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C9orf72-FTD
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Advancements in understanding the pathogenesis of C9orf72-associated 
frontotemporal dementia (C9orf72-FTD) have highlighted the role of repeat-
associated non-ATG (RAN) translation and dipeptide repeat proteins (DPRs), 
with Drosophila melanogaster models providing valuable insights. While 
studies have primarily focused on RAN translation and DPR toxicity, emerging 
areas of investigation in fly models have expanded to neuronal dysfunction, 
autophagy impairment, and synaptic dysfunction, providing potential directions 
for new therapeutic targets and mechanisms of neurodegeneration. Despite 
this progress, there are still significant gaps in Drosophila models of C9orf72-
FTD, namely in the areas of metabolism and circadian rhythm. Metabolic 
dysregulation, particularly lipid metabolism, autophagy, and insulin signaling, 
has been implicated in disease progression with findings from animal models 
and human patients with C9orf72 repeat expansions. Moreover, circadian 
disruptions have been observed in C9of72-FTD, with alterations in rest-activity 
patterns and cellular circadian machinery, suggesting a potential role in disease 
pathophysiology. Drosophila models offer unique opportunities to explore 
these aspects of C9orf72-FTD and identify novel therapeutic targets aimed at 
mitigating neurodegeneration.
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Introduction

Frontotemporal dementia (FTD) comprises a spectrum of rare neurodegenerative 
disorders resulting from neuronal damage in frontal and temporal lobes of the brain 
(Surguchov, 2021). It is marked by progressive deterioration in executive functioning, behavior, 
language, and personality. Specific patterns of cognitive and behavioral deficits characterize 
the three FTD subtypes: behavioral variant FTD (bvFTD), which is most common, and 
nonfluent and semantic variant primary progressive aphasia. Symptom onset typically occurs 
between ages 45 and 60 (DeJesus-Hernandez et al., 2011; Moore et al., 2020), making FTD one 
of the leading causes of early-onset dementia.

Despite advancements in understanding FTD, challenges remain in early and accurate 
diagnosis, as well as the development of effective disease-modifying treatments. Exploring the 
underlying molecular and genetic mechanisms is critical for understanding FTD 
pathophysiology and advancing therapeutic strategies.
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Drosophila as a model of FTD

Drosophila model and C9orf72-associated 
FTD

Drosophila melanogaster models offer unique advantages for 
studying disease pathology and therapeutic intervention due to their 
short lifespan, fast reproduction, well-characterized genetics, and 
genetic similarity to humans. Flies have been particularly instrumental 
in neurodegeneration research, with their conserved gene pathology 
elements such as chaperone modification, protein aggregation, tissue 
deterioration, and behavioral characteristics (Bonini, 2022). These 
conserved properties combined with Drosophila’s robust genetic 
toolkit allow for manipulation of genes linked to FTD heritability.

The main heritable mutations are autosomal dominant and 
associated with three genes: chromosome 9 open reading frame 72 
(C9orf72), progranulin (GRN), and microtubule-associated protein 
tau (MAPT). Deciding which genetic variant model to employ 
depends on the topic of interest, as the prominent aspects of the FTD 
phenotype and the geographical variability differ across variants 
(Greaves and Rohrer, 2019).

Across Europe and North America, the predominant genetic 
factor underlying FTD is a GGGGCC hexanucleotide repeat expansion 
in intron 1 of C9orf72 (DeJesus-Hernandez et al., 2011; Renton et al., 
2011). The fundamental pathology involves both loss- and gain-of-
function. Hypotheses on its mechanism include haploinsufficiency, 
creation of repeat RNA foci, and dipeptide repeat proteins (DPRs) 
formed via repeat-associated non-ATG (RAN) translation (DeJesus-
Hernandez et al., 2011; Balendra and Isaacs, 2018). Notably, RAN 
translation leads to five distinct DPRs: poly-GA, poly-GP, poly-GR, 
poly-PA, and poly-PR (Ash et al., 2013; Zu et al., 2013).

Recent data reveals these three major hypotheses are not mutually 
exclusive. One study found that reduced C9orf72 activity increases 
susceptibility to degenerative stimuli, specifically glutamate-induced 
excitotoxicity and compromised DPR clearance (Shi et al., 2018). In 
essence, haploinsufficiency exacerbates toxic gain-of-function effects. 
This has been corroborated by similar studies establishing that 
C9orf72 reduction suppresses autophagy, resulting in DPR 
accumulation and neuronal death (Boivin et  al., 2020; Zhu et  al., 
2020). Together, the literature offers that loss- and gain-of-function 
mechanisms synergize in C9orf72-associated pathology.

Introducing the C9orf72 mutation into the fly genome replicates 
key elements of the human FTD phenotype, facilitating exploration of 
cellular and molecular pathways implicated in C9orf72-associated 
neurotoxicity. Since Drosophila lack a C9orf72 homolog, studying 
loss-of-function is impeded but avoids risk of redundancy. By 
introducing this gene into flies, great strides have been made in 
exploring C9orf72-FTD.

Current focus

Major mechanisms underlying C9orf72-FTD and insights from 
Drosophila have been extensively reviewed elsewhere (Balendra and 
Isaacs, 2018). Recent progress with fly models continues to focus 
primarily on RAN translation and DPRs; due to their role in C9orf72 
hexanucleotide repeat expansions, factors regulating RAN translation 
are under investigation. Inhibited translation via interaction between 
ribosomal proteins and DPRs, specifically poly-GR and poly-PR, is 

proposed as a mechanism for DPR-induced toxicity in C9orf72-
associated neurodegeneration. Therapeutic targeting of this 
translational repression shows promise, with studies indicating that 
translation initiation factor eIF1A expression can rescue toxicity 
(Moens et  al., 2019). Additionally, the identification of Protein 
RPS25A, a component of the small (40S) ribosomal subunit required 
for RAN translation, suggests inhibiting this subunit as a promising 
therapeutic approach (Yamada et al., 2019).

There has also been interest in the post-translational modification 
of DPR’s and its contribution to FTD progression. One study identified 
three types of poly-GR arginine methylation: monomethylation, 
symmetric dimethylation, and asymmetric dimethylation. Analysis 
reveals both types of dimethylation reduce phase separation, with 
symmetric dimethylation occurring most frequently and correlating 
with longer disease duration. Therefore, poly-GR inclusion toxicity is 
influenced by methylation and correlates with clinical manifestations 
(Gittings et al., 2020).

Latest advancements in the field

Newer focuses on Drosophila C9orf72-FTD highlight neuronal 
dysfunction, autophagy, and synaptic dysfunction. In terms of neuronal 
dysfunction, C9orf72 hexanucleotide repeat RNAs localize to dynamic 
mRNA transport granules in neurites, disrupting machinery responsible 
for transporting and translating mRNA. This results in transport granule 
dysfunction and branching defects, with two components modulating 
repeat toxicity: FMRP and Orb2 (Burguete et al., 2015). These findings 
successfully identify the involvement of transport granules in the disease 
pathology and their components as a potential therapeutic target.

Research on autophagy in Drosophila C9orf72 found that in 
motor neurons, 30-repeat DPRs disrupt the morphology and 
dynamics of the endoplasmic reticulum (ER), impairing 
autophagosome formation. Despite ER disruption in both axons and 
synapses, autophagosomes remained intact in axons, yet their 
biogenesis was hindered in synaptic termini (Sung and Lloyd, 2024).

Motor neurons can also be studied for synaptic dysfunction. A 
novel cell-autonomous excitotoxicity mechanism selectively associated 
with arginine-rich DPRs in glutaminergic neurons has been 
discovered using Drosophila C9orf72. These DPRs—poly-GR and 
poly-PR—were moderately toxic at 36 repeats, increasing synaptic 
boutons, activity zones, extracellular glutamate, intracellular calcium, 
and presynaptic NMDA receptor activation (Xu and Xu, 2018). This 
suggests neurodegeneration via glutamate excitotoxicity and synaptic 
overgrowth, which was presynaptic NMDA receptor-dependent and 
therefore cell-autonomous. More toxic 100-repeat DPRs result in loss 
of active zones, suggesting severe neurodegeneration via synaptic 
degeneration (Xu and Xu, 2018). These findings support glutamate 
inhibition therapies and warrant further investigation into synaptic 
dysfunction in C9orf72-FTD pathology.

Research needs

Metabolism

Metabolic model of neurodegeneration
Historically, medical research primarily emphasized 

understanding diseases’ molecular and genetic basis, targeting genes, 
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proteins, and signaling pathways to uncover pathology and potential 
therapies. Cellular metabolism, though crucial, was not as extensively 
studied for its role in pathophysiology nor recognized as a primary 
driver of disease. However, since the late 20th and early 21st century, 
there has been a striking shift toward investigating metabolism in 
disease, spurred by technological advancements. Metabolic changes 
are now recognized as significant in disease development and 
progression, notably in cancer research, where metabolic 
reprogramming is a recognized hallmark of cancer cells (Hanahan and 
Weinberg, 2011). This trend has since expanded to other areas, such 
as autoimmune and endocrine disorders. Despite this, the emphasis 
on metabolism in neurodegenerative disorders has been strikingly less 
pronounced, especially in Drosophila models.

The lack of research is concerning, given insights from other 
animal models linking neurodegeneration and metabolism. C9orf72 
involvement in lysosomal-autophagy pathway dysregulation has been 
robustly established via interaction with various proteins, including 
CARM1 involved in lipid metabolism (Liu et  al., 2018), WDR41, 
SMCR8, Rab proteins, and the ULK1 complex involved in autophagy 
initiation (Sellier et al., 2016; Sullivan et al., 2016; Webster et al., 2016; 
Yang et  al., 2016), and a master regulator of metabolism, mTOR 
(Amick et al., 2016; Ugolino et al., 2016; Ji et al., 2017). Further studies 
have connected C9orf72 neurodegeneration with altered lipid 
catabolism (Marian et al., 2023).

These findings are reflected in human patients with C9orf72 
repeat expansion, where glucose metabolism is altered during clinical 
and preclinical disease stages (Cistaro et al., 2014; de Vocht et al., 2020; 
Popuri et al., 2021; Xia et al., 2023). Along with the distinct metabolic 
profile of the C9orf72 mutation, there is also a toxic decrease in 
metabolic flexibility regarding substrate transport and glycogen, 
adenosine, and fructose metabolism (Allen et al., 2019). This translates 
to impaired resilience to altered nutrient availability, energy demand, 
or environmental conditions, where cells struggle to effectively 
alternate fuel sources and adjust metabolic pathways to support 
cellular function and homeostasis. Together, these findings strongly 
support metabolic dysregulation as a pathogenic factor in C9orf72-
related neurodegeneration.

Drosophila metabolism and disease
Compared to clinical research and other animal models, 

Drosophila research on this is sparse, however promising. Considerable 
potential can be seen in a recent study using C9orf72 to investigate 
autophagy and proteasome pathways. Results showed spironolactone, 
an aldosterone antagonist, effectively lowers DPR levels through the 
autophagy pathway. A similar reduction in DPR levels was achieved 
via the proteasome pathway using geldanamycin, an HSP90 inhibitor. 
The study also implicated cAMP and inhibition of protein kinase A 
(PKA) activity in reducing DPR, hinting at PKA inhibition’s 
therapeutic potential (Licata et al., 2022). Other research explores 
insulin/IGF signaling, revealing consistent impairment in C9orf72 
repeat expansion flies. They observed a decrease in GGGGCC repeat 
and poly-GR toxicity with heightened insulin signaling, suggesting a 
neuroprotective role for insulin signaling (Atilano et  al., 2021). 
Together, these fly models identify significant metabolic components 
in neurodegenerative pathogenesis and potential therapeutic avenues 
for C9orf72-FTD.

Like any model, flies present limitations, such as potential energy 
consumption differences due to physiological temperature disparities 

(Warr et al., 2018). This distinction arises because flies are ectotherms, 
while humans are endotherms. Nevertheless, the similarities are 
extensive. For instance, Drosophila fat body, oenocytes, malpighian 
tubes, proventriculus, and midgut parallel in function to human 
adipose hepatocyte, kidney, stomach, and intestinal tissue, respectively 
(Bharucha, 2009; Rajan and Perrimon, 2013; Warr et al., 2018). Flies 
also exhibit similar metabolic pathways and associated phenotypes, 
including insulin-signaling and lipolysis in diabetes and obesity, as 
well as conserved hormones, enzymes, and homeostatic mechanisms 
(Bharucha, 2009; Chatterjee and Perrimon, 2021). Just as fly 
metabolism has contributed to studies of other neurodegenerative 
diseases, such as Parkinson’s (Solana-Manrique et  al., 2022) and 
Huntington’s disease (Aditi et al., 2016), these similarities support 
clinical relevance for fly metabolic studies.

Drosophila tools for studying metabolism
Various tools for studying fly metabolism are widely available, 

such as genetic manipulation, metabolic assays, locomotor activity 
assays, metabolomics, and imaging techniques. These methods are 
well-established and benefit from Drosophila’s unique advantages as a 
model organism, namely their short lifespan, fast reproduction, and 
well-characterized genetics. Widely used tools include tissue-specific 
RNAi, colorimetric triglyceride quantification, capillary feeder assays, 
lipid staining with Oil Red O, Sudan Black, and Nile Red, cholesterol 
extraction, glucose assays, luciferase-based ATP assays, and gas 
chromatography–mass spectrometry for metabolomic profiling 
(Figures 1B–D; Tennessen et al., 2014). More recently, barcode feeding 
assays have been developed (Park et al., 2018). This quantifies feeding 
history via qPCR of the fly body, measuring specific oligonucleotides 
that are incorporated into the food (Figure 1F).

Moreover, recent and ongoing research is lending to new 
techniques that facilitate further exploration. Of particular note is a 
novel method for simple, quick, and precise ex vivo whole-brain 
metabolic analysis (Figure 1A), enabling investigation of metabolism 
in small organisms in a tissue-dependent context (Neville et al., 2018). 
Adapted from the Agilent XFe96 metabolic analyzer, this method 
proves a useful tool for exploring fly metabolic dysfunction. Other 
methods have been optimized to dependably measure lactate, 
pyruvate, and 2-oxoglutarate in vivo using fluorescence resonance 
energy transfer (FRET) signals from metabolic sensors (Gándara 
et al., 2019). This toolkit presents an avenue for studying intact fly 
tissues and whole organs.

Circadian rhythms

Circadian model of neurodegeneration
Circadian rhythms are observable in a plethora of organisms, as 

they are a defining feature across virtually all life forms. Initially 
overlooked, their significance in pathogenesis emerged with 
advancements in molecular biology and genetics. These 24-h cycles, 
governed by internal timekeeping mechanisms influenced by 
environmental, behavioral, and endogenous factors, impact metabolism, 
hormone, immune, and sleep–wake regulation. Disturbances in 
rhythmicity correlate with disease risk and severity (Fishbein et al., 
2021) in a bidirectional manner. This has been validated for numerous 
pathologies, including immune (Liu et al., 2017; Shivshankar et al., 2020; 
Awuah et al., 2023), cardiovascular (Gottlieb et al., 2019; Hayter et al., 
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2021), psychiatric (Wehr et al., 1987; Meyer et al., 2024; Scheer and 
Chellappa, 2024), and neurodegenerative disorders (Fernández-Arcos 
et al., 2019; Sharma et al., 2020; Ibrahim et al., 2024). Given this wide 
reach, investigating the circadian dimension of disease is imperative.

This dimension of FTD has been robustly established in humans 
using sleep studies. Through actigraphy and sleep reports, FTD 
patients have been found to have reduced morning activity, total sleep, 
and sleep efficiency, and increased nighttime activity and sleep 
fragmentation (Anderson et  al., 2009; Walker and Vaughn, 2021; 
Larsen et al., 2023). Unlike Alzheimer’s Disease, sleep disturbances 
were not reserved for those with severe cognitive and behavioral 
impairment, suggesting suprachiasmatic nucleus (SCN)-related 
neuropathology in FTD (Anderson et al., 2009).

In bvFTD, rest-activity rhythm alterations were time-locked to 
mornings and early afternoons (Filardi et  al., 2024). Additionally, 
bilateral cortical thickness reductions in frontal brain regions were 
correlated with bvFTD patients’ prolonged sleep duration (Filardi et al., 
2024). Given the role of cortical thickness in neurodegeneration and 
cognitive decline (Vidal-Pineiro et al., 2020; Subotic et al., 2021; Pletcher 
et al., 2023), these results imply a circadian influence in FTD pathogenesis.

C9orf72-FTD in particular is implicated in sleep disturbances, both 
at behavioral and cellular levels. Behaviorally, disruptive sleep events like 
restlessness and shouting have uniform associations with C9orf72-FTD 

but not GRN-FTD or MAPT-FTD (Sani et al., 2019). At the cellular level, 
circadian analysis of sleep/wake-associated cells in post-mortem human 
brain tissue with C9orf72-pathology reveals abundant DPR inclusions in 
pinealocytes and, to a lesser degree, SCN neurons (Dedeene et al., 2019). 
Via pineal gland dysfunction and the disturbed SCN-pineal gland axis, 
these findings suggest circadian implications in C9orf72-pathology.

Further, a potential connection between C9orf72 repeat 
expansions and Rapid Eye Movement Sleep Behavior Disorder (RBD) 
has been established. RBD is a sleep disorder considered to be an early 
indicator of neurodegeneration in Parkinson’s Disease, and, to a lesser 
extent, Amyotrophic Lateral Sclerosis (ALS) and FTD (Zhang et al., 
2020). Among 344 RBD patients, researchers identified two carriers 
of C9orf72 repeat expansion with a risk haplotype associated with 
FTD (Daoud et al., 2014). As indicated by these findings, there may 
be a rare but potential link between these two disorders, suggesting 
C9orf72-FTD patients may be susceptible to sleep abnormalities.

Drosophila circadian rhythms and disease
Despite these outcomes, circadian studies are rare in C9orf72 

animal models. Using Drosophila, researchers found sleep 
disruptions caused by poly-PR but not poly-GA DPRs. In poly-GR 
flies, altered sleep patterns included increased daytime sleep and 
decreased nighttime sleep, with nocturnal episodes elevated in 

FIGURE 1

Analyzing metabolism and circadian rhythm in Drosophila model of C9orf72-FTD. (A) Whole-brain metabolic assays to measure oxygen consumption 
and extracellular acidification. (B) Whole-body metabolic assays to determine non-cell autonomous effects due to neurodegeneration. (C) Fat body 
staining to visualize lipid storage. (D) Gut staining to visualize microbiome and lipid digestion. (E) Drosophila activity monitor (DAM) to analyze activity 
and disruptions in circadian rhythm. (F) Barcode feeding assay to precisely measure food intake in a quantitative manner using qPCR. This image was 
created with BioRender (https://biorender.com/).
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number but reduced in duration, suggesting flies woke up more and 
slept less (Uy et  al., 2024). These changes parallel the sleep 
disruptions in clinical patients (McCarter et al., 2016), suggesting a 
potential role of poly-GR in regulating sleep. This research highlights 
the pioneering potential of circadian research using C9orf72 
Drosophila models.

As a highly conserved process, sleep regulation in flies resembles 
that of humans. Specifically, Drosophila exhibit all the fundamental 
characteristics of mammalian sleep (Hendricks et al., 2000; Shaw et al., 
2000). This includes protein channel function, catecholamine wake-
promoting effects, hypothalamic-like regulation, differential brain 
activity patterns, and the major clock genes period and timeless (Cirelli 
and Bushey, 2008; Dubowy and Sehgal, 2017). In mammals, the SCN 
regulates physiological and behavioral cycles and integrates external 
information, serving as the primary circadian pacemaker. Though 
Drosophila lack an SCN, they possess a functionally analogous set of 
approximately 150 neurons that regulate clock genes and behavioral 
activity (Dubowy and Sehgal, 2017). Overall, these similarities suggest 
clinical relevance of Drosophila circadian studies for human diseases.

Drosophila tools for studying rhythmicity
Years of research on Drosophila identified daytime activity and 

nighttime immobility, initially speculated as quiet wakefulness. In 
2000, studies confirmed sustained nighttime immobility is a sleep-like 
state rather than quiet wakefulness (Hendricks et al., 2000; Shaw et al., 
2000). This state exhibits an elevated, reversible arousal threshold and 
decreased responsiveness to external stimuli (Huber et al., 2004). It 
can last for hours, though a long duration is not a qualifying factor. 
Rather, sleep in Drosophila is operationally defined as at least 5 min of 
behavioral quiescence (Cirelli and Bushey, 2008).

Monitoring human circadian rhythms involves various methods, 
including actigraphy, body temperature, melatonin levels, hormone 
biomarkers, and rest-activity behavior (Yousefzadehfard et al., 2022). 
Sleep studies typically rely on recording eye movements and brain 
waves using electroencephalography (EEG) and polysomnography. 
These tools are adaptable to various animal models, such as pigs, dogs, 
rabbits, rats, and mice (Zong et al., 2023) but not to Drosophila. An 
alternative method uses local field potentials in brain regions involved 
in locomotion (Nitz et al., 2002; Qiu et al., 2021).

A common method used in flies is behavior-based paradigms. 
This includes actograms, temperature preference, courtship behavior, 
feeding behavior, or locomotor activity (Tataroglu and Emery, 2014). 
Locomotor activity is often measured using the Drosophila Activity 
Monitor (DAM) by Trikinetics. This houses a single fly in a locomotor 
tube where infrared light detects each time the fly breaks the beam, 
indicating its activity (Figure  1E). The DAM has been effectively 
utilized in studies (Chouhan et al., 2021; Karam et al., 2022), and 
various analysis software and protocols have been established (Chiu 
et al., 2010; Pfeiffenberger et al., 2010; Cichewicz and Hirsh, 2018; 
Silva et al., 2022). Thus, the DAM toolkit provides an effective means 
for studying circadian behavior in flies.

Discussion

While progress has been made in unraveling FTD pathology, 
challenges remain in diagnosis and treatment, underscoring the 
importance of continued research. Drosophila are a powerful model 
for studying FTD pathogenesis, particularly in the C9orf72 mutation, 

a common genetic factor. By introducing this mutation into flies, key 
aspects of the human FTD phenotype are replicated, enabling 
exploration of cellular and molecular pathways implicated in 
C9orf72-neurotoxicity.

Historically, Drosophila studies focused on RAN translation and 
DPR toxicity in C9orf72-FTD pathology. Research then expanded to 
neuronal dysfunction, autophagy, and synaptic dysfunction, suggesting 
transport granule components and glutamate inhibition as possible 
therapeutic targets. Despite these advances, gaps in FTD pathogenesis, 
especially in metabolism and circadian rhythms, remain. Limited 
studies in Drosophila models show metabolic dysregulation, including 
altered lipid metabolism and autophagy, and circadian disturbances, 
urging further exploration. With evidence that metabolism is altered 
prior to symptomatic disease (Popuri et al., 2021), there is promise that 
metabolic biomarkers identified in Drosophila studies could be used 
for early diagnosis, and potentially preventative treatment.

Addressing these gaps is crucial for a comprehensive understanding 
of FTD. Considering that the fly community has accessible tools to 
study metabolism and circadian rhythms, investigating their 
ramifications on neurodegeneration is filled with potential. Exploring 
non-cell autonomous effects is also vital, as neuronal pathologies have 
systemic consequences. Leveraging the unique advantages of Drosophila 
models is crucial to advancing our understanding of FTD and 
uncovering novel therapeutic targets, ultimately benefiting FTD patients.
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