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Background: The molecular mechanisms underlying racial disparities in 
schizophrenia (SCZ) illness courses and outcomes are poorly understood. While 
these differences are thought to arise partly through stressful social gradients, 
little is known about how these differences are reflected in the brain, nor how 
they might underlie disparate psychiatric outcomes.

Methods: To better understand the neuro-molecular correlates of social 
gradients, SCZ, and their overlap, we  analyzed post-mortem dorsolateral 
prefrontal cortex (DLPFC) RNAseq data from two racially diverse cohorts in the 
CommonMind Consortium (235 reported Black and 546 White, 322 SCZ cases 
and 459 controls) using differential expression and gene set variation analyses.

Results: We observed differences in brain gene expression that were consistent 
across cohorts and reported race. A combined mega-analysis identified 1,514 
genes with differential expression (DE) between reported race groups after 
accounting for diagnosis and other covariates. Functional enrichment analyses 
identified upregulation of genes involved in stress and immune response, 
highlighting the potential role of environmental differences between reported 
race groups. In a race-by-diagnosis interaction analysis, no individual genes 
passed statistical significance. However, 109 gene sets showed statistically 
significant differences, implicating metabolic and immune pathways.

Conclusion: Our results suggest molecular mechanisms uniquely perturbed 
across reported race groups and identify several candidate pathways associated 
with SCZ in a reported race-dependent manner. Our results underscore the 
importance of diverse cohort ascertainment to better capture population-level 
differences in SCZ pathogenesis.
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Introduction

Schizophrenia (SCZ) is a severe mental disorder affecting 1% of 
the world’s population, characterized by debilitating symptoms, 
including hallucinations, delusions, and disordered thinking (Javitt, 
2010; Jia et  al., 2010; Stępnicki et  al., 2018). North American 
epidemiological studies have reported significant racial disparities in 
the prevalence of SCZ, with some studies noting a nearly three times 
higher incidence in Black relative to White populations (Bresnahan 
et  al., 2007; Schwartz and Blankenship, 2014). In addition, Black 
individuals with SCZ typically experience earlier onset and more 
severe symptoms, including a greater degree of cognitive impairment 
(Schwartz et al., 2019) and earlier ages of death (Olfson et al., 2015). 
These differences suggest the possibility of different underlying 
pathophysiologies of SCZ that may differ between Black and White 
populations (Bishop et al., 2022).

Although the factors that cause SCZ are not fully understood, they 
are considered to result from an interplay between genetic 
predisposition and external environmental factors (Forsyth et  al., 
2013; Woolway et al., 2022). Some environmental factors, known as 
social determinants of health, substantively influence health outcomes 
(Braveman and Gottlieb, 2014) and include race-associated social 
stressors, such as racism, systemic poverty, and institutional adversities 
(Al Abo et al., 2022). The ubiquity of these stressors is evidenced by 
recent findings that the majority of Black Americans report 
encountering pervasive chronic social stressors, with many 
experiencing employment discrimination (57%), biased police 
interactions (60%), and directed racial slurs (51%) (Bleich et al., 2019). 
Furthermore, Black individuals with SCZ report experiencing more 
social stress and discrimination than White individuals with SCZ 
(Bommersbach et al., 2023). Exposure to these chronic stressors can 
worsen psychiatric outcomes through triggering sustained stress 
responses, contributing to allostatic overload (Berger and 
Sarnyai, 2015).

Despite the heterogeneity of SCZ neuropathophysiology, stress 
and immune pathway dysregulation are common endophenotypes of 
the diagnosis (Van Kesteren et al., 2017; Ermakov et al., 2021; Bishop 
et al., 2022). Thus, it has been hypothesized that social determinants 
of health, which disproportionately affect marginalized groups, could 
impact the brain in ways that contribute to varying psychiatric 
outcomes (Alnæs et  al., 2019). However, there is a lack of 
understanding of how experiencing such stressors might manifest in 
the brain (McEwen and Gianaros, 2010). This knowledge gap is partly 
attributed to the underrepresentation of diverse groups in molecular-
genomic databases and longstanding disparities in biomedicine 
(Jooma et al., 2019; Mitchell et al., 2022).

Postmortem analysis of the human brain at the transcriptomic 
level is a valuable tool for identifying molecular signatures associated 
with population-level differences, such as those associated with 
psychiatric illnesses (Mimmack et al., 2002; Ramaker et al., 2017; 
Gandal et al., 2018; Hoffman et al., 2022). Furthermore, this tool can 
prove especially useful when characterizing molecular underpinnings 
of SCZ, as it can identify gene expression patterns resulting from 
environmental factors (Juarez et al., 2014). Thus, brain transcriptomics 
has the potential to provide new insight into the complex interplay of 
environmental and genetic factors that lead to the development of 
psychiatric illnesses. Previous work has described significant and 
reproducible gene expression changes in SCZ (Yuan et al., 2019; Yang 

et al., 2020). However, while there have been efforts to understand 
how genetic ancestry is associated with postmortem brain 
transcriptomes in complex disorders like Alzheimer’s Disease (Felsky 
et al., 2023; Sariya et al., 2020), efforts to understand how differences 
in race-associated lived experiences might impact brain gene 
expression and the potential for developing SCZ has been lacking 
(McEwen and Gianaros, 2010).

Here, we aimed to better understand the mechanisms underlying 
racial disparities in schizophrenia (SCZ) by performing differential 
gene expression analyses in postmortem brain tissue RNAseq datasets 
from two large, racially diverse cohorts. As outlined in our visual 
abstract in Figure 1, our primary aims were to (1) identify genes and 
pathways that are consistently up- and down-regulated in brain 
samples across individuals reported as Black or White, reflecting 
exposure to social gradients associated with these groups; and (2) 
identify genes and pathways that are differentially expressed in SCZ 
in a reported race-specific manner using a reported race-by-diagnosis 
interaction model. We also aimed to assess how the reported race-
associated effect overlaps with the a priori Conserved Transcriptional 
Response to Adversity (CTRA), an established gene expression 
signature that indexes responses to the exposure of chronic social 
stressors (Cole, 2009). We report that the gene expression signatures 
associated with reported race are reproducible across cohorts, strongly 
implicating cellular stress and immune pathways as predicted. Our 
study underscores the need for further analyses of racially diverse 
cohorts and statistical approaches that equitably consider lived 
experiences and social determinants of health.

Methods

Description of cohorts and sample filters

The experimental methods to generate the postmortem 
CommonMind Consortium (CMC) RNAseq dataset from the 
dorsolateral prefrontal cortex (DLPFC) are described in Hoffman et 
al. (2019). Data were downloaded from Synapse via synapse ID: 
syn2759792. As defined by Hoffman et al. (2022), the CMC comprises 
two cohorts collected across four institutions. The first cohort, MSSM-
Penn-Pitt, consists of three institutions from the Mount Sinai School 
of Medicine Brain Bank, the University of Pennsylvania Brain Bank 
and the University of Pittsburgh Brain Bank. The second cohort, 
NIMH-HBCC, consists of one institution sampled from the National 
Institute of Mental Health’s Human Brain Collection Core.

We obtained reported race for each individual from metadata 
provided by the original authors and brain banks (Hoffman et al., 
2019). Across each brain bank, participant race was reported by a 
next-of-kin or a lab technician. We note the possibility of discordance 
between this measure of reported race and how participants may self-
identify had they been asked (see Discussion). Using available 
metadata provided by the CommonMind Consortium, we subset the 
total dataset to only include individuals with annotated chromosomal 
XX or XY sex, with control or SCZ psychiatric diagnosis, and Black or 
White reported race. We  further filtered individuals without 
congruent sex and gender identity and removed RNAseq sample 
duplicates, leaving data from 781 unique individuals (Figure 2). In 
addition, we  also made use of an available measure from the 
CommonMind Consortium, EV.1, that denotes a genotyping-based 

https://doi.org/10.3389/fnmol.2024.1450664
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Simmons et al. 10.3389/fnmol.2024.1450664

Frontiers in Molecular Neuroscience 03 frontiersin.org

race variable (determined using genome-wide genotyping arrays) 
(Hoffman et  al., 2019) to directly compare with our measure of 
reported-race. As expected, we  observed a large degree of 
correspondence between reported race and genetically-inferred race 
(Supplementary Figure S1).

Differential expression analyses and 
statistical covariates

We used processed RNAseq-based gene expression count data 
provided by the CommonMind Consortium and filtered subjects and 
samples as described above. We performed differential expression 
(DE) analyses to identify genes differentially expressed across samples 
reported as Black or White, control or SCZ diagnosis, and the reported 
race-by-diagnosis interaction. We identified differentially expressed 
genes using the ‘dream’ differential expression framework built on 
‘limma-voom’ (Ritchie et al., 2015). To account for reported race, 
diagnosis, and the reported race-by-diagnosis interaction, we created 
a nested variable combining the reported race and diagnosis terms, 
then utilized contrasts implemented within ‘dream’ to 
disentangle effects.

Prior to performing DE analyses, we first performed a series of 
statistical tests to assess whether metadata factors differ between 

reported race groups within each institution in our study. Specifically, 
we  compared factors such as age at death, cause of death, with a 
specific focus on cardiovascular-related deaths due to limited cause-
of-death data in the CommonMind portal metadata (see 
Supplementary Figure S2). Additionally, we assessed brain pH, post-
mortem interval (PMI), schizophrenia diagnosis, sex distribution, and 
RNA integrity number (RIN) to ensure that any observed gene 
expression differences were not influenced by these metadata variables.

The analysis (see Supplementary Table S1) broadly revealed 
that most metadata variables did not show significant differences 
between reported race groups across the institutions involved in 
our study. This consistency suggests that these factors–such as 
brain pH, post-mortem interval (PMI), schizophrenia diagnosis, 
sex distribution, and RNA integrity number (RIN)–are unlikely to 
introduce bias into our differential gene expression results. 
However, we  note some significant differences (identified as 
p < 0.05) that warrant attention. Specifically, we identified that in 
the Penn institution, individuals reported as White had a 
significantly higher average age at death (75.85 ± 13.17 years, 
n = 79) compared to individuals reported as Black 
(66.08 ± 15.08 years, n = 13; p = 0.0138). Additionally, in the Pitt 
institution, a higher proportion of individuals reported as Black 
were diagnosed with schizophrenia (56%, n = 27) when compared 
to those reported as White (32%, n = 120; p = 0.0429). Interestingly, 

FIGURE 1

Visual abstract. This visual abstract outlines the study design and key goals related to the analysis of racial disparities in schizophrenia using post-
mortem brain transcriptomic data from the CommonMind Consortium (CMC). The study integrates data from two major cohorts (MSSM-Penn-Pitt and 
NIMH-HBCC) and examines differential gene expression associated with reported race and its interaction with schizophrenia diagnosis.
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we  observed the opposite pattern in the Penn cohort, where a 
higher proportion of individuals reported as White were diagnosed 
with schizophrenia (67%, n = 79) compared to individuals reported 
as Black (23%, n = 13; p = 0.0068). Furthermore, in the NIMH-
HBCC cohort, individuals reported as Black had a significantly 
longer PMI (34.55 ± 18.86 h, n = 151) when compared to individuals 
reported as White (27.84 ± 14.06 h, n = 116; p = 0.0018) and were 
also older at death (43.36 ± 18.34 years, n = 151) compared to 
individuals reported as White (35.1 ± 20.57 years, n = 116; 
p = 0.000567).

When performing DE analyses, in light of some of the differences 
in metadata factors between reported race groups identified above, 
we modeled our statistical approach after Hoffman et al. (2022), who 
analyzed the same CommonMind-based datasets. Specifically, as in 
Hoffman et al. (2022), we  included the following technical and 
biological covariates: RNA integrity number (RIN), intronic rate 
(IntronicR), intragenic rate (IntragenicR), intergenic rate 
(IntergenicR), ribosomal RNA rate (rRNA) and cellular fractions of 
oligodendrocyte (cellF1), GABAergic (cellF2) and glutamatergic cells 
(cellF3). When performing analyses using multiple institutions, 
we also included a covariate related to institutional brain bank. Also, 
following Hoffman et al. (2022), we  performed three sets of DE 
analyses, one each for the two cohorts of MSSM-Penn-Pitt and 
NIMH-HBCC and a third mega-analysis that combined both cohorts.

Our statistical models were defined as:
Gene Expression ~ Reported Race + Dx + Reported 

Race:Dx + Covariates.
When visualizing the results of individual genes, we calculated 

gene expression residuals by regressing out covariates (as defined 
above) to visualize expression per gene.

Gene set variation analysis and functional 
enrichments

We performed gene set variation analysis (GSVA) using the 
‘GSVA’ package (Hänzelmann et al., 2013) to identify gene ontology 
(GO) sets that were differentially expressed with respect to our 
contrasts of interest. We employed this analysis, in part, to improve 
our statistical power to identify significant effects by pooling 
biologically related genes into gene sets. We  followed the same 
statistical model and covariates as the mega-analysis gene-level 
differential expression analyses.

We procured gene sets from the 2021 ‘Human Biological Process’ 
sets from the data library provided by the ‘Enrichr’ tool (Chen et al., 
2013; Kuleshov et al., 2016; Xie et al., 2021). Then, we added two 
additional gene sets comprising the a priori Controlled Transcriptional 
Response to Adversity (CTRA) gene set. We filtered only to include 
sets with 10–150 genes.

We used the ‘g:Profiler2’ package (Raudvere et al., 2019; Kolberg 
et al., 2020) to perform pathway enrichments against GO, KEGG, 
REACTOME, WikiPathways, miRTarBase, and TRANSFAC 
databases. We  used the ‘rrvgo’ (Sayols, 2020) package to perform 
semantic clustering and visualize hierarchies of differentially expressed 
GO terms’ statistical significance and size. We only included the top 50 
most significantly up-or down-regulated gene sets.

Statistical significance and thresholding

We used ordinary least squares regression (OLS) using all genes’ 
t-statistics from the cohort-independent DE analyses to evaluate the 

FIGURE 2

Reported race and neuropsychiatric composition across the CommonMind Consortium (CMC). This figure displays the distribution of reported race 
and neuropsychiatric diagnosis [Control vs. Schizophrenia (SCZ)] across two cohorts within the CommonMind Consortium (CMC): MSSM-Penn-Pitt 
and NIMH-HBCC. The bar plots depict the number of individuals reported as Black or White in each cohort and diagnosis group, highlighting the 
reported race composition and distribution of diagnoses within these cohorts.
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concordance of differential expression signatures between cohorts. 
We  used the Benjamini-Hochberg False Discovery Rate (FDR) 
(Benjamini and Hochberg, 1995) to account for multiple testing 
across genes, implemented using ‘limma-voom.’ We define genes 
and pathways as differentially expressed if they meet both criteria: 
an FDR < 0.05 and an absolute log2-fold change (LFC) threshold 
of 0.25.

Results

The brain transcriptomic signature of 
reported race is robust and enriched for 
stress-response and immune-related 
pathways

We used differential expression analyses to investigate the 
transcriptomic signature associated with reported race using post-
mortem brain RNAseq datasets from the CommonMind Consortium 
(Hoffman et al., 2019). We used reported race as a proxy for social and 
environmental stressors associated with different racial groups, 
recognizing that health outcomes are largely shaped by systemic 
inequalities. Although we employed a binary classification for self-
reported race, we  acknowledge that race is a social construct 
influenced by a wide range of social and environmental factors (see 
Discussion). This measure of reported race was further highly 
concordant with genetic ancestry in these samples 
(Supplementary Figure S1). We performed this analysis using SCZ 
cases and controls, including covariates for age, sex, and other 
technical factors (see Methods) after careful consideration of how such 
metadata factors differ between reported race groups in each cohort 
(Supplementary Table S1).

Using the reported race measure, we identified 1,514 differentially 
expressed genes (DEGs) thresholded at a Benjamini-Hochberg 
FDR < 0.05 and an absolute log2-fold change (LFC) of 0.25 when 
combining both cohorts in a mega-analysis (see Methods) (Figure 3A, 
examples for individual genes shown in Figure  3B, full results in 
Supplementary Table S2). These DEGs included key genes involved in 
stress and immune biological processes, such as the C-C Motif 
Chemokine Ligand 4 Like 2 gene CCL4L2 (LFC = 1.42; FDR = 3.54 × 
10−5), Inter-Alpha-Trypsin Inhibitor Heavy Chain 2 gene ITIH2 
(LFC = −1.1; FDR = 1.03 × 10−13), Leukocyte Immunoglobulin Like 
Receptor A4 gene LILRA4 (LFC = −1.12; FDR = 5.40 × 10−5) and LY6/
PLAUR Domain Containing 8 gene LYPD8 (LFC = 2.29; FDR = 4.64 × 
10−18). Importantly, we observed that the gene expression signatures 
of reported race were highly concordant between the MSSM-Penn-
Pitt and NIMH-HBCC cohorts when analyzed independently 
(Spearman’s rho = 0.44; p < 2.2 × 10−16, Figure 3C).

To understand the relationship between reported race and the 
well-established a priori Controlled Transcriptional Response to 
Adversity (CTRA) gene profile defined by Cole et al. (2015) (see 
Methods), we tested the overlap between 53 CTRA genes and those in 
our transcriptomic signature. This analysis revealed that reported 
race-associated DEGs overlapped with eight CTRA genes 
(hypergeometric p-value = 7.18 × 10−5, Figure  3D). Stratifying by 
direction of effect further uncovered that the genes upregulated in 
individuals reported as Black shared seven genes from the CTRA 
interferon subset (IFI16, IFI35, IFI6, IFIH1, IFIT1, IFIT2, IFIT3, 

IFITM2, and IFITM3) and one with the CTRA pro-inflammatory 
subset (NFKB2) (Figure 3D; Supplementary Figure S3A).

To investigate whether the top differentially expressed genes 
associated with reported race in our study overlap with known 
schizophrenia risk genes, we  conducted a comparative analysis 
utilizing genome-wide association study (GWAS) summary statistics 
from Pardiñas et  al. (2018). We  first identified the genes most 
significantly differentially expressed between racial groups in our 
dataset. These genes were then cross-referenced with the 
schizophrenia-associated genes reported in the GWAS dataset 
(Supplementary Table S3). This analysis revealed an overlap of several 
genes, including GSDME (gasdermin E), PDE4B (phosphodiesterase 
4B), SLC6A11 (solute carrier family 6 member 11), PRKCB (protein 
kinase C beta), and OPCML (opioid binding protein/cell adhesion 
molecule like).

Next, we performed a gene ontology (GO) analysis to contextualize 
the biological functions of DEGs associated with reported race 
(Figure 3E). We identified numerous GO terms, with many of the most 
significantly up-regulated terms relating to stress-response and 
immune pathways, including immune system process (4th most 
significant term, p = 9.64 × 10−5) and response to external stimulus (6th 
most significant term, p = 4.74 × 10−3) (Figure  3E). Plotting the 
t-statistics of these ontologies’ gene constituents demonstrated 
concordant associations between MSSM-Penn-Pitt and NIMH-HBCC 
cohorts (immune system process, rho = 0.36 and response to stimulus, 
rho = 0.37, Supplementary Figure S3B). Alongside these terms, we note 
enrichment in additional stress and immune-mediated pathways, 
including defense response (p = 1.29 × 10−4), response to stress (p = 7.77 
× 10−4), and positive regulation of immune system process (p = 7.63 × 
10−4) (Figure 3D). In contrast, our analyses revealed downregulation in 
mostly cell-structure-related pathways in individuals reported as Black, 
such as cell adhesion (p = 1.59 × 10−4) and cell periphery (p = 8.90 × 10−6).

Interaction models reveal association of 
metabolic and immune pathways with 
schizophrenia in reported race-dependent 
manner

Given the numerous genes associated with the reported race 
measure, we  aimed to explore if there are distinct transcriptomic 
signatures for schizophrenia (SCZ) across reported race groups. To 
address this, we employed a reported race-by-diagnosis interaction 
model, adjusting for age, sex, and other technical factors (see 
Methods). This approach more directly accounts for reported race 
when compared to previous SCZ studies that either did not consider 
or only adjusted for race as a covariate (Hoffman et al., 2022; Katsel 
et al., 2005; Leirer et al., 2019).

Differential expression analysis revealed no DEGs associated with 
the reported race-by-diagnosis term at Benjamini-Hochberg FDR < 5% 
(Figure  4A, full results in Supplementary Table S4). Accordingly, 
we observed a weak concordance between the MSSM-Penn-Pitt and 
NIMH-HBCC cohorts (rho = 0.027; p < 2.3 × 10−4, Figure 4B).

Having identified no significant differential expression at the 
single-gene level, we  employed a GSVA to investigate interactions 
between reported race and SCZ diagnosis at the pathway level. Here, 
we  identified 109 gene sets at an FDR < 5% and an absolute LFC 
threshold of 0.25 (Figure 4C, Supplementary Table S5). These included 
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immune-related ontologies such as negative regulation of leukocyte cell–
cell adhesion (LFC = −0.34; FDR = 9.13 × 10−3) and neutrophil activation 
(LFC = −0.25; FDR = 2.99 × 10−4). Contrarily we note positive changes 
in cellular response to virus (LFC = 0.36; FDR = 7.70 × 10−3) and, notably, 
CTRA interferon (LFC = 0.24, FDR = 4.04 × 10−4) gene sets (Figure 4C).

We then used semantic clustering to summarize the overall 
biological and relatedness across the top upregulated differentially 
expressed pathways. The most differentially expressed pathways 
belonged to parent GO terms involved in aspartate family amino acid 
catabolic process, but we  note also observing immune-related 
pathways, such as lymphocyte chemotaxis (Figure  4D). A similar 
analysis of the downregulated ontologies revealed a relationship 
between tetrapyrrole metabolic process striated muscle development and 
neutrophil activation (Supplementary Figure S4). These results suggest 
that although the transcriptomic signature associated with the 
reported race-by-diagnosis interaction is only weakly concordant 
across cohorts at the single-gene level, gene set-based analyses indicate 
numerable significant gene sets at the pathway level.

Discussion

Despite considerable research highlighting racial disparities in the 
clinical presentation and outcomes of schizophrenia (SCZ), studies 

investigating the underlying mechanisms remain limited. Our analysis 
of brain gene expression data from hundreds of individuals across four 
diverse brain banks represents one of the most extensive analysis of 
transcriptomic data aimed at characterizing gene expression 
differences associated with reported race and their interaction 
with SCZ.

By leveraging the CommonMind Consortium (CMC) dataset, 
we analyzed gene expression patterns associated with reported race in 
the brain, our analysis demonstrated robust reproducibility between 
the MSSM-Penn-Pitt and NIMH-HBCC cohorts. Consistent with our 
hypothesis, genes upregulated in individuals reported as Black were 
significantly enriched in pathways related to cellular stress and 
immune function, including responses to stress and external stimuli. 
This supports our hypothesis that reported race, used here as a proxy 
for social stress exposure, would be  associated with differential 
expression in stress-response and immune-related gene expression, 
suggesting heightened social adversity. This aligns with prior research 
demonstrating that Black-identifying individuals exhibit dysregulated 
cellular stress and immune gene pathway expression in the context of 
blood leukocytes when exposed to increased social stressors (Thames 
et al., 2019).

In addition, genes upregulated in individuals reported as Black 
overlap with the well-established Conserved Transcriptional Response 
to Adversity (CTRA) gene set, specifically among the interferon 

FIGURE 3

The gene expression signature of reported race. (A) Volcano plot illustrating genes differentially expressed across reported race groups using a mega-
analysis that combines MSSM-Penn-Pitt and NIMH-HBCC cohorts. Blue (red) points indicate genes downregulated (upregulated) in individuals reported 
as Black relative to White with FDR  <  5% and an absolute log2-fold change (LFC) of 0.25. Points circled in orange indicate genes plotted in (B). 
(B) Residual expression of specific genes stratified by reported race and cohort. (C) Concordance analysis of reported-race-associated differential 
expression signatures between the MSSM-Penn-Pitt (y-axis) and NIMH-HBCC (x-axis) cohorts. Points indicate t-statistics from cohort-specific 
differential expression analyses and density lines, and the color of the points indicates local density. Differential expression analyses illustrate genes 
more highly expressed in individuals reported as Black (top, right) relative to White (bottom, left). The yellow line indicates the line of best fit, whereas 
the black line indicates the unity line. Inset R-value indicates Spearman’s correlation. (D) Volcano plot of the signature of reported race only illustrating 
genes in the a priori CTRA gene set. (E) Functional Gene Ontology (GO) enrichments for genes significantly up-(red) and down-regulated (blue) in 
individuals reported as Black relative to White.
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gene-related subset of the CTRA. This finding aligns with previous 
research indicating that elevated CTRA gene expression is associated 
with higher levels of social stress (Knight et al., 2019; Lee et al., 2021). 
However, we note that the direction of such gene expression changes 
is somewhat inconsistent with the direction of changes predicted by 
the CTRA, which suggests that we would observe down-regulation of 
interferon related genes (Cole, 2009). Regardless, we recognize that 
the CTRA was initially established in the context of gene expression 
signatures derived from blood and immune cells, making it 
challenging to precisely translate such a signature to brain tissues. 
Furthermore, we note a precedence for discordant directions of effect 
between peripheral and brain tissues; for example, in early Alzheimer’s 

disease, amyloid levels increase in the brain but decrease in the 
cerebrospinal fluid (Hameed et al., 2020).

Our analysis of the reported race-by-SCZ interaction revealed no 
significant significantly associated DEGs at the single-gene level. These 
findings are similar to those of Hoffman et al. (2022), who also 
reported no genes significantly associated with a sex-by-diagnosis 
interaction effect using the same CMC dataset and analytical approach 
we use here. However, our gene-set-based GSVA analysis unveiled 109 
significant differentially enriched gene sets associated with a reported 
race-by-diagnosis effect. These included pathways such as negative 
regulation of leukocyte cell–cell adhesion and cellular response to stress. 
These results confirm our hypothesis that the interaction of reported 

FIGURE 4

The gene expression signature of the reported race-by-diagnosis interaction. (A) Volcano plot of mega-analysis combining both cohorts indicating 
pathways enriched in individuals reported as Black relative to controls not seen in individuals reported as White (top, right) and in individuals reported 
as White relative to controls not seen in individuals reported as Black (top, left). (B) Differential expression analysis illustrates genes more highly 
expressed in SCZ cases reported as Black compared to controls not seen in individuals reported as White (top, right) and SCZ cases reported as White 
compared to controls not seen in individuals reported as Black (bottom, left) in the MSSM-Penn-Pitt (y-axis) and NIMH-HBCC (x-axis) cohorts. Points 
indicate t-statistics from cohort-specific differential expression analyses. The yellow line indicates the line of best fit, whereas the black line indicates a 
slope of one. The density lines and color of the points indicate local density. (C) Volcano plot of the GSVA revealing pathways enriched in individuals 
reported as Black relative to controls not seen in individuals reported as White (top, right) and individuals reported as White relative to controls not seen 
in individuals reported as Black (top, left). (D) Treemap plot of the enrichment analysis showing semantic clustering of top 50 terms expressed 
differently across controls reported as Black relative to SCZ cases not seen in individuals reported as White. Parent term (white text overlay) color is 
based on relatedness to the child term (black text underlay) and parent size is proportional to its statistical significance.
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race and SCZ diagnosis would reveal the association of stress and 
immune gene sets.

A semantic clustering analysis on DE gene sets associated with the 
reported race-by-diagnosis interaction identified a trend for 
enrichment toward metabolic and immune processes, including 
multiple immune-related parent terms such as lymphocyte chemotaxis 
and regulation of macrophage differentiation. The most significant 
parent ontology, aspartate family amino acid catabolic process, is 
particularly notable, given the influence of amino acid metabolite 
levels on neural activity, offering a distinct understanding of chronic 
stress mechanisms (Ni et al., 2008).

A recent study by Benjamin et al. (2024) aimed to elucidate the 
impact of genetic ancestry on gene expression in postmortem brain 
tissue of neurotypical Black American individuals. Their study 
specifically focused on identifying differentially expressed genes 
(DEGs) associated with the proportion of African or European genetic 
ancestry. In contrast, our study takes a different approach by 
examining DEGs associated with reported race; a construct that 
encompasses environmental, cultural, and social factors. By focusing 
on reported race, our study considers the broader impact of 
sociocultural factors and their interaction with genetic predisposition, 
which is crucial for understanding racial disparities in mental health 
outcomes. Despite these important methodological differences, both 
studies converged on a key finding: the enrichment of immune-related 
pathways among the DEGs associated with race or genetic ancestry. 
The consistency of these findings across studies with different 
methodological approaches underscores the robustness of the 
observed immune pathway enrichment. The similar conclusions 
drawn between our study and that of Benjamin et al. provide mutual 
validation, increasing confidence in the biological significance of these 
immune-related gene expression changes.

Despite its contributions to understanding gene expression 
differences between reported race groups in SCZ our study has several 
noteworthy limitations. First, we used a measure of reported subject 
race provided by a next of kin or laboratory technician. However, this 
measure holds potential value over other measures, such as genetic 
ancestry, as it enables us to better assess the impact of stress originating 
from external sources. Unlike genetic ancestry, reported-race likely 
correlates better with individuals’ lived experiences, including social 
stressors. Second, we note that detailed sociodemographic information 
and environmental stressors experienced during participants’ 
lifetimes, including socioeconomic status, living quality, poverty level, 
and perceived discrimination, were unavailable or not collected from 
the subjects included in these studies. While we can reasonably expect 
that such factors would differ between reported groups studied here, 
we  cannot be  sure to what extent the reported race-associated 
differences we observed are due to differences in such environmental 
exposures or other factors. Furthermore, we acknowledge the unequal 
representation of Black individuals in the cohorts, with the MSSM-
Penn-Pitt cohort having fewer individuals reported as Black compared 
to NIMH-HBCC, as well as the specificity of our sample, which was 
confined to individuals with a diagnosis of SCZ and controls.

Despite the molecular relatedness of SCZ to other psychoses, such 
as bipolar disorder (BD) (Cardno and Owen, 2014), both of which are 
known to share immune dysregulation (Torsvik et  al., 2023), our 
findings may not be generalizable to other psychiatric or neurological 
conditions. Despite these limitations, our study provides important 
insights into how social gradients may impact the brain, potentially 

contributing to well-documented racial disparities in SCZ and other 
neuropsychiatric disorders.

In closing, our findings highlight a molecular signature linked to the 
reported race measure, reflecting differences in stress-response and 
immune pathways. This underscores the critical importance of diverse 
cohort ascertainment and modeling of socio-demographic stressors when 
considering molecular markers of SCZ. Our findings provide evidence 
linking reported race, used as a proxy of social stress, to differential 
expression in cellular stress response and immune-related genes in the 
brain and emphasize the potential contribution of environmental stressors 
to the distinct and divergent psychiatric outcomes observed among Black 
American populations. Moreover, our findings suggest the potential 
influence of environmental factors, including those related to Black-
specific experiences like systemic discrimination. To deepen our 
understanding of these interactions, future research should prioritize 
comprehensive socio-demographic data collection alongside genetic data, 
allowing for a more fulsome capture of the complexity of lived experiences.
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