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Mechanical stimuli, such as stretch, shear stress, or compression, activate a range 
of biomolecular responses through cellular mechanotransduction. In the nervous 
system, studies on mechanical stress have highlighted key pathophysiological 
mechanisms underlying traumatic injury and neurodegenerative diseases. However, 
the biomolecular pathways triggered by mechanical stimuli in the nervous system 
has not been fully explored, especially compared to other body systems. This gap 
in knowledge may be due to the wide variety of methods and definitions used in 
research. Additionally, as mechanical stimulation techniques such as ultrasound 
and electromagnetic stimulation are increasingly utilized in psychological and 
neurorehabilitation treatments, it is vital to understand the underlying biological 
mechanisms in order to develop accurate pathophysiological models and enhance 
therapeutic interventions. This review aims to summarize the cellular signaling 
pathways activated by various mechanical and electromagnetic stimuli with a 
particular focus on the mammalian nervous system. Furthermore, we briefly discuss 
potential cellular mechanosensors involved in these processes.
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Introduction

The mammalian brain and spinal cord are viscoelastic tissues composed of heterogeneous 
cell populations, including neurons, astrocytes, oligodendrocytes, vascular endothelial, and 
microglia (Goriely et al., 2015). The stiffness of human and rodent brain tissue, with a shear 
modulus of approximately 1 kPa, is notably softer than that of other organ tissues (Elkin et al., 
2010; Budday et  al., 2017). Thus, nervous tissue is particularly sensitive to mechanical 
stimulation and easily susceptible to stress-induced cellular and axonal deformation (Reiter 
et  al., 2023). However, it is well-established that mechanical stimuli influence cellular 

OPEN ACCESS

EDITED BY

Ryo Hotta,  
Harvard Medical School, United States

REVIEWED BY

Daniel Marcel Suter,  
Purdue University, United States
Emily Welby,  
Medical College of Wisconsin, United States

*CORRESPONDENCE

Kazuhito Morioka  
 kazuhito.morioka@ucsf.edu  

Youngjae Ryu  
 youngjae.ryu@umassmed.edu

RECEIVED 02 May 2024
ACCEPTED 25 September 2024
PUBLISHED 04 October 2024

CITATION

Ryu Y, Wague A, Liu X, Feeley BT, 
Ferguson AR and Morioka K (2024) Cellular 
signaling pathways in the nervous system 
activated by various mechanical and 
electromagnetic stimuli.
Front. Mol. Neurosci. 17:1427070.
doi: 10.3389/fnmol.2024.1427070

COPYRIGHT

© 2024 Ryu, Wague, Liu, Feeley, Ferguson 
and Morioka. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Review
PUBLISHED 04 October 2024
DOI 10.3389/fnmol.2024.1427070

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2024.1427070&domain=pdf&date_stamp=2024-10-04
https://www.frontiersin.org/articles/10.3389/fnmol.2024.1427070/full
https://www.frontiersin.org/articles/10.3389/fnmol.2024.1427070/full
https://www.frontiersin.org/articles/10.3389/fnmol.2024.1427070/full
https://www.frontiersin.org/articles/10.3389/fnmol.2024.1427070/full
mailto:kazuhito.morioka@ucsf.edu
mailto:youngjae.ryu@umassmed.edu
https://doi.org/10.3389/fnmol.2024.1427070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2024.1427070


Ryu et al. 10.3389/fnmol.2024.1427070

Frontiers in Molecular Neuroscience 02 frontiersin.org

development, proliferation, and function, depending on the type and 
intensity of the stimuli. Therefore, the impact of mechanical stimuli 
on the brain and spinal cord must be considered in different contexts 
and applications.

Studies on traumatic injury and neurodegenerative disorders 
provide great insight into how mechanobiological forces influence the 
central nervous system (CNS). Focal traumatic injuries often result 
from the tension, compression and tearing of nervous tissue due to 
external stress (Blennow et al., 2012). Additionally, shear stress can 
occur when the brain experiences longitudinal tension and 
compression when acceleration is misaligned with the brain’s axis 
(Proces et al., 2022). These types of injuries serve as prime examples 
of how high levels of external stress impact the CNS. In 
neurodegenerative cases of such as Alzheimer disease or gliosis, an 
overall softening of nervous tissue is commonly observed, indicating 
a decrease in tissue stiffness (Hall et al., 2021). Beyond pathological 
conditions, mechanical forces generated during activities like sports 
or running can influence the brain and spinal cord tissues through 
flexion, extension, compression and shearing.

Numerous studies have investigated the effect of mechanical stress 
on the CNS through various methods of mechanical stimulation. 
However, these experiments have mainly focused on tissue-level 
effects and their macroscopic negative outcomes, such as diffuse 
axonal injury. Interestingly, mechanical stimulation can also have 
positive effects on the CNS. For instance, mechanical stretching 
promotes neurite outgrowth (Higgins et  al., 2013) and induces 
changes in extracellular matrix stiffness, both known to regulate adult 
neurogenesis in the brain (Kjell et al., 2020). Therefore, the potential 
of mechanical stimulation to promote neural regeneration warrants 
consideration. To establish a standard for mechanical stimulation 
experiments and gain a more comprehensive understanding of its 
impact, it is essential to first evaluate the existing knowledge on the 
cellular and molecular outcomes of such stimuli.

Mechanical stimuli generated by dynamic movements, physical 
forces, and surrounding tissue are likely to influence the functions, 
maintenance and fates of neuronal and glial cells (Pillai and Franze, 
2024). Additionally, these stimuli may share critical features in 
mechanotransduction. To fully understand the effects of mechanical 
stimuli on the CNS, it is necessary to investigate the key cellular 
signaling pathways involved. Several insightful reviews have examined 
the relationship between mechanical stimuli and the nervous system 
(Goriely et al., 2015; Proces et al., 2022; Motz et al., 2021; Rocha et al., 
2022; Keating and Cullen, 2021). These reviews have explored 
mechanosensation, potential sensors, relevant protein channels 
(Proces et al., 2022; Hall et al., 2021; Higgins et al., 2013; Kjell et al., 
2020), and the impact of various subtypes of mechanical stimuli in the 
context of CNS injuries and pathological conditions (Goriely et al., 
2015; Rocha et al., 2022; Keating and Cullen, 2021). However, unlike 
other organs and cell types, few reviews address the causal effects of 
mechanical stimuli on neurons and glial cells, and the subsequent 
activation of cellular signaling pathways.

To summarize cellular pathways triggered by mechanical stimuli 
in the CNS, we first selected types of stimulation commonly studied 
in neurotraumatic research, such as stretching, compression and shear 
stress. We have also included fluid shear stress, which is known to 
be generated when external forces are applied to the brain or spinal 
cord (Keating and Cullen, 2021). Although secondary, mixed cascades, 
such as inflammation, inevitably occur after in vivo application of 

stress, leading to what is often termed ‘mechanical injury’, these 
studies still provided valuable insight. We  prioritized studies that 
explicitly targeted mechanobiogical approaches or applied in vitro 
techniques specific to certain cell types.

In addition to mechanical stimulation, this review also 
encompasses cellular signaling pathways in the CNS driven by 
ultrasound and electromagnetic stimulation. Ultrasound is a 
mechanical pressure wave, while electromagnetic stimulation, such as 
transcranial magnetic stimulation (TMS), mediates biomolecular 
transduction through electromagnetic forces (Adey, 1993). Emerging 
studies suggest that non-invasive ultrasound and electromagnetic 
stimulation to the brain can induce therapeutic effects on 
psychological and neurodegenerative disorders (Nardone et al., 2014; 
George et al., 1999; Meng et al., 2021; Qiu et al., 2021). Therefore, it is 
valuable to consider how these external stimuli activate biomolecular 
pathways compared to classical mechanical stimuli.

In this review, we  examine prominent mechanotransduction 
cellular signaling pathways, including MAPK, PKC, Akt, YAP/TAZ, 
and Rho-ROCK, which are activated by various types of mechanical 
and electromagnetic stimuli within the mammalian nervous system. 
These types of mechanical stimulation were selected for their practical 
interpretations and potential clinical implications. Additionally, 
we briefly discuss the mechanosensors and channels expressed on 
neurons and glial cells that are associated with the 
mechanotransduction of these stimuli.

Mechanical and electromagnetic stimuli 
induced intracellular signaling pathways in 
the nervous system

MAPK signaling pathway
The mitogen-activated protein kinase (MAPK) pathway is one of 

the most well-known signal transduction cascades activated by 
various mechanical stimuli. MAPKs are categorized into three distinct 
types: extracellular signal-regulated kinases (ERKs), c-Jun N-terminal 
kinases (JNKs), and p38 MAPKs (Zhang and Liu, 2002). While the 
upstream signals within the MAPK network are interconnected, the 
activation of downstream MAPK family members is tightly regulated. 
These pathways have been studied in depth due to their significance 
in cell processes including, proliferation, differentiation, maintenance, 
and development in mammalian cells. In the nervous system, MAPK 
signaling has been implicated in neuronal development, axonal 
outgrowth, differentiation, maturation, and synaptic plasticity 
(Thomas and Huganir, 2004). In particular, JNKs, which are known to 
be activated by cellular stress, play key roles in regulating apoptosis 
and neuronal development (Coffey, 2014). Additionally, various 
cellular stresses such as oxidative stress, inflammatory cytokines or 
UV radiation, can trigger p38 MAPK activation, which regulates 
neuroinflammatory responses, survival and synaptic plasticity (Asih 
et al., 2020) (Figure 1).

Mechanical stretching has been shown to induce of 
phosphorylation of ERK1/2, JNKs, and p38 MAPKs across various cell 
types including cardiomyocytes, skeletal muscle cells, osteoblasts, and 
vascular endothelial cells (Hsu et al., 2010; Suzuma et al., 2002; Zou 
et al., 2004; Boppart et al., 2001; Kanno et al., 2007). The degree of 
MAPK activation correlates positively with both the percentage 
(Aikawa et al., 2002) and frequency (Hz) of stretch (Hsu et al., 2010). 
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Studies indicate that mechanical stretching activates MAPK signaling 
in astrocytes, cortical neurons, and oligodendroglial cell lines (Neary 
et al., 2003; Chierto et al., 2019; Ralay et al., 2011; Bhowmick et al., 
2019). For example, in primary cultured rat astrocytes, 30% elongation 
under mechanical stretch initially elevates phospho-ERK levels, while 
prolonged stretching up 24 h is needed to increase activation of JNKs 
(Ralay et al., 2011). However, levels of activated p38 MAPKs were not 
significantly impacted by stretch. The stretch-induced ERK activation 
in primary rat astrocytes is hypothesized to be calcium-dependent and 
mediated by ATP-release in response to strain (Neary et al., 2003). 
These studies suggest that MAPK activation is related to the cellular 
mechanism of astrogliosis formation and inflammatory responses 
after mechanical stress.

In biaxially stretched cortical neurons, 30% stretch resulted in 
increased phosphorylation of ERK 1/2 and JNKs, but not p38 MAPKs 
(Bhowmick et al., 2019). These findings imply that ERK and JNK 
activations significantly regulate apoptotic neuronal cell death. In 
contrast, a study using the oligodendroglial cell line 158 N found that 
a 30% stretch stress did not significantly alter phosphorylated ERK 1/2 
and JNKs levels, but reduced the levels of phosphorylated p38 MAPKs 
(Chierto et  al., 2019). This tensile strain led to increased reactive 
oxygen species and changes in myelination protein expression. 
However, an ex vivo stretch test on mouse cerebellar tissue showed 
ERK 1/2 activation, while activation of p38 MAPKs was not observed. 
Additionally, in the retinal tissue layer, positive ERK 1/2 
immunosignals increased following 20% stretch stress (Lindqvist 
et al., 2010).

Fluid shear stress has also been shown to induce phosphorylation 
of JNKs, ERKs, and p38 MAPKs in in vitro systems using vascular 

endothelial cells, osteosarcoma cell lines, and osteoblasts (Kadohama 
et al., 2006; Mengistu et al., 2011; Kapur et al., 2003). The extent of 
phosphorylation is influenced by both the duration (minutes) and the 
magnitude of stress (dyn/cm2 or Pa) applied. However, it has also 
been reported that laminar fluid shear stress inhibits TNF-α and 
IL-1-mediated activation of JNKs in human umbilical vein 
endothelial cells (Surapisitchat et al., 2001). Although fluid shear 
stress influences N-methyl-D-aspartic acid (NMDA) receptor-
mediated calcium influx in primary cultured rat astrocytes (Maneshi 
et al., 2017), there have been no reports on the direct application of 
fluid shear stress to other glial or neuronal cells in vitro in relation to 
MAPK signaling.

Mechanical pressure can generate compression and shear strain 
in the tissue. It has been reported that in vitro compression and shear 
strain can activate ERKs, JNKs, and p38 MAPKs in chondrocytes as 
well as osteoblasts (Song et al., 2016; Fitzgerald et al., 2008). However, 
there is a paucity of similar studies using neural cells. In vivo models 
mild traumatic brain injury can be  viewed as mechanical stimuli 
models that incorporate both compression and shear stress (Keating 
and Cullen, 2021). In these models, significant phosphorylation of 
ERKs and p38 MAPKs have been observed in mouse brain tissue 
(Bachstetter et al., 2013; Zhao et al., 2012), while JNK activation was 
not detected (Mori et al., 2002). Additionally, chronic compression of 
the dorsal root ganglion (DRG) in vivo resulted in activation of ERKs 
and p38 MAPKs in neurons and microglia (Han et al., 2012; Qu et al., 
2016). These findings suggest that mechanical compression stimuli 
generally facilitate the activation of ERKs and p38 MAPKs, which 
regulate neuronal apoptosis and inflammatory responses, such as 
cytokines release. Although secondary inflammatory responses 

FIGURE 1

Types of mechanical stimulation and related mechanotransduction pathways by reported mechanosensors.
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following in vivo mechanical stress may contribute to these effects, the 
involvement of MAPK cascades in neuroprotection is suggested.

Ultrasound can generate mechanical pressure waves that are 
typically applied both in vitro and in vivo at frequencies in the MHz 
range. In the medical setting, ultrasound is conducted at a frequency 
range between 1 to 15 MHz, while therapeutic applications typically 
utilize frequencies of around 1 MHz or lower (Tufail et al., 2011). 
Ultrasound can be  delivered through various tissues as pulsed or 
continuous waves. Its physiological effects on cells and tissues have 
been attributed to a combination of heat generation, micro-vibrations, 
microstreaming, and shear stress (VanBavel, 2007; Xin et al., 2016). 
However, low-intensity pulsed ultrasound (LIPUS), which operates at 
intensities below 3 W/cm2, has minimal thermal effects and is 
primarily used as a therapeutic intervention (Jiang et al., 2019).

In mammalian osteoblast and synovial cells, LIPUS at frequencies 
between 1.5 and 3 MHz has been shown to upregulate phosphorylation 
levels of ERKs, JNKs, and p38 MAPKs (Chiu et al., 2008; Sato et al., 
2014). In contrast, LIPUS stimulation in dental pulp stem cells led to 
increased activation of ERKs and JNKs, but not p38 MAPKs (Gao 
et al., 2017). In rodent 3 T3-L1, MC3T3-E1, and ST2 cells, LIPUS 
application at 1.5 MHz induced phosphorylation of ERK 1/2 only, 
without affecting JNKs and p38 MAPKs (Kusuyama et al., 2014). In 
addition, Louw et al. found that phosphorylated ERK levels did not 
change with ultrasound frequencies above 2 MHz in chondrocytes 
(Louw et al., 2013). However, the phosphorylation of ERKs was did 
not significantly change in rat astrocytes treated with LIPUS at 1 MHz 
frequency (Liu et al., 2017). Similarly, in vivo ultrasound application 
at 0.5 MHz did not promote the phosphorylation of JNKs or p44/42 
MAPK in rat brain tissue (Jalali et al., 2010) although the applied 
frequency ranges in these reports are generally lower than those used 
in other system.

Electromagnetic stimulation also alters the cellular activation and 
function in the nervous system (Siebner et al., 2022). Theoretically, an 
electromagnetic field induces the vibration of free ions on the cellular 
membrane (Panagopoulos et al., 2002), modulating ion influx and 
membrane potential due to microelectronic activities. It has been 
suggested that electromagnetic stimuli, such as weak electromagnetic 
fields (EMF), can activate the MAPK pathway (Blank and Goodman, 
2009). Extremely low-frequency EMF in the range of 0–100 Hz are 
commonly used and are considered to have negligible thermal effects 
at the cellular level (Adey, 1993). A study using low frequency 
electromagnetic stimulation of 50 Hz on various cell lines has shown 
an increase in the phosphorylation of ERK 1/2 and p38 MAPKs, but 
did not promote the phosphorylation of JNKs (Kapri-Pardes 
et al., 2017).

Focusing on the nervous system’s response to EMF, in vitro use of 
a repetitive transcranial magnetic stimulation (TMS) system at 10 Hz 
on rat neural stem cell cultures has demonstrated activation of ERK 
1/2 and p38 MAPKs, while JNKs were not significantly affected (Cui 
et al., 2019). This suggests that the TMS-activated MAPK pathway 
may enhance the proliferation and differentiation of neural stem cells. 
Similarly, magnetic stimulation applied to mouse neuronal cells and 
oligodendrocyte precursor cell line CG4 resulted in a significant 
increase in the ERK 1/2 phosphorylation (Ma et al., 2013; Dolgova 
et al., 2021). In the mouse hippocampal neuronal cell line HT22, EMS 
at 10 Hz and 1.75 T intensity increased the levels of phosphorylated 
ERK 1/2 and JNKs, but not p38 MAPKs (Kim et al., 2023). Also, in the 
rat Schwann cells, 50 Hz magnetic stimulation at 0.1 T intensity 

transiently increased phospho-ERK 1/2 levels (Colciago et al., 2015). 
Overall, these studies indicate that activation of MAPKs by 
electromagnetic stimulation enhances synaptic plasticity, attenuates of 
cell death and promotes remyelination in vitro. Furthermore, in vitro 
exposure of electromagnetic pulses to rat microglia resulted in p38 
MAPKs phosphorylation, but did not affect ERKs and JNKs (Yang 
et al., 2016). In vivo, repetitive TMS at 15 Hz frequency and 1.26 T 
intensity led to elevated ERK 1/2 phosphorylation and increased 
neuronal proliferation in hippocampal tissue (Chen et  al., 2015). 
Additionally, TMS at 15 Hz induced robust axonal elongation and 
MAP2K phosphorylation in cortical neurons (Boato et  al., 2023). 
Collectively, both mechanical and electromagnetic stimuli typically 
enhance ERK phosphorylation, whereas the activation of JNK or p38 
MAPK is inconsistent and varies depending on the type of stimulus 
and cell type (Table 1).

PKC signaling pathway
Protein kinase C (PKC) is activated by mechanical stress via gated 

channels and receptors including the NMDA receptor, TRPV4, and 
the purinergic P2Y2 receptor (Lea et  al., 2002; Wang et  al., 2005; 
Adapala et  al., 2011). Activation of PKC typically involves the 
participation of phospholipase and diacylglycerol leading to a cascade 
of downstream cellular signaling, including involvement of the MAPK 
pathway. PKC is classified into several subgroups: conventional 
(calcium-dependent;α, β, and γ), novel (calcium-independent; δ, ε, η 
and θ), and atypical types (Parekh et al., 2000). The expression of PKC 
isozymes varies depending on the cell type and tissue, influencing 
their specific signaling pathways. For example, PKCγ is highly 
expressed in the nervous tissue, PKCδ is predominantly found in the 
soma of neurons, and PKCε is concentrated in the presynaptic 
terminals (Liu and Heckman, 1998). PKC activation regulates many 
functions in the CNS, including neurotransmitter release, neuronal 
growth, proliferation and differentiation, and synaptic plasticity 
(Huang, 1989) (Figure 1).

Mechanical stretch activates various PKC isoforms across different 
cell types, including conventional PKC in fibroblast and smooth 
muscle cells, PKCζ in vascular pericytes and PKCα/ε in endothelial 
cells (Suzuma et  al., 2002; Cheng et  al., 2001; Husse et  al., 2007; 
Persson et al., 1995). In cortical neurons and astrocytes, mechanical 
stretch-induced PKC activation is linked to calcium influx via the 
NMDA receptor (Lea et al., 2002; Zhang et al., 1996; Ostrow and 
Sachs, 2005). In vitro studies suggest that mechanical stretching not 
only activates the NMDA receptor, but also modifies the α-amino-3-
hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor leading 
to potentiated calcium influx in neurons (Spaethling et  al., 2012; 
Goforth et al., 2004). This stretch-induced calcium influx is thought 
to directly trigger PKC activation. A study investigating the activation 
of PKCα through mechanical stretching found that this process led to 
the internalization of the GluR2 subunit of the AMPA receptor in rat 
cortical neurons (Bell et al., 2009). This suggests a connection between 
traumatic CNS injury and neuronal toxicity due to the loss of GluA2-
lacking AMPA receptor (Ferguson et al., 2008).

In vitro studies on endothelial cells have shown that both 
conventional and novel types of PKC isoforms are activated by fluid 
shear stress (Ishida et al., 1997; Berk et al., 1995). Conventional PKC 
activity is trigged through direct calcium influx, while the calcium-
independent PKCε isoform is also activated by fluid shear stress, both 
mediate ERK 1/2 phosphorylation (Traub et al., 1997). In vitro studies 
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TABLE 1 Summarized results of mechanically or electromagnetically activated intracellular pathways from studies using the mammalian nervous system.

Stimulation 
types

Test systems MAPK PKC Akt YAP/TAZ

Mechanical Stretching

Cortical neuron

30% stretch (2.0 psi) (Bhowmick 

et al., 2019)

ERK↑, JNK↑, p38━ 

(Bhowmick et al., 2019)

cPKC↑ (Zhang et al., 

1996)
Akt↑ (Wang et al., 2023)

Astrocyte

30% stretch (Ralay et al., 2011)

20% cyclic stretch (Ostrow et al., 

2000)

8–54% stretch (Neary et al., 

2005)

ERK↑, JNK↑, p38━ (Ralay 

et al., 2011)

cPKC↑ (Ostrow et al., 

2000)
Akt↑ (Neary et al., 2005)

Oligodendrocyte

30% stretch (Chierto et al., 2019)

15% stretch (Shimizu et al., 2017)

ERK↑, JNK↑, P38↓ (Chierto 

et al., 2019)

Nuclear YAP/

TAZ↑215

Schwann cell

150% stretch (Poitelon et al., 

2016)

Nuclear YAP/

TAZ↑

Ex vivo rodent brain tissue

30% stretch (Chierto et al., 2019)
ERK↑, p38━

Ex vivo rodent retina

20% stretch (Lindqvist et al., 

2010)

ERK↑

Fluid Shear Stress

Neuronal cell line

1 Pa laminar FSS (Ryu et al., 

2020)

cPKC↑

Oligodendrocyte (Shimizu et al., 

2017)

Nuclear YAP/

TAZ↑

Mechanical

Compression

In vivo rodent brain compression 

(Mori et al., 2002; Zhao et al., 

2012; Padmaperuma et al., 1996; 

Noshita et al., 2002)

ERK↑, JNK━, p38↑

(Mori et al., 2002; Zhao 

et al., 2012)

cPKC↑ (Padmaperuma 

et al., 1996)
Akt↑ (Noshita et al., 2002)

In vivo rodent spinal cord 

compression (Chen et al., 2016; 

Xie et al., 2020): Astrocyte 

focused

Akt↑ (Chen et al., 2016)

Nuclear YAP/

TAZ↑ (Xie et al., 

2020)

In vivo rodent DRG compression 

(Han et al., 2012; Qu et al., 2016)

ERK↑, p38↑ (Han et al., 

2012; Qu et al., 2016)

Ultrasound

Astrocyte

LIPUS 1 MHz,

110 mW/cm2 (Liu et al., 2017)

ERK━ Akt↑

Microglia

LIPUS 1 MHz,

528 mW/cm2 (Su et al., 2023)

Akt↓

In vivo brain tissue

FUS 0.5 MHz (Jalali et al., 2010)
JNK↑ Akt↑

(Continued)
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utilizing neuronal cell lines have also shown PKC activation and 
elevated intracellular calcium levels in response to fluid shear stress 
(Ryu et  al., 2020). However, research on PKC activation in other 
neural cell types in response to shear stress remains limited.

Compressive stimulation has been shown to activate the PKCα 
pathway in chondrocytes and keratinocytes through integrin-
associated mechanotransduction (Takei et al., 1997; Lee et al., 2002). 
In human nucleus pulposus cells, mechanical compression 
specifically activates the PKCε isoform (Sun et al., 2013). In the 
nervous system, in vivo studies using compressive methods have 
reported upregulation of conventional PKC isoforms in brain and 
spinal cord neurons, particularly those associated pain sensitivity 
(Padmaperuma et  al., 1996; Mao et  al., 1992). Although these 
studies closely resemble ‘mechanical injury’, and should 
be interpreted as reflecting a combination of various effects on the 
tissue, the majority of PKC activation is still primarily attributed to 

mechanical stimulation. These studies observed significant 
membrane translocation of PKC in ipsilateral compressed nervous 
tissue, linking PKC activation with mechanical stress. This 
activation could result from either mechanically induced calcium 
influx or as part of cellular injury response, such as apoptosis. Direct 
evidence from in vitro studies or specific effects of PKC activation 
in neurons or glial cells induced solely by compression has yet to 
be reported.

Studies exploring the relationship between LIPUS and PKC 
activation are sparse. However, a study by Lee et al. demonstrated that 
exposure to 1 MHz ultrasound significantly elevated intracellular 
calcium levels and enhanced calcium-independent PKCδ activation 
in a murine skeletal muscle cell line (Lee et al., 2014). While there are 
currently no reports specifically addressing ultrasound-induced PKC 
activation in the CNS, these findings suggest the potential of a similar 
PKC activation mechanism in neural tissues.

TABLE 1 (Continued)

Stimulation 
types

Test systems MAPK PKC Akt YAP/TAZ

Electromagnetic 

Stimulation

Cultured neural stem cell

EMF 10 Hz, 500 mV/div, 5 ms/div 

(Cui et al., 2019)

MS 20 Hz, 0.87–1.58 T (Zhao 

et al., 2019)

ERK↑, JNK━, p38↑ (Cui 

et al., 2019)
Akt↑ (Zhao et al., 2019)

Hippocampal neuron

MS 1 Hz, 1.14–1.55 T (Ma et al., 

2013)

MS 1 or 10 Hz, 1.75 T (Kim et al., 

2023)

ERK↑, JNK↑, p38━ (Kim 

et al., 2023)

Akt↑ (Ma et al., 2013; Kim 

et al., 2023)

Cerebellar neuron

EMF 50 Hz, 1 mT (Yang et al., 

2015)

cPKC↑

OPC cell line

MS 40 Hz (Dolgova et al., 2021)
ERK↑ Akt↑

Microglia

EMP 200 kV/m (Yang et al., 

2016)

ERK━, JNK━, p38↑

Schwann cell

MS 50 Hz, 0.1 T (Colciago et al., 

2015)

ERK↑ (transient) Akt↑ (transient)
Nuclear YAP/

TAZ↑

In vivo brain EMF

EMF 50 Hz, 0.1 mT (Manikonda 

et al., 2007)

cPKC↑

In vivo WT brain TMS

15 Hz, 60 pulse/train, 1.26 T 

(Chen et al., 2015)

15 Hz, 75 pulse/train (Boato 

et al., 2023)

ERK↑ (Chen et al., 2015) Akt━ (Boato et al., 2023)

In vivo model brain TMS

BDNF potentiated, 5 Hz, 400 

pulse/train (Wang et al., 2011)

MCOA model, 20 Hz, 1.4 T (Luo 

et al., 2017)

Akt↑

cPKC, conventional PKC; FSS, fluid shear stress; DRG, dorsal root ganglia; LIPUS, low-intensity pulsed ultrasound; FUS, focused ultrasound; MS, magnetic stimulation; TMS, transcranial 
magnetic stimulation; EMF, electromagnetic field; EMP, electromagnetic pulse; MCOA, middle cerebral artery occlusion; ↑, activation.
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The effects of EMF on PKC activation have been explored in 
lymphocytic cell lines such as HL60 and NALM6 (Uckun et al., 1995; 
Nie and Henderson, 2003), indicating that PKCα is particularly 
activated among the isozymes of PKC. In rat cerebellar neurons 
exposed to 50 Hz EMF, increased phosphorylation of PKC was 
observed with enhanced neuronal GABAA receptor-mediated 
currents (Yang et al., 2015). Similarly, in vivo exposure of rats to 50 Hz 
EMF resulted in increased PKC activity and intracellular calcium 
levels, likely due to NMDA receptor activation (Manikonda et al., 
2007). Even direct mild electrical stimulation at 10 Hz activated PKC 
in the astroglia cells, leading to the release of nerve growth factor 
(Koyama et al., 1997). However, these studies did not differentiate 
between PKC subgroups. In contrast, high-frequency 2–10 GHz 
microwave exposure in rats demonstrated reduced PKC activation in 
the cerebral cortex with accompanied by aggregation of glial cell 
populations and morphological changes (Paulraj and Behari, 2006). 
Overall, PKC activation has been commonly linked with an increase 
in intracellular calcium levels, regardless of the type of stimulation, 
highlighting its potential role in cellular responses to electromagnetic 
fields (Table 1).

Akt signaling pathway
The Akt signaling pathway, also known as Protein Kinase B, plays 

a crucial role in cellular proliferation, maintenance, and survival, 
similar to the well-studied MAPK pathway. Akt activation is primarily 
mediated by the downstream effects of phosphoinositide 3-kinases 
(PI3K), which are transduced by various biological factors, including 
brain-derived neurotrophic factor (BDNF) and insulin-like growth 
factor 1 (IGF-1) (Brunet et  al., 2001). The cascade of Akt 
phosphorylation leads to the activation of NF-κB and mTOR, key 
regulators of cellular processes. In the nervous system, Akt signaling 
is implicated in neuronal survival, development, maturation, axonal 
regeneration, and synapse formation (Sanchez-Alegria et al., 2018) 
(Figure 1).

Cyclic stretching has been shown to increase PI3K activity and 
Akt phosphorylation in osteoblasts, epidermal cells, endothelial cells, 
and vascular pericytes (Suzuma et  al., 2002; Danciu et  al., 2003; 
Kippenberger et  al., 2005; Hu et  al., 2013). Additionally, in vivo 
stretching has been found to enhance Akt activity in rat muscle tissue 
(Sakamoto et  al., 2003). In primary cultured rat astrocytes, 
mechanical strain ranging from 8 to 54% significantly increased the 
levels of phosphorylated Akt (Neary et  al., 2005). Neary et  al. 
highlighted that activation of Akt in astrocytes is dependent on 
calcium influx triggered by mechanical stretching which is crucial for 
their survival and growth (Neary et al., 2005). Similarly, mechanical 
stretching of primary cultured mouse neurons also resulted in 
upregulation of Akt activity (Wang et al., 2023). Although detailed 
analyses on the mechanism behind Akt in response to mechanical 
stretching are limited, it is generally attributed to calcium influx and 
PI3K activation.

Akt activation has also been observed in endothelial cells and 
osteocytes subjected to fluid shear stress (Batra et al., 2014; Haga et al., 
2003). However, there is no direct or indirect evidence of fluid shear 
stress affecting neurons or glial cells in relation to the Akt pathway. In 
regard to mechanical compressive stimulation, Akt activation has 
been observed in numerous cell types including osteoblasts, 
fibroblasts, and chondrocytes in rodent models (Song et al., 2016; 
Niehoff et al., 2008; Tanaka et al., 2018). Although in vitro studies on 

neuronal or glial cells are limited, in vivo studies have shown increased 
Akt phosphorylation in neurons and astrocytes within mouse brain 
and rat spinal cord tissues under compression (Chen et  al., 2016; 
Noshita et al., 2002). These studies employed classical ‘mechanical 
injury’ techniques to induce stress, suggesting that the Akt signaling 
is activated in the ipsilateral tissues to prevent neuronal death. 
However, it remains uncertain whether Akt signaling would 
be activated under precise compression methods at the cellular level. 
Further studies are needed to explore this question.

LIPUS at 1.5 MHz has been shown to activate the PI3K-Akt 
signaling pathway in osteoblast (Tang et al., 2006).Similarly, LIPUS 
application at 110 mW/cm2 and 1 MHz significantly increased 
phosphorylated Akt in rat astrocytes and elevated BDNF levels 
(Liu et al., 2017). In vivo studies on rat brains exposed to LIPUS 
also demonstrated enhanced Akt activation which correlated with 
increased VEGF expression and paracellular permeability (Jalali 
et al., 2010). However, in rat microglia, PI3K-Akt signaling was 
reduced after LIPUS application at 528 mW/cm2 and 1 MHz, 
accompanied by decreased microglial activities and cytokine 
releases (Su et al., 2023). These conflicting findings suggest that 
activation of Akt by ultrasound varies depending on the specific 
cell type within the CNS.

Studies on electromagnetic stimulation have shown that exposure 
to 50 Hz EMF does not significantly alter Akt phosphorylation in 
several non-neural cell lines (Kapri-Pardes et al., 2017). However, 
rodent-cultured neuronal cells exposed to magnetic stimulation 
experienced increased phosphorylated Akt in neural stem/precursor 
cells, oligodendrocyte precursor cell lines, and hippocampal cell lines 
(Ma et al., 2013; Dolgova et al., 2021; Kim et al., 2023; Zhao et al., 
2019). Furthermore, in rat Schwann cells, 50 Hz of electromagnetic 
exposure resulted in a transient increase in phosphorylated Akt levels 
(Colciago et al., 2015). In specific conditions, such as the rat brain 
ischemic model and BDNF-induction pathway, TMS has been shown 
to significantly increase the levels of phosphorylated Akt in brain 
tissue, along with BDNF and tyrosine kinase B (Luo et al., 2017; Wang 
et al., 2011). Conversely, in vivo TMS at 15 Hz in wild-type adult mice 
did not activate Akt signaling in cortical tissue (Boato et al., 2023). 
Similarly, in vivo exposure of rats to high-frequency microwaves 
(1–2 GHz) did not result in significant changes of Akt phosphorylation 
levels in brain tissue (Tan et al., 2021). These findings suggest that the 
effects of electromagnetic stimulation on Akt activation vary 
depending on cell type and experimental conditions, including 
whether the study is conducted in vitro, in vivo, or pre-conditioned 
models (Table 1).

YAP/TAZ signaling pathway
Yes-associated protein (YAP) and its coactivator PDZ-binding 

motif (TAZ) are critical downstream effectors of the Hippo signaling 
pathway (Piccolo et  al., 2014). YAP/TAZ acts as a transcriptional 
regulator with essential roles in developing the CNS, including 
neuronal differentiation, cellular migration, and apoptosis. Moreover, 
YAP/TAZ dysregulation has been implicated in neurodegenerative 
disorders such as Huntington’s or Alzheimer’s diseases (Jin et  al., 
2020). Phosphorylation of YAP is mediated by the Hippo pathway, 
particularly through the action of MOB1 and LATS1/2. Once 
phosphorylated, YAP/TAZ is sequestered in the cytoplasm, blocking 
its translocation to the nucleus and inhibiting transcriptional activity. 
It should be  noted that YAP is not detectable in mature neurons 
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(Huang et al., 2016). The nuclear activity of YAP/TAZ is regulated by 
integrin activation, which is triggered by a range of mechanical 
stimuli, including matrix stiffness, stretching, and cell density (Piccolo 
et al., 2014) (Figure 1).

The nuclear translocation of YAP/TAZ induced by mechanical 
stretching has been extensively studied in in vitro systems using 
epithelial cells, various stem cell lineages, and endothelial cells 
(Aragona et al., 2013; Elbediwy et al., 2016; Panciera et al., 2017). 
In rat oligodendrocyte progenitor cells, a 15% stretch was 
sufficient to promote nuclear localization of YAP (Shimizu et al., 
2017). Similarly, Schwann cells exhibited increased YAP/TAZ 
nuclear activity under 150% mechanical stretch (Poitelon et al., 
2016). While the role of matrix stiffness-related in regulating YAP/
TAZ activity has been highlighted in glial cells and the 
differentiation of neural stem cells (Rammensee et  al., 2017; 
Marinval and Chew, 2021), studies specifically employing direct 
stretching systems have not been reported. Nonetheless, it can 
be hypothesized that mechanical stretching could trigger YAP/
TAZ nuclear activity, potentially influencing processes like 
myelination and cell morphology (Hong et al., 2023). Similarly, 
fluid flow-mediated nuclear translocation of YAP has been 
documented in endothelial cells and various tumor cell types (Yu 
et  al., 2021; Qin et  al., 2019; Nakajima et  al., 2017). In 
oligodendrocytes, YAP activity was regulated by shear stress 
generated by rotating culture flasks (Shibasaki et  al., 2010). 
However, studies explicitly investigating YAP/TAZ translocation 
in glial cells beyond this finding are scare.

Mechanical compression applied to rodent osteocytes and 
chondrocytes has been shown to promote the nuclear translocation 
of YAP/TAZ (Zarka et  al., 2021; Jing et  al., 2020). In the CNS, 
rodent models have demonstrated that compressive stimulation 
increases YAP/TAZ nuclear translocation in astrocytes (Xie et al., 
2020; Pu et al., 2023). This YAP activation was found to enhance 
astrocyte proliferation and is associated with the formation of 
astrogliosis. This process may play a role in regulating glial scar 
and promoting functional recovery following mechanical 
compression. Regarding ultrasound stimulation, LIPUS at 1.5 MHz 
for 20 min has been shown to increase YAP phosphorylation in 
human umbilical vein endothelial cells (Xu et al., 2018). However, 
in mouse C2C12 myoblast cell line, LIPUS at 3.6 MHz for 5 min 
reduced YAP phosphorylation and induced its nuclear 
translocation (Puts et al., 2018). These conflicting results, coupled 
with limited research on LIPUS effects on the nervous system, 
necessitate further investigation into the influence of ultrasound 
stimulation on YAP/TAZ activity.

There are several reports examining the effects of 
electromagnetic stimulation on YAP/TAZ activity. In human 
tendon cells, exposure to a 2 Hz EMF did not affect YAP/TAZ 
nuclear translocation (Pesqueira et al., 2017). Conversely, a static 
EMF of 1 mT applied to human dental pulp stem cells resulted in 
slight activation of YAP/TAZ nuclear activity (Zheng et al., 2018). 
Interestingly, when rat Schwann cells were exposed to a 50 Hz EMF, 
there was upregulation of cytoplasmic localization of YAP 
(Colciago et al., 2015). This shift was accompanied by enhanced 
proliferation and migration in EMF-exposed Schwann cells 
compared to the control group. However, studies specifically 
investigating the effects of EMF on YAP/TAZ in glial cells are 
lacking. From the current literature it can be reasonably assumed 

that the impact of electromagnetic stimulation on YAP/TAZ in the 
nervous system may be rather limited (Table 1).

Rho-ROCK signaling pathway
The Rho GTPase family, which includes Rho, Rac, and Cdc42, 

plays an essential role in common cellular processes including 
growth, migration, morphology, cell cycle regulation, and 
cytoskeletal structure remodeling (Etienne-Manneville and Hall, 
2002). Among these, RhoA and its downstream effector, 
Rho-associated coiled-coil containing protein kinase 1 (ROCK), 
mediates mechanical signals through interactions between GPCRs 
and integrins (Buchsbaum, 2007). In the nervous system, the 
Rho-ROCK signaling pathway has been extensively studied for its 
role in promoting axonal guidance, neurite outgrowth, neuronal 
differentiation, and the regulation of astrocyte morphology 
astrogliosis (John et al., 2004; Stankiewicz and Linseman, 2014). 
Numerous studies have demonstrated that changes in the stiffness of 
the extracellular matrix (ECM) can activate the Rho-ROCK signaling 
pathway, which in turn regulates a range of cellular responses to 
these external mechanical cues (Zhang et al., 2017; Huang et al., 
2012; Huang and Ingber, 2005).

Research using rodent cardiomyocytes and pluripotent stem cells 
has demonstrated that mechanical stretch activates the Rho-ROCK 
signaling pathway (Torsoni et  al., 2005; Teramura et  al., 2012). 
Similarly, fluid shear stress in mammalian endothelial cells induces 
Rho translocation to the cytoplasmic membrane, activating the 
Rho-ROCK pathway and its downstream effectors (Lin et al., 2003). 
In fibroblast, this pathway also mediates cellular stiffening in response 
to shear stress (Lee et al., 2006). Additionally, LIPUS has been shown 
to trigger the Rho-MAPK pathway in mouse phagocytes and 
mesenchymal stem/progenitor cells (Kusuyama et  al., 2014; Zhou 
et al., 2008), while 50 Hz EMF promotes Rho-ROCK activation in 
human mesenchymal stem cells (Zhang et al., 2018). However, studies 
have yet to explore the effects of direct mechanical stress on 
Rho-ROCK signaling in the nervous system both in vitro or in vivo, 
leaving the impact of mechanical or electromagnetic intervention on 
this pathway in the nervous system unclear.

In summary, we have consolidated the findings on intracellular 
pathways modulated by various mechanical and electromagnetic 
stimulation (Table  1). These cellular pathways are highly 
interconnected, though the extent of crosstalk between pathways is 
context-dependent (Figure  1). Generally, PKC activates Raf and 
MEK, which are upstream of the MAPK signaling pathway 
(Aksamitiene et al., 2012). Conversely, activation of Akt signaling 
provides negative feedback to the Raf–ERK pathway (Mendoza et al., 
2011), while inhibition of Akt in neurons enhances and promotes 
JNK activity (Hollville et  al., 2019). Akt activation also 
phosphorylates YAP, leading to its sequestration in the cytoplasm 
(Basu et al., 2003). Meanwhile, Rho signaling is implicated in the 
mechanically induced activation of YAP/TAZ (Dupont, 2016). It also 
inhibits Akt while promoting p38 MAPKs and JNK in neuronal cells 
(Stankiewicz and Linseman, 2014; Moya and Halder, 2019). 
Consistent with these interactions, YAP/TAZ activation further 
enhances JNK cascades (Wang et al., 2016). Moreover, studies have 
shown that mechanical force-induced integrin-Src-FAK activation 
triggers multiple related pathways, including MAPK, PI3K-Akt, 
YAP/TAZ, and Rho-ROCK signaling (Moya and Halder, 2019; 
Schwartz, 2010).
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Mechanoreceptors in neuronal and glial 
cells

Cytoskeletal components and adhesion 
molecules

Currently, it is understood that cells sense mechanical axial and 
shear stress through integrin-actomyosin dynamics (Schwartz, 2010). 
Integrins, which bind to ECM proteins like fibronectin or laminin, 
connect to the cytoskeleton-like actin when forces are applied. These 
mechanical cues trigger changes in integrins, initiating the formation 
of linkages with actin and other focal adhesion complex molecules, 
including Src, focal adhesion kinase (FAK), and proline-rich tyrosine 
kinase 2 (PYK2). Subsequent mechanical stretching of cells or use of 
rigid extracellular materials activates of various signaling cascades, 
including MAPK, Rho GTPases, PI3K, and increased cytoplasmic 
calcium levels (Schwartz, 2010). These cascades, in turn, further 
regulate cytoskeletal dynamics. In particular, YAP/TAZ signaling is 
influenced by ECM-integrin interactions with cytoskeletal F-actin, 
which promotes TEAD transcription factor activation (Panciera 
et al., 2017). This integrin-FAK-mediated response has also been 
implicated in ultrasound-mediated cellular responses (Tang 
et al., 2006).

Neurons and glial cells express distinct integrin subtypes 
depending on the brain regions and cell type (Pinkstaff et al., 1999). 
Notably, integrin α3β1 plays a crucial role in synaptic plasticity, while 
integrin αv regulates the migratory functions of glial cells (Wang et al., 
2005; Lilja and Ivaska, 2018; Milner et al., 1996). In hippocampal 
neurons, the activation of integrin-dependent receptor-like protein 
tyrosine phosphatase α (RPTPα) has been implicated in mechanical 
sensory signaling (Kostic et al., 2007). In addition, PYK2 expression, 
along with FAK, are highly enriched in CNS neurons compared to 
other organ tissues and is involved in synapse and neurite formation 
(Menegon et al., 1999; de Pins et al., 2021). Although mature neurons 
typically do not express YAP and show low levels of integrin expression 
post-development, mechanical stretching might have a more limited 
impact on neurons than on other glial cells. Nonetheless, promoting 
stretch signaling appropriately could support axonal regeneration and 
plasticity, as overexpression or the activation of integrins has been 
shown to enhance neurite outgrowth in adult neurons (Condic, 2001; 
Ivins et al., 2000).

Activation of cellular membrane mechanosensory 
receptors and mechanical stress-gated channels

Members of the transient receptor potential (TRP) ion channel 
family serve as key sensors of mechanical stimulation in the nervous 
system. These channels are broadly expressed in the brain, spinal cord, 
and DRG neurons (Pedersen et al., 2005) and play a crucial role in 
mechanosensation, responding to a wide range of mechanical stimuli 
(Pedersen et  al., 2005). Among them, the TRP Vanilloid receptor 
family (TRPV), which consists of Ca2+-permeable ion channels, is 
particularly significant for its activation by mechanical stress in the 
mammalian nervous system. For instance, TRPV2 is activated by cell 
stretching in neurons (Shibasaki et  al., 2010), while TRPV4  in 
astrocytes responds to various mechanical stresses, including osmotic 
pressure (Kanju and Liedtke, 2016; Benfenati et  al., 2007). Other 
members of the TRP family, such as TRPC, TRPM, and TRPA1, are 
also highly expressed in the mammalian CNS (Sawamura et al., 2017; 

Kheradpezhouh et  al., 2017). Although the expression of these 
channels is abundant in neurons and glial cells, their activation in 
response to mechanical stress has not been well-characterized. 
Recently, TRPA1 has been highlighted for the role it serves in sensing 
fluid shear stress and regulating calcium influx in Drosophila 
enteroendocrine cells (Gong et al., 2023).

Purinergic P2 receptors also play a role in mechanosensation. The 
P2X and P2Y receptor subtypes are widely expressed in the brain and 
spinal cord, including in neurons and glial cells (Franke et al., 2006). 
Among them, the G protein-coupled P2Y2 receptor contains an 
integrin-binding site that mediates cytoskeletal signaling and 
stimulates PKC activation (Peterson et al., 2010). Furthermore, the 
P2Y2 receptor is particularly implicated in nerve injury and the 
pathology of neurodegenerative diseases such as Alzheimer’s disease 
(Peterson et al., 2010). In terms of mechanical stress, the P2Y2 receptor 
is activated by fluid shear stress, initiating intracellular cascades in 
endothelial cells (Sathanoori et al., 2017; Wang et al., 2015). In rat 
astrocytes, research indicates that stretch-induced Akt 
phosphorylation is mediated by P2 receptors (Neary et al., 2005). 
While P2 receptors appear to function as mechanosensors for various 
cell types, their specific roles in neurons, particularly in the context of 
mechanical or electromagnetic stimulation, remain unclear.

Piezo 1 and 2 are among of the most studied mechanically 
activated ion channels over the past decade. Initially discovered in the 
neuronal cell line Neuro2A and DRG cells, these channels play crucial 
roles in mechanotransduction (Coste et al., 2010). In the nervous 
system of mammals, Piezo1 is broadly expressed, whereas the 
expression of Piezo2 is more selectively found in sensory neurons, 
cortical and hippocampal pyramidal neurons, cerebellar Purkinje 
cells, and olfactory bulb neurons (Zong et al., 2023; Wang and Hamill, 
2021). Piezo channels are now recognized as key mechanosensors that 
transduce signals by opening cation channels in response to 
mechanical stimuli including stretch, fluid shear stress, and 
ultrasound stimulation.

Recently, the role of Piezo channels in neurophysiology and 
related pathologies has garnered increasing attention, leading to 
several comprehensive reviews on their significance in the nervous 
system (Zong et al., 2023; Zheng et al., 2023; Fang et al., 2021). While 
Piezo1 primarily mediates cation influx in response to mechanical 
stimuli, its activation through classical cellular pathways, rather than 
mechanical sensation, yields varying outcomes. For example, 
activation of Piezo1 has been shown to reduce axonal outgrowth in 
mammalian neurons (Song et al., 2019), whereas, pharmacological 
activation of Piezo1 has been linked to demyelination in the mouse 
brain (Velasco-Estevez et al., 2020). These findings underscore the 
need for further research to elucidate the specific conditions required 
to trigger classical intracellular pathways and how these pathways may 
differ compared to other mechanosensors.

Several types of G protein-coupled receptors (GPCRs), including 
angiotensin II type 1 receptors and adhesion GPCRs (aGPCRs), have 
also been recognized for their mechanosensitive properties (Wilde 
et al., 2022). In particular, aGPCRs are known to be responsive to 
various mechanical stimuli including, shear stress, pressure, and 
stretching. These are hypothesized to regulate processes in the nervous 
system involved in development, synapse formation, and myelination 
(Langenhan et al., 2016). Various subfamilies of aGPCRs are widely 
expressed in the mammalian CNS, with their expression patterns 
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varying by region and developmental stage (Ehrlich et  al., 2018). 
Among them, GPR 56 and 68, which are expressed in both mouse and 
human brains, have been shown to be  activated in response to 
mechanical stretching and fluid shear stress in vitro (Wei et al., 2018; 
Yeung et al., 2020; Ozkan et al., 2021). Activation of GPR56 is known 
to promote PKC activation and the Rho-ROCK signaling pathway 
(Ganesh et  al., 2020). These findings suggest that other aGPCRs 
expressed in neurons and glial cells may also respond to mechanical 
forces, highlighting their potential mechanosensitive role and opening 
a new avenue for further investigation.

Studies suggest cells can sense electromagnetic stimulation 
through direct activation of voltage-gated calcium channels, resulting 
in an influx of calcium ions (Pall, 2013; Grassi et  al., 2004). It is 
hypothesized that ion oscillations induced by electromagnetic 
stimulation disrupt the electrochemical balance of cell membranes 
(Panagopoulos et al., 2002). However, the specific types of calcium 
channels involved in this response have not been clearly elucidated. 
Another possibility is that thermosensitive TRPV channels are 
activated in response to the heat generated during electromagnetic 
stimulation (Stanley and Friedman, 2019). Additionally, given the 
abundant expression of TRPV channels in the brain and spinal cord, 
TRPV-mediated calcium influx may also serve as another plausible 
mechanism for cellular signaling in response to electromagnetic 
stimuli in the nervous system (Gunthorpe et al., 2002). In summary, 
the key mechanosensors discussed are succinctly illustrated in 
Figure 1.

Discussion

This review explores the key features of mechanically activated 
cellular pathways and related mechanosensors, with a particular 
focus on the mammalian nervous system. The studies discussed 
here primarily focused on two types of stimulation: mechanical 
stretching and electromagnetic stimulation. Electromagnetic 
stimulation has recently gained attention, particularly with the 
U.S. FDA’s approval of repetitive TMS in 2008 for treating major 
depressive disorder, and the approval of pulsed EMF for 
musculoskeletal disorders (George et  al., 2013; Waldorff et  al., 
2017). Beyond TMS, there has been a growing interest in the use of 
ultrasound stimulation to modulate the nervous system, particularly 
in the context of mental health (Hameroff et al., 2013). The immense 
potential for practical applications of these techniques continues to 
attract significant interest in the field. While these methods can 
activate substantial cellular signaling pathways, the specific 
mechanosensitive channels or receptors remain largely undefined. 
As electromagnetic and ultrasound stimulation continues to expand 
in therapies and rehabilitations for neurodegenerative disorders and 
injuries, further elucidation of related mechanisms on neural cells 
is highly anticipated.

Among the cellular pathways responsive to mechanical and 
electromagnetic stimulation, the MAPK and Akt pathways have been 
extensively studied. Akt activation is commonly reported across 
various types of stimuli with the exception of high-frequency 
electromagnetic stimulation. However, the activation of specific 
subgroups of MAPKs may depend on the type of stimuli and cells 
involved. In neurons, phosphorylation of ERK and JNK is commonly 

triggered by various stimuli in vitro, while p38 MAPKs were not. In 
contrast, in vivo studies using compression models have shown 
upregulated ERK and p38 MAPK. However, these results should 
be cautiously interpreted as in vivo application using compression may 
cause cellular damage and inflammatory responses that confound the 
effects of mechanical stimulation.

Microglia exhibited different responses to ultrasound and 
electromagnetic stimuli compared to other cell types. Reports on the 
YAP/TAZ pathway have primarily focused on oligodendrocytes and 
Schwann cells, particularly in relation to changes in their myelination 
functions. In contrast, reports on the Rho-ROCK pathway have largely 
focused on matrix stiffness-mediated cellular differentiation in neural 
stem cells (Kang et al., 2020; Oyama et al., 2021).

A significant limitation of the current methodology lies in the 
difficulty of determining the appropriate range of force or 
intensity thresholds required for different types of mechanical 
stressors. While this is relatively straightforward in the case of 
using low-frequency electromagnetic stimulation (e.g., ~50 Hz) or 
high GHz microwave exposure, the precise magnitude of 
stimulation needed to achieve beneficial effects or avoid 
pathophysiological consequences remains an area requiring 
careful consideration. This issue necessitates thorough 
investigation across various contexts to accurately assess the 
cellular-level impacts that could lead to either positive outcomes 
or adverse effects. Additionally, distinguishing between calcium 
influx due to inflammatory reactions (e.g., injury) and that 
induced by mechanical stimuli in vivo is challenging. For example, 
Akt and p38 MAPK activation observed in in vivo models may 
be associated with subsequent neuroinflammation (Asih et al., 
2020; Pu et al., 2023). Thus, we have prioritized in vitro studies to 
interpret results, though it is crucial to acknowledge in vivo 
results. Translating promising in vitro findings into in vivo 
contexts is necessary for identifying precise mechanisms. Micro-
level techniques, such as AFM-based compression or microfluidic 
chips, offer the potential for more precise in vitro experimentation 
on mammalian neurons and glial cells (Onal et al., 2022). These 
methods could enable more detailed investigations into the 
activation and deactivation of specific cell signaling pathways.

Tissue stiffness-mediated mechanical stress was not explicitly 
addressed in this review because stretching and mechanical 
compression methods offer similar forms of mechanical stress. 
Comprehensive reviews done on tissue stiffness sensing, and related 
cellular pathways are available for further reading (Pillai and 
Franze, 2024; Motz et al., 2021; Schwartz, 2010; Janmey et al., 2020).
While we did not discuss all types of mechanical stimuli and their 
molecular, it is important to emphasize that understanding stress 
type-specific molecular pathways is critical for comprehending 
clinically relevant biological responses in the CNS. This 
consideration is essential even for models not directly related to the 
traumatic CNS injury field.

In conclusion, various mechanical and electromagnetic stimuli 
can activate significant cellular signaling pathways in different ways, 
leading to diverse outcomes in the nervous system. Further research 
is needed to deepen our understanding of the precise biomolecular 
mechanisms underlying the therapeutic effects of mechanical 
stimulation on neuroregeneration and neurorehabilitation (Huie 
et al., 2017).
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