem 
cells (ADSCs) has been proven as a safe and effective method for 
treating SCI (Duma et al., 2019; Tien et al., 2019). In in vivo studies, 
the involvement of Wnt3a and Wnt5a in regulating the neural 
differentiation of ADSCs has been identified, and activating the Wnt 
signaling pathway effectively enhances the restorative capacity of 
ADSCs in SCI (Yang et al., 2014). Furthermore, the chondroitin sulfate 
proteoglycan (CSPG) induced by SCI can impede the Wnt/β-catenin 
signaling pathway through the CSPG/LAR/PTPσ axis, diminishing 
the efficacy of neural stem cell transplantation (Hosseini et al., 2022). 
Therefore, achieving an appropriate level of activation in the Wnt 
signaling pathway is a crucial strategy to enhance the effectiveness of 
cell transplantation.

While stem cell transplantation therapy for spinal cord injuries 
holds immense clinical potential, it also faces numerous challenges 
(Chang et al., 2022). For instance, the survival rate of transplanted 
stem cells and their integration with host tissue pose significant 
hurdles (Liu et al., 2024). Transplanted stem cells need to survive 
within the injury’s microenvironment and effectively integrate into the 
host spinal cord neural network (Li G. et al., 2021). Stem cells possess 
a high proliferative capacity, which may entail the risk of tumor 
formation (Fujimori et  al., 2012). Additionally, although animal 
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models have shown promising results, the efficacy and long-term 
safety of stem cell therapy in human clinical trials require 
further validation.

4.3 Exosome therapy

Exosomes are small vesicles secreted by cells, with diameters 
ranging from 30 to 150 nanometers, playing a crucial role in 
intercellular communication. They regulate target cell functions by 
delivering various biomolecules, such as proteins, lipids, and RNA 
(including mRNA and non-coding RNA) (Feng et  al., 2021). 
Exosomes are considered to have potential in promoting neural repair 
and regeneration. Firstly, they can modulate the immune response at 
the injury site by delivering immunoregulatory factors, reducing 
excessive inflammation, and thereby decreasing secondary damage to 
neural tissue (Zeng et al., 2023). Secondly, exosomes carry growth 
factors and neurotrophic factors such as brain-derived neurotrophic 
factor (BDNF) and neurotrophin-3 (NT-3), which can enhance 
neuron survival and regeneration, support axonal growth, and 
synaptic reconstruction (Yang et  al., 2021; Chen Z. et  al., 2023). 
Additionally, exosomes contain angiogenic factors like vascular 
endothelial growth factor (VEGF), which promote the formation of 
new blood vessels at the injury site, thereby improving local blood 
supply and nutritional support (Huang L. et  al., 2022). Finally, 
exosomes can regulate the proliferation and differentiation of neural 
stem cells and progenitor cells, promoting their differentiation into 
functional cells such as neurons and oligodendrocytes, thereby 
facilitating remyelination after SCI (Li W. Y. et al., 2021).

SCI, exosomes from other stem cells (such as mesenchymal stem 
cells and neural stem cells) may promote neural repair and functional 
recovery by activating the Wnt/β-catenin signaling pathway (Liang 
et al., 2022). Research has found that exosomes derived from human 
umbilical cord mesenchymal stem cells (hUC-MSCs) activate the 
LRP-6/Wnt/β-catenin signaling pathway in neural cells after SCI, 
promoting the expression of c-myc and Cyclin D1  in spinal cord 
tissue, thereby exerting anti-apoptotic and anti-inflammatory effects 
to improve motor function (Kang and Guo, 2022). Additionally, 
exosomes from bone marrow mesenchymal stem cells (BMSCs-Exos) 
can activate the Wnt/β-catenin signaling pathway in neurons and 
inhibit neuronal apoptosis (Li et al., 2019). The extracellular vesicles 
originating from stem cells can significantly reduce the level of SCI 
damage by activating the Wnt/β-catenin pathway. Exosomes derived 
from M2 macrophages (M2-Exos) can activate the Wnt/β-catenin 
signaling in vascular endothelial cells at the mouse SCI site, positively 
regulating vascular regeneration and neural function repair (Luo 
et al., 2021).

Currently, researchers can extract exosomes from mesenchymal 
stem cells and neural stem cells, and modify exosomes through 
genetic engineering to increase the expression of Wnt proteins or 
regulatory factors, thereby enhancing their therapeutic efficacy. 
However, several challenges remain in their application. For instance, 
the production and purification processes of exosomes are complex 
and costly, and exosomes are prone to degradation during storage and 
transport, making large-scale production difficult. Another significant 
technical challenge is developing delivery systems that can ensure 
exosomes cross the blood–brain barrier, reach specific injury sites, and 
maintain sufficient concentrations locally. While exosomes hold great 

therapeutic potential for treating SCI, current research is still in the 
experimental stages using in vitro and in vivo models. Further efforts 
are needed to address these issues for successful clinical translation 
and application.

4.4 Biomaterials

Common biomaterials used for treating SCI include hydrogels, 
collagen, chitosan scaffolds, etc. These biomaterials not only provide 
a suitable environment for cellular and bioactive molecule interactions 
at the SCI site but also enhance therapeutic effects by binding with 
living cells, biomolecules, or other therapeutic agents (Han et al., 2022; 
Stropkovská et al., 2022; Ren et al., 2023; Sabourian et al., 2023).

Decellularized Extracellular Matrix Scaffolds (dECM) not only 
mimic the native three-dimensional structure of the spinal cord but 
also promote the release of neurotrophic factors and inhibit glial scar 
formation. Combined treatment with ADSCs, by upregulating the 
activity of the Wnt/β-catenin signaling pathway, demonstrates efficient 
neural repair potential (Su et  al., 2023). Paclitaxel (PTX) induces 
neural stem cell differentiation into neurons by activating Wnt/β-
catenin. A collagen microchannel scaffold can slow down PTX release, 
achieving sustained activation of the Wnt/β-catenin pathway in the 
SCI region for efficient repair (Chen et al., 2022). The fibrous hydrogel 
system, by controlling the sequential release of SDF1α and PTX, 
regulates the temporal window of action of the Wnt/β-catenin 
signaling pathway. This induces targeted migration of endogenous 
neural stem cells, enhances neuronal differentiation efficiency, and 
improves the therapeutic outcomes of SCI (Chen et al., 2022). Dental 
pulp stem cells/precursor cells (DPSCs), known for their high 
heterogeneity, have the potential to differentiate into neurons and glial 
cells (Young et al., 2016). When combined with chitosan scaffolds, 
DPSCs accumulate total β-catenin levels, inducing neuronal repair at 
the SCI site (Zhang et al., 2016).

In summary, the application of biomaterials not only provides a 
conducive environment for SCI repair but also controls the spatial and 
temporal effects of the Wnt signaling pathway. This helps reduce 
potential therapeutic risks and achieves high efficiency in 
SCI treatment.

4.5 Gene therapy

The Wnt protein family plays a critical role in regulating axonal 
preservation and regeneration following SCI. Utilizing gene therapy 
approaches, especially by modulating the Wnt signaling pathway, 
offers new prospects and strategies for treating SCI (Boato et al., 2023; 
Tan et  al., 2024). By overexpressing and silencing target genes, it 
effectively suppresses damage such as inflammation, oxidative stress, 
and apoptosis, thus promoting neuronal regeneration. Thus far, in vivo 
gene therapy applications for SCI have primarily focused on enhancing 
the expression of regeneration factors, inhibiting the expression of 
harmful proteins, and introducing modifying enzymes to degrade 
inhibitory molecules (González et al., 2021; Ito et al., 2021; Voronova 
et al., 2022; Saijo et al., 2024).

Several studies have explored genetic engineering approaches to 
modulate the activity of the Wnt signaling pathway. For instance, 
increasing Wnt1 expression levels can improve motor function 
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recovery in rats following spinal cord injury. However, Wnt1 protein 
itself cannot sustain high expression levels long-term in the injured 
spinal cord. Researchers employed lentiviral vectors to achieve 
sustained expression of the Wnt ligand, finding that prolonged 
overexpression of Wnt1 via lentivirus-mediated Fz1 ligand delivery 
enhances myelin preservation and neuronal survival, reduces early 
astroglial reactivity and accumulation of NG2+ cells, and improves 
motor function recovery in rats. This clearly supports inducing 
sustained high levels of Wnt1 expression during the progression of 
spinal cord injury as a therapeutic approach for treating motor 
dysfunction (González-Fernández et al., 2022). Another study found 
that the selective P2Y purinergic receptor agonist 2-MesADP can 
promote motor recovery following acute spinal cord injury. 
Researchers found that 2-MesADP exerts protective effects on local 
astrocytes at the injury site and induces the formation of reactive 
astrocytes. Additionally, it stimulates oligodendrocyte proliferation, 
providing a structural basis for neural signal transmission. Gene 
expression network analysis identified Nefh, NeuroD6, and Dcx as 
valuable potential targets in the 2-MesADP-treated group. It was 
confirmed that 2-MesADP regulates the expression of these genes 
through the Wnt signaling pathway, thereby inhibiting neuronal 
apoptosis, promoting myelin regeneration, and ultimately facilitating 
motor function recovery in mice with spinal cord injury (Zhao 
et al., 2020).

Gene therapy, as an emerging approach for treating spinal cord 
injury, holds significant potential but currently faces several major 
limitations and challenges. Firstly, most experiments are primarily 
conducted in animal models, and the critical question of how to 
effectively translate these findings into clinical practice needs careful 
consideration. Secondly, issues such as gene delivery, immune 
responses, safety, and efficacy must be further addressed to advance 
this field (Cunningham et al., 2023). Future studies should focus on 
optimizing gene delivery systems, enhancing the safety and 
effectiveness of treatments, and reinforcing clinical trials and 
regulatory frameworks to advance the application of gene therapy in 
SCI treatment.

4.6 Physical therapy

Physical therapy is an integral component of SCI rehabilitation, 
aiming to enhance traditional recovery treatments. Common 
physiotherapy modalities, such as electrical stimulation, magnetic 
stimulation, ultrasound stimulation, and light stimulation, have proven 
to be  effective in functional recovery after SCI (Shao et  al., 2021; 
Ghorbani et al., 2022; Neshasteh-Riz et al., 2022). These non-invasive 
treatments effectively increase neuronal excitability, improve blood 
circulation, and promote spinal cord functional recovery. Electrical 
stimulation, magnetic stimulation, and vibration stimulation can 
activate Wnt/β-catenin signaling in neural cells, enhancing the 
expression of brain-derived neurotrophic factor (BDNF), nerve growth 
factor (NGF), and vascular endothelial growth factor (VEGF), among 
other trophic factors. This promotes neuronal survival and functional 
recovery after SCI (Fang et al., 2021; González-Fernández et al., 2022; 
Huang J. H. et  al., 2022). Thus, physical therapy can upregulate 
endogenous Wnt signaling expression, contributing to SCI repair.

While physical therapy is widely utilized in clinical treatment 
for SCI due to its non-invasive and simplicity approach, 

considering the complexity of SCI treatment, relying solely on 
physical therapy is insufficient. A comprehensive approach 
integrating pharmacotherapy, surgical interventions, stem cell 
therapy, gene therapy, and psychological support is necessary to 
provide patients with a comprehensive and systematic treatment 
plan, maximizing functional recovery and enhancing their quality 
of life. The combined application of these treatment modalities 
requires interdisciplinary collaboration, and personalized 
treatment plans tailored to each patient’s specific needs and 
circumstances, ensuring the scientific rigor and efficacy of the 
treatment regimen.

5 The Wnt signaling pathway in the 
context of other injuries

Wnts are critical regulatory factors involved in embryonic 
development and tissue differentiation, with almost negligible 
expression in adult tissues. However, they can be reactivated in the 
case of injury. The Wnt signaling pathway has been demonstrated to 
play a crucial role in the processes of injury and repair in the kidney, 
heart, liver, bone, and skin (Shen et al., 2021; Mensah et al., 2024; 
Oliva-Vilarnau et  al., 2024; Wu et  al., 2024). In adults, the Wnt 
pathway remains dormant and is reactivated upon injury (Aisagbonhi 
et  al., 2011). In the initial minutes of acute injury, local vascular 
damage can induce platelet activation, participating in the primary 
hemostatic function. However, activation of the Wnt/β-catenin 
pathway in platelets can inhibit platelet activation and aggregation 
(Steele et  al., 2009). The subsequent inflammatory response post-
injury is not only beneficial for infection resistance and the clearance 
of dead cells but also induces mechanisms for repair. However, 
excessive inflammatory responses are detrimental to tissue repair (Ng, 
2022). Generally, Wnt/β-catenin effectively inhibits inflammation, 
while the non-canonical Wnt signaling pathway may have 
pro-inflammatory effects. The balance between the two may modulate 
the levels of damage and repair (Zuriaga et al., 2017; Liu et al., 2023). 
In terms of tissue regeneration and repair, Wnt/β-catenin can induce 
mesenchymal transition, enhancing cell differentiation potential, 
thereby facilitating cell regeneration to repair the injury (Matsushita 
et al., 2020). Research also indicates that Wnt/β-catenin promotes 
hyaluronic acid formation, inducing fibrotic scar repair (Marinkovic 
et al., 2012). There is considerable controversy regarding the reparative 
role of Wnt signaling in tissue injury. Despite the activation of the Wnt 
signaling pathway in stem cells in response to tissue damage and its 
promotion of stem cell differentiation to replace damaged cells to 
some extent, there is evidence suggesting that some stem cells 
contribute to tissue repair by forming scar tissue, disrupting the 
original structure and function of the tissue (Liu et al., 2012, 2018; 
Wilson et al., 2020). In the repair of kidney injuries, the short-term 
and localized activation of the Wnt/β-catenin signaling pathway 
induces tissue regeneration and repair, while sustained activation 
leads to tissue fibrosis, chronic cell damage, and metabolic disorders 
(Pan et al., 2021; Guo et al., 2022).

In summary, the Wnt signaling pathway has demonstrated 
significant effects in the repair of various organs. Utilizing this 
pathway for treatment should involve comprehensive and precise 
approaches to develop more effective and safer therapeutic strategies 
for patients.
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6 Conclusion

Currently, treating SCI remains a significant clinical challenge. As 
research advances, it has been found that the Wnt signaling pathway is 
involved in the proliferation and differentiation of neural stem cells, 
promotes axonal regeneration, modulates spinal inflammation, and 
inhibits neuronal apoptosis, bringing new hope for neural repair 
following SCI. However, there are several challenges in utilizing the Wnt 
signaling pathway for SCI treatment. Firstly, the Wnt pathway involves 
multiple signaling molecules and receptors, making it crucial to select 
appropriate binding sites to regulate the intensity and directionality of 
Wnt signaling. Secondly, despite the potential of the Wnt signaling 
pathway in promoting neural regeneration and repair, long-term 
therapeutic efficacy and safety still require further evaluation. Lastly, the 
translation from laboratory research to clinical application is a complex 
process that involves overcoming numerous technical, regulatory, and 
practical challenges. Ensuring the effectiveness and safety of treatment 
methods through validation in clinical trials is a critical step. Although 
the Wnt signaling pathway plays a crucial role in SCI repair, relying solely 
on a single intervention strategy may not be  sufficient to effectively 
enhance recovery post-SCI. Future SCI treatments may require a 
combination of collaborative strategies, including the coordinated 
regulation of the Wnt signaling pathway with other signaling pathways, 
anti-inflammatory and immune modulation, stem cell therapy, tissue 
engineering and biomaterials, rehabilitation training and physical 
therapy, personalized and precision medicine, as well as interdisciplinary 
collaboration. By comprehensively applying these strategies, the efficacy 
of SCI treatment can be improved, promoting neural regeneration and 
functional recovery, thus enhancing patient prognosis and quality of life.
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