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Neurodevelopment encompasses a complex series of molecular events occuring 
at defined time points distinguishable by the specific genetic readout and 
active protein machinery. Due to immense intricacy of intertwined molecular 
pathways, extracting and describing all the components of a single pathway 
is a demanding task. In other words, there is always a risk of leaving potential 
transient molecular partners unnoticed while investigating signaling cascades 
with core functions—and the very neglected ones could be the turning point in 
understanding the context and regulation of the signaling events. For example, 
signaling pathways of Notch and Toll-like receptors (TLRs) have been so far 
unrelated in the vast body of knowledge about neurodevelopment, however 
evidence from available literature points to their remarkable overlap in influence 
on identical molecular processes and reveals their potential functional links. Based 
on data demonstrating Notch and TLR structural engagement and functions 
during neurodevelopment, along with our description of novel molecular 
binding models, here we hypothesize that TLR proteins act as likely crucial 
components in the Notch signaling cascade. We advocate for the hypothesized 
role of TLRs in Notch signaling by: elaborating components and features of 
their pathways; reviewing their effects on fates of neural progenitor cells 
during neurodevelopment; proposing molecular and functional aspects of 
the hypothesis, along with venues for testing it. Finally, we discuss substantial 
indications of environmental influence on the proposed Notch-TLR system 
and its impact on neurodevelopmental outcomes.
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1 Notch and Toll—structural and signaling features

During neurodevelopment, neural progenitor cells (NPCs) settled in the neuroectodermal 
zone act as a self-sustainable pool of cells that subsequently differentiate into neurons, 
oligodendrocytes, and astrocytes. In the decision-making time points, NPCs mobilize crucial 
developmental pathways, creating the molecular crossroads for diverse cellular fates. Across 
metazoan clades, the Notch signaling cascade propels developmental mechanisms and 
represents a fundamental pathway for development of the central nervous system (CNS) 
(Gaiano and Fishell, 2002; Stasiulewicz et al., 2015; Gozlan and Sprinzak, 2023). Architecture 
and molecular organization of the developing brain is under the influence of Notch in synergy 
with multiple pathways, such as Sonic Hedgehog (Shh) and Wnt signaling pathways (Akai 
et al., 2005; Keilani and Sugaya, 2008; Jacobs and Huang, 2019, 2021; Marczenke et al., 2021). 
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Being a cell contact-dependent pathway, the Notch signaling hub 
events occur on the membranes of signal-sending and signal-receiving 
cells (Fiúza and Arias, 2007; D’Souza et al., 2010; Lovendahl et al., 
2018). The principle of the signaling cascade comprises binding of 
Notch receptors on the signal-receiving cell with the Delta/Serrate/
LAG-1(DSL) family of ligands, mostly Jagged and Delta-like (J/D), on 
the signal-sending cell. The juxtacrine J/D complex association and 
endocytosis-induced tension generation are vital for exposure of S2 
and S3 cleavage sites (Sprinzak and Blacklow, 2021). A series of 
ADAM and γ-secretase proteolytic cleavages release the membrane-
bound Notch intracellular domain (NICD)(Brou et al., 2000; Mumm 
et  al., 2000; Sanchez-Irizarry et  al., 2004; Fiúza and Arias, 2007; 
Lovendahl et al., 2018; Sprinzak and Blacklow, 2021; Wolfe and Miao, 
2022), and its nuclear translocation activates Notch-targeted HES and 
HEY genes (Figure 1) (Kageyama and Ohtsuka, 1999). The selection 
of receptor and ligand isoforms sets up a large number of binding 
combinations related to unique (Six et al., 2003; Gordon et al., 2007; 
D’Souza et al., 2010; Lovendahl et al., 2018; Zeronian et al., 2021; 
Gozlan and Sprinzak, 2023) molecular and cellular outcomes. Let us 
first describe Notch and its J/D ligand extracellular engagement 
mechanism in order to explain in more depth the hypothesis about 
Toll-like receptors (TLRs) as novel and essential partners in Notch 
signaling during neurodevelopment.

Notch receptors (Notch1-4) are transmembrane proteins 
comprised of two non-covalently bound heterodimers (Sanchez-
Irizarry et  al., 2004; Lovendahl et  al., 2018). The extracellular 

monomer (Notch extracellular domain, NECD) consists of multiple 
epidermal growth factor (EGF) domains with DSL-interacting EGF 
domains wrapping the mechanosensory Negative Regulatory Region 
(NRR) domain (Sanchez-Irizarry et al., 2004; Lovendahl et al., 2018; 
Sprinzak and Blacklow, 2021). The dimerization complex resembles a 
mushroom: buried under folds of the LIN-12/Notch repeat (LNR) 
domain, the heterodimerization (HD) domain protects the 
intracellular monomer protruding stem with S2 and S3 cleavage sites 
(Lovendahl et al., 2018; Sprinzak and Blacklow, 2021). In mammals, 
two Jagged (Jag1-2) and two out of three Delta-like (Dll1, Dll4) ligands 
bind Notch and pull off the protecting NECD to reveal the cleavage 
sites, while Dll3 does not bind Notch and is localized in endosome 
(Nichols et  al., 2007; Musse et  al., 2012; Lovendahl et  al., 2018; 
Sprinzak and Blacklow, 2021). The JD’s extracellular portion also has 
multiple EGF repeats between the N-terminal C2-like 
immunoglobulin domain connected to the DSL domain and the 
cysteine-rich region proximally to the membrane (Lovendahl et al., 
2018). Both proteins form rod-like open solenoids as a result of 
variable EGF repeats (Bork et al., 1996; Wouters et al., 2005; Kelly 
et al., 2010) and are glycosylated which is a standard structural feature 
of adhesion molecules (Moloney et  al., 2000; Chen et  al., 2001; 
Wouters et al., 2005; Yu et al., 2021). The extracellular portion of the 
Notch receptor responsible for J/D engagement is between EGF8 and 
EGF13, while the adhering part of the J/D are C2-like and DSL 
domains (Cordle et al., 2008a; Musse et al., 2012; Luca et al., 2015; 
Handford et al., 2018). C2-like domain has lipid-binding properties 

FIGURE 1

Representation of the Notch signaling pathway: The core proteins Notch and DSL ligands, Jagged and Delta-like, bind in cis (inhibition) and trans 
(activation) modes. Notch is a dimer of intracellular (Notch intracellular domain, NICD) and extracellular domain (Notch extracellular domain, NECD). 
(1) The protective dome-like NECD is glycosylated by Fringe glycotransferases. DSL ligand is composed of EGF-like domains with a Notch-interacting 
DSL/C2 domain. Posttranslational modifications regulate ligand affinity. Upon binding (2), the interaction groove firm binding and tension induction 
triggers endocytosis of DSL ligand (3) and NECD dissociation from NICD. Exposed NCID is cleaved by ADAM and γ-secretase (4) to release 
transcription activator NICD domain that regulates HES and HEY gene expression (5). The NECD/DSL complex undergoes endocytosis and is proposed 
to be degraded in the endosome (6). Created in BioRender. BioRender.com/f38j163.
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probably acting as a membrane proximity sensor: the lipids in 
question are glycosphingolipids (GSLs) in Drosophila (Hamel et al., 
2010) and phospholipids (PL) in mammals (Ca2+-dependent in Jag) 
(Chillakuri et al., 2013; Suckling et al., 2017; Handford et al., 2018). 
Notch EGF10-12 and Jag/Dll C2-DSL interaction groove covers an 
area of approximately 1,100 Å2 and provides variety and strength of 
interactions (Cordle et al., 2008a, 2008b; Luca et al., 2015; Handford 
et al., 2018), i.e., stabilization of glycosylated residues, hydrophobic 
and H-bond establishment, salt-bridge formation, and Ca2+-
dependent structural rigidity induction, enable the conformational 
change, generate tension which activates endocytosis and NECD 
dissociation (Nichols et al., 2007; D’Souza et al., 2010; Musse et al., 
2012). This action reveals NICD cleavage stem while following 
proteolytic action leads to subsequent intracellular signaling events 
(Nichols et al., 2007; Musse et al., 2012; Luca et al., 2017; Sprinzak and 
Blacklow, 2021). The destiny of the Notch/J/D ligand complex after 
endocytosis is elusive but is believed to undergo endosomal 
degradation. In order to bind the Notch receptor, J/D has to be in 
‘flexed’ conformation which exposes the binding groove, and it is 
supposed that J/D spontaneously transitions between ‘flexed’ and 
‘stiff ’ conformation (Luca et al., 2015, 2017; Handford et al., 2018). 
The dynamics and steps of conformational transition, how exactly the 
Jag and Dll achieve their flexed conformation, find and bind Notch, 
and what happens with the pulled NECD/J/D ligand complex in the 
signal-sending cell remains unclear. This leaves space for speculations: 
is there an additional molecule which delivers and presents ligands to 
Notch receptors; does the signal-sending cell recognizes the final 
response and if so is there a response-reading machinery in the signal-
sending cell? Here we aim to clear up these questions and offer a novel 
perspective on the Notch signaling cascade, by introducing the TLR 
family as potential member of the Notch cascade.

The Toll-like receptor (TLR) family of proteins first emerged in 
Cnidaria (Beutler and Rehli, 2002; Brennan and Gilmore, 2018; Liu et al., 
2019) and has since evolved as a patterning tool in development (Barak 
et al., 2014; Noordstra and Yap, 2021; Umetsu, 2022; Weiss and O’Neill, 
2022; Sommariva et al., 2023) and a pattern-recognition tool in immunity 
(Crack and Bray, 2007; Ma et al., 2007; Park et al., 2009; Scheffel et al., 
2012; Anthoney et al., 2018; Chen et al., 2019). The first mention of TLR 
proteins was the Toll receptor in Drosophila melanogaster embryology 
(Parthier et al., 2014; Al Asafen et al., 2020; Umetsu, 2022), where it 
serves as a molecular agent for cellular organization in dorsoventral body 
symmetry formation. Namely, the dosage of ligand Spätzle is measured 
with the Toll receptor and translated into Dorsal, Snail, and Twist protein 
gradients, resulting in a cellular patterning of ectoderm, neurogenic 
ectoderm, and mesoderm (Umetsu, 2022). Later, the same receptor was 
revealed as a signaling hub in innate immunity upon external pathogen 
stimuli (Takeda and Akira, 2004; Botos et al., 2011). These two functions 
are preserved with evolutionary modifications in mammals. For instance, 
mammalian TLR actions associated with innate immunity differ from 
Drosophila’s due to an additional direct ligand-binding capacity; TLR 
expression in NPCs and involvement in developmental processes, 
without apparent endogenous ligand, confirms its role in 
neurodevelopment. With that said, let us explore the structural and 
functional features of TLRs that will speak in favor of the hypothesis.

Structurally, the Toll-like receptors form an open solenoid by 
packing leucine-rich repeats (LRRs) in a horseshoe-shaped extracellular 
domain with adhesive and binding capacity (Jin et al., 2007; Kang et al., 
2009; Park et al., 2009; Botos et al., 2011; Salunke et al., 2012). The 

function of LRR proteins depends on their structure (specifically, radii 
and number of LRR modules) (Kobe and Deisenhofer, 1994; Kobe and 
Kajava, 2001; Enkhbayar et  al., 2004) and regarding the LRR 
composition, TLRs are divided into long and short structures (Figure 2). 
The intracellular domain of TLRs is a Toll-interleukine-1 receptor (TIR) 
homology domain that targets TIR-containing proteins, e.g., MyD88 
and TRIF, activating TAB2/3/TAK1 and TBK1 relay, TRAF3/6-operated 
molecular switch. In brief, TLR1,2,4–9, dimers bind TIRAP and MyD88 
that scaffold IRAK4/IRAK1/2 and activated TRAF3/6 proteins. 
Described down-stream effects of signalization upon TLR3 and TLR4 
dimerization (Beutler and Rehli, 2002; Ge et al., 2002; Matsumura et al., 
2003; Verstak et al., 2009; Smoak et al., 2010; Tukhvatulin et al., 2010) 
which inlude TRAM and TRIF adaptors, activation of TRAF3 and 
TRAF6, formation of TAB2/3/TAK1 signalosome and regulation of 
IKK and MAPK signaling events are presented in Figure 3. TRAF3 
activates additional families of IKK-like kinases (TBK1, IKKi). 
Activated genetic readouts and protein machinery are described in 
immune answer (Vabulas et al., 2001; Jack et al., 2019; Chen et al., 2021), 
proliferation and differentiation (Lathia et al., 2008; Ulrich et al., 2015; 
Song et al., 2019; Mann et al., 2023), mature and apoptotic phenotypes 
(Cameron et al., 2007; Ma et al., 2007; Stridh et al., 2011; Ishizuka et al., 
2013; Li et al., 2013, 2020; Shi et al., 2013; Church et al., 2016; Abdul 
et al., 2019; Werkman et al., 2020). The library of TLR-activating ligands 
induces TLR homodimerization in antiparallel orientation, except for 
versatile TLR2, which builds heterodimers with TLR1, TLR4, or 
TLR6 in a ligand-dependent fashion (Kang et al., 2009; Schenk et al., 
2009; Fernandez-Lizarbe et al., 2013; van Bergenhenegouwen et al., 
2013; Koymans et al., 2015; Liu et al., 2019; Ved et al., 2021; Galleguillos 
et al., 2022). TLR structural features, LRR concave β-sheet, and outer 
α-helices surface delineate their specificity to ligands, creating a 
multifaceted recognition hub (Figures 2, 4A) (Werling et al., 2009). 
Membrane localization of TLR2, TLR4, and TLR5 enables them to 
recognize and bind di-and triacylated lipoproteins (TLR2/1, TLR2/6) 
(Jin et al., 2007; Kang et al., 2009), LPS presented by coreceptors (TLR4) 
(Kim et al., 2007; Park et al., 2009) and flagellin (TLR5) (Smith and 
Ozinsky, 2002; Yoon et al., 2012). Endosomal TLRs bind viral dsRNA 
(TLR3), ssRNA (TLR7, TLR8) and ssDNA (TLR9) (Choe et al., 2005; 
Wang et al., 2006; Botos et al., 2009; Gosu et al., 2019). Mammalian 
TLRs are designed to fit and bind pathogen-associated molecular 
pattern molecules (PAMPs), damage-associated molecular pattern 
molecules (DAMPs), and protein coreceptors (Akashi-Takamura and 
Miyake, 2008; Park and Lee, 2013; van Bergenhenegouwen et al., 2013). 
Interestingly, the evolutionary older ligands, particularly in Drosophila 
development, are protein ones, and we  could consider that TLRs’ 
protein-binding mode of action makes a conserved modus operandi in 
developmental processes. TLRs, specifically TLR4, recognize and 
interact with distinct structural features of protein ligands (Vabulas 
et al., 2001; Kim et al., 2005; Liu et al., 2012; van Bergenhenegouwen 
et al., 2013; Mehmeti et al., 2019; Ved et al., 2021), particularly protein 
folds and carbohydrate moieties, opening the possibility that a (glyco)
protein could be a potential TLR4 neurodevelopmental ligand. The 
protein coreceptors that bind to mammalian TLR4 have a distinct C2 
globulin fold with a lipid binding pocket; e.g., globulin MD-2  in a 
complex with LPS is TLR4 binding partner (Gioannini et al., 2004; Kim 
et  al., 2007; Schumann, 2011). TLR4/MD-2 quaternary complex 
consists of two MD-2 molecules engaged with both TLR4 monomers. 
Unique structural features of TLR4 allow MD-2 binding at the concave 
dimerization face of the first and the back of the second TLR4 monomer 
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(Figure  4A) (Kim et  al., 2007). Protein MD-2 and Jag/Dll C2-like 
domains have evolutionarily conserved folds, showing overall similarity 
between overlapped models of MD-2 and Jag/Dll C2-like domains 
(Figure 4A2). This structural similarity between the Notch ligands and 
the TLR4 coreceptor is the first indication that TLRs possibly act as a 
binding partners of Notch ligands.

2 Notch and Tolls in 
neurodevelopment

To investigate the hypothesis on shared Notch and Toll signaling 
mechanisms with implications for developing nervous system, 
we  demonstrate systematically the striking functional overlaps of 

FIGURE 2

Structural classes of Toll-like receptors (TLRs) are long (A and B) and short (C) TLRs. (A) Superimposed structural models of TLR7 (red, hTLR7 
PDB:7CYN), TLR8 (yellow, hTLR8 PDB:7R54) and TLR9 (tangerine, mTLR PDB:3WPG) (upper panel). Zooming in on the loops on dimerization side of 
long TLRs reveals that loops enclose cavity between two dimers (bottom panel, circle). (B) Superimposed structural models of TLR3 (blue, hTLR3 
PDB:7C76), TLR 4 (deep red, hTLR4 PBD:3FXI) and TLR5 (green, hTLR5 PDB:3J0A) (upper panel). Zoom in on the LRR types in TLR3, TLR4 and TLR5 
(bottom panel). (C) Superimposed structural models of TLR1 (lilac, hTLR1 PDB:6NIH), TLR2 (purple, hTLR2 PDB:6NIG), and TLR6 (light blue, mTLR6 PDB: 
3479) (upper panel). Closing up of TLR2, TLR1 and TLR6 β sheets on dimerisation side dictate the ligand cavity depth on top of TLR monomer (bottom 
panel). Created in BioRender. BioRender.com/o67p300.

FIGURE 3

Representation of the Toll-like receptor pathway. Toll receptors scaffold signalosomes in membrane proximity, e.g., TLR dimers scaffold Mydosome 
(TLR2/1, TLR2/6, TLR4, TLR5, TLR7, TLR8 and TLR9) (1–6) and TRIFosome (TLR3 and TLR4) (1a-6a). Ligand binding to TLR (1) primes Mydosome. TLR 
recruits MAL/TIRAP,MyD88, IRAK1/2 and IRAK4 scaffold in hexameric structures (2) activating TRAF3 and TRAF6 (3) which are able to auto-ubiquinate 
(4). Poly-ubiquitin chains associate (5) and activate TAB2/3/TAK1 kinases (6). Trifosome is primed with TLR ligand binding (1a). Associated TRAM and 
TRIF (2a) activate TRAF3 directly (3a) and TRAF6 in a RIP1-dependant fashion. TRAF3 polyubiquitination (4a) recruits (5a) and activates TBK/IKKi kinases 
(6a). These kinases regulate IKKα/IKKβ kinases and input of NF-κB, JAK, ERK and p38 regulated genes and proceses. Created in BioRender. BioRender.
com/a29t370.
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Notch and TLR signaling during neurodevelopment documented in 
the literature (Table 1).

Described functions of Notch signaling during neurodevelopment 
encompass NPCs number, identity, spatial organization (Irvin et al., 
2001, 2004; Stump et al., 2002; Patten et al., 2006; Keilani and Sugaya, 
2008; Kim et  al., 2008; Zhou et  al., 2010; Rabadán et  al., 2012; 
Blackwood et  al., 2020; Marczenke et  al., 2021; Mase et  al., 2021; 
Okubo et al., 2021; Li C. et al., 2022; Tran et al., 2023) and connectome 
formation events (Franklin et al., 1999; Šestan et al., 1999; Breunig 
et al., 2007; Kuzina et al., 2011; Shi et al., 2011). Notch signaling seems 
to be  crucial for asymmetric NPCs division (Casas Gimeno and 
Paridaen, 2022) and may be  viewed as a switch between NPC 
differentiation, neurogenesis, and gliogenesis. Also, Notch1 is 
implicated in radial glia (RG) identity establishment and 
differentiation to ventral RG (Patten et al., 2003, 2006; Mase et al., 
2021). These findings confirm that Notch orchestrates morphology, 
outgrowth and density ratio of neurons, oligodendrocytes, and 
astrocytes which eventually has implications on the axonal, dendritic, 
and synaptic network formation (Šestan et al., 1999; Shi et al., 2011; 
Kuzina et al., 2011).

Evidenced extensive impact of Notch signaling on critical 
neurodevelopmental events overlaps with so far known 
neurodevelopmental functions of TLRs. Firstly, TLR activation affects 
the immune response during and after (neuro)development, and its 
effect was observed in cooperation with the Notch pathway and as a 
Hh and Wnt signaling regulator, respectively (Opitz et al., 2001; Re 
and Strominger, 2001; Vabulas et  al., 2001; Frantz et  al., 2001; 
Matsumura et al., 2003; Leemans et al., 2005; Crack and Bray, 2007; 
Ziegler et al., 2007; Palaga et al., 2008; Park et al., 2008; Hu et al., 2008; 

Nichols et  al., 2009; Lalancette-Hbert et  al., 2009; Cameron and 
Landreth, 2010; Foldi et al., 2010; Tsao et al., 2011; Liu et al., 2012; 
Winters et al., 2013; Kim et al., 2013; Okun et al., 2014; Hamidi et al., 
2014; Rangasamy et al., 2018; Mehmeti et al., 2019; Martínez-García 
et al., 2020). Secondly, the expression of TLRs on all cell types across 
the developing and adult brain unquestionably affirms their impact on 
neurodevelopment (Barak et al., 2014; Okun et al., 2019).

Clearly, a large body of evidence confirms that certain TLR 
functions match the scope of Notch functions during embryonic and 
postnatal brain development (Table 1). Observed functional overlaps 
indicate that different TLR and Notch proteins govern switches 
between cellular commitments. For example, the actions of Dll1, 
TLR2, and TLR4 overlap to some extent: Dll1 induces neurogenesis; 
loss of Dll1 and TLR4 induces proliferation and gliogenesis; the loss 
of TLR2 induces proliferation and neurogenesis. From that 
perspective, TLR2 and Dll are required for proliferation cessation, 
while TLR4 and Dll1 combinations become inductors of the same 
cellular fate, suggesting they are a part of the same signaling 
machinery. It has to be  noted that interplay of Notch and TLR 
signaling has been described in parts, however majority of studies 
focuses on coordinated responses of the immune system components, 
based on widely recognized functions of TLRs in innate immunity 
(Hu et al., 2008; Palaga et al., 2008; Tsao et al., 2011; Shang et al., 2016). 
The most striking interplay between TLR and Notch in immunity was 
documented in the study by Hu et al. which confirmed synergistic 
cooperation between the Notch and TLR pathways mediated by 
RBP-J. Specifically, the acute TLR induction has been shown to 
activate HES1 and HEY1 genes, while TLR interleukin genes 
expression were dependant on NICD nuclear translocation and RBP-J 

FIGURE 4

Protein models of TLRs with natural ligands and superimposition of TLR and Notch signaling components; (A) 1 - Molecular visualization of TLR4 dimer 
with coreceptor MD-2 (PDB:3FXI), 2 – Aligned models of MD-2, Jagged (apricot, PDB:5UK5) and Delta-like (tan, PDB:4XL1), 3 – Proposed model of 
Jagged and Delta-like in complex with TLR4; (B) 1 – TLR5 model in complex with flagellin (PDB:3  V47), 2 – Flagellin model aligned with NECD/Delta-
like complex (tan, PDB:4XLW, light blue, PDB:4XL1), 2a – Flagellin model (PDB:3  V47) aligned with APP core domain (lilac, PDB:3NYL), 3 – Proposed 
model of NECD/Delta-like in complex with TLR5; (C): 1 - TLR3 in complex with dsDNA (PDB:7DAS), 2 – Superimposed NECD/Delta-like complex over 
dsRNA in complex with TLR3, and 3 – Theoretical binding model of TLR3 and NECD/Delta-like complex; (D) 1 - TLR1/2 in complex with LPS 
(PDB:2Z7X), 2 and 3 - Theoretical model of TLR2/1 interaction with Notch EGF-like domains (PDB:4D0E) (E) 1 - Model of TLR7 dimers (PDB:5GMF), 2 
and 3 – Theoretical model of EGF-like domains (PDB:4D0E) in complex with TLR7. Created in BioRender. BioRender.com/t26j594.
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TABLE 1 Cell-specific expression and functions of Notch and TLR signaling pathways during neurodevelopment.

Cellular type Notch pathway TLR pathway

Neural progenitor 

cells (NPCs)

 • Radial glia differentiation is induced by Notch1 (Patten et al., 

2003, 2006)

 • Notch signaling regulates proliferation of NPCs (Kageyama et al., 2009)

 • Olfactory epithelium stem and progenitor cells utilize Notch (Schwob 

et al., 2017)

 • Notch as NPC commitment switch (Zhou et al., 2010)

 • Overlapping and differential expression of Notch1-3, Jag1-2, Dll1 and 

Dll3 (Irvin et al., 2001, 2004)

 • Differential expression of Notch1, Jag1, Jag2, Dll1, Dll3, Hes 1,3,5, 

Numb and Numblike (Stump et al., 2002); lack of Dll1 leads to impaired 

neurodevelopment (Arzate et al., 2022)

 • Brain lipid-binding protein as mediator of Notch signaling in radial 

glial cells (Anthony et al., 2005)

 • NPCs proliferation is regulated by TLR3 (Lathia et al., 2008; 

Yaddanapudi et al., 2011)

 • NPCs proliferation is regulated by TLR2 (Okun et al., 2010)

 • Maternal exposure to TLR3 ligands promotes proliferation of NPCs 

(Baines et al., 2020)

 • Maternal exposure to TLR2, TLR4 ligands enhances NPC proliferation 

and expands neocortex (Mann et al., 2023)

 • TLR2 and TLR4 differentially regulate spinal cord NPCs (Sanchez-

Petidier et al., 2022)

 • Retinal PC proliferation is under TLR4 control (Shechter et al., 2008)

 • Differential expression of TLRs in mammalian and Drosophila brain 

(Shmueli et al., 2018)

 • Expression of TLRs in human CNS (Bsibsi et al., 2002)

 • Adult hippocampal neurogenesis is under TLR control (Rolls et al., 2007)

Neuron

 • Dll1 induces NPC commitment to neuronal phenotype (Kawaguchi 

et al., 2008)

 • Dll3 overexpression and translocation to the membrane, as Dll1, 

promotes and maintains neurogenesis (Ladi et al., 2005)

 • Jag1 influences neuronal division and periglomerular interneurons 

(Blackwood et al., 2020)

 • Dll1 intrecellular domain regulates dorsal root ganglion development 

(Okubo et al., 2021)

 • Jag2 in motor neuron generation (Rabadán et al., 2012)

 • Notch signaling influences dopaminergic neuron number (Trujillo-

Paredes et al., 2016).

 • Notch and Dll guide axon pathfinding (Giniger et al., 1993)

 • Notch1 and Dll1 regulate mamalian neurite development (Franklin 

et al., 1999)

 • Glia and neuron Notch crosstalk in establishment of longitudinal axon 

connections (Kuzina et al., 2011)

 • Notch signaling-mediated axon outgrowth (Shi et al., 2011)

 • Notch regulates neurite outgrowth by contact-inhibition (Šestan 

et al., 1999)

 • Notch regulates neuronal cell faith and dendrite morphology (Breunig 

et al., 2007)

 • TLRs regulate differentiation of NSCs into neurons (Ulrich et al., 2015)

 • After brain injury, TLR2 promotes neurogenesis (Seong et al., 2018)

 • TLR4 ligands have anti-neurogenic effect (Zaben et al., 2021)

 • TLR4 has a role in amygdala GABAergic transmission (Varodayan 

et al., 2018)

 • TLR3 has potential negative role in axon growth (Cameron et al., 2007)

 • TLR8 role in developing neurons and axons (Ma et al., 2007)

 • TLR3 contributes to Wallerian degeneration of white matter (Lee 

et al., 2017)

 • TLRs in neuronal morphogenesis (Liu et al., 2014)

 • TLRs regulate neurogenesis and synaptic physiology (Chen et al., 2019)

Astrocyte

 • Jag and Notch mediate retinal gliogenesis (Jin et al., 2023)

 • Dll1 regulates Bergman glia monolayer formation (Hiraoka et al., 2013)

 • Neurons induce NPCs astrocyte commitment through Notch signaling 

(Namihira et al., 2009)

 • Adult hippocampal NPCs differentiate into astrocytes at the expense of 

neurons (Rolls et al., 2007)

 • Astrocyte populations differently respond to TLR4 and TLR3 ligands in 

myelination events (Werkman et al., 2020)

 • TLRs are expressed in astroglia (Li et al., 2021)

Oligodendrocyte

 • Radial glia specification into oligodendrocytes is governed by Notch 

(Kim et al., 2008)

 • Jag2 regulates spinal cord oligodendrocyte generation (Rabadán 

et al., 2012)

 • Notch has dual role in neuron-to-oligodendrocyte switch (Tran 

et al., 2023)

 • Notch signaling evidenced in oligodendrocyte genesis and homeostasis 

(Li C. et al., 2022)

 • TLR2 and TLR4 differentially influence oligodendrocyte formation 

after inflammation (Schonberg et al., 2007)

 • Inhibition of TLR2 stimulates OPCs and TLR3 inhibition induces 

apoptosis (Bsibsi et al., 2012)

 • TLR2 tolerance enhances remyelination in CNS (Wasko et al., 2019)

 • TLR2/4 ligand, HMBG1, reduces OPC number (Ved et al., 2021)

 • Transplanted OPCs and inflammation response in myelination (Setzu 

et al., 2006)

 • The lack of TLR4 impairs oligodendrocyte formation after injury 

(Church et al., 2016)
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binding. This finding fully supports here presented theory and it 
would be certainly interesting to confirm the same interplay during 
neurodevelopment. So far, direct involvement of TLRs in 
neurodevelopment has been underappreciated, but the herein 
reviewed findings indicate that TLRs stand at the core program of the 
nervous system development, and deciphering the role of TLR 
signaling, particularly as the part of the proposed TLR-Notch complex 
could be  valuable for understanding the spatiotemporal cellular 
organization of CNS.

3 Hypothesis

We suggest that TLRs are an integral part of the Notch signaling 
cascade acting as a Notch signaling transductor scaffold and 
deciphering machinery in both signal-sending and signal-receiving 
cells. Events that presumably lead to Notch binding and signaling on 
the signal-receiving cell membrane are organized with TLR1, TLR2, 
TLR4, and TLR6, while TLR5, TLR3, TLR7, TLR8, and TLR9 are an 
answer interpreting machinery for the signal-sending cell. The 
proposed functions for each TLR would occur sequentially as follows: 
TLR4—ligand bait; TLR1,2,6 heterodimers—Notch sorter and 
selector; TLR5—answer catcher; TLR3—answer reader; TLR7,8 and 
9—answer reader and tuner.

4 Proposed experimental paradigms

To prove the hypothesis, one would need to check for biochemical 
and physiological evidence of TLR involvement in the Notch pathway 
and correlate them to the functional and eventually behavior patterns. 
The biochemistry of the proposed system should first describe 
chemico-physical interactions, followed by observations using models 
in vitro and in vivo, and it could be investigated in several ways:

 1) Interactive visualization and analysis of molecular structures 
utilizing available models from PDB library,1 bioinformatics 
tools such as PDBeFold2 and Chimera program3;

 2) Molecular simulation, the fast-science approach using already 
existing structural data collected on Notch, Jag, Dll, and TLR 
which could be uploaded into programs providing us with 
information on the proposed interaction parameters 
(orientation, energies, contacts, electrostatic, polar, and 
non-polar interactions) and enabling understanding and 
locating target protein interactions;

 3) Cross-linking mass spectrometry (XL-MS) analysis of NPCs, 
in vitro and in vivo, would provide a series of data regarding the 
molecular system of interest. Data collected in controlled 
conditions, the basis for the interaction matrix, would 
be challenged with the data collected on TLR knock-out (KO) 
systems and TLR-challenged systems to untangle the 
communication code of Notch/TLR signaling. The 
TLR-challenged system could also be a simulation model to 

1 https://www.rcsb.org/

2 https://www.ebi.ac.uk/msd-srv/ssm/

3 https://www.cgl.ucsf.edu/chimera/

investigate the dose-dependent changes introduced by the 
environmental setup;

 4) State-of-the-art cryo-electron microscopy (EM) technology 
and its further advancements could be  implemented for 
structural and topographical research of the Notch/TLR 
pathway. In vitro models of NPCs, organoids, and ex vivo brain 
imaging would provide starting material for investigation and 
help describe the exact 3D model and mechanics of Notch/TLR 
initial signaling events.

The proposed solutions for checking the hypothesis are 
methodologically feasible and could provide the scientific community 
with valuable answers. Another way to test the hypothesis would be to 
use data collected on individuals exposed to TLR agonists in utero 
during critical neurodevelopment stages. Such data may reveal 
whether TLR challenge acts on neurodevelopment and whether 
discrete changes in neuronal number, branching and networks 
strength establishes neurophenotype basis for different 
neurobehavioral patterns.

However, the limitations of proposed structural analysis 
approaches should not be overlooked and require to take into account 
that any posttranslational modification could be  responsible for 
maximal efficiency in binding between Notch/Jag/TLR, thus not fully 
resolved from available data. Other challenges might arise from the 
following facts: extracellular proteins are the most lavishly modified 
proteins; native conformations and molecular dynamics in the cellular 
environment are entropy-rich and challenging to simulate; 
glycosylated residues are intrinsic to cellular communication and 
serve as recognition residues; sugar code enables additional structural 
recognition means and induces differential affinity towards 
interaction partners.

5 Supportive evidence for novel 
interactions within proposed 
TLR-Notch assembly

Whilst there are currently no in vivo supportive data, the 
interactive visualization and analysis of molecular structures utilizing 
informatics tools (see footnote 2) and Chimera program (see footnote 
3) yields several exciting findings. More specifically, the analyses of 
molecular structure and potential binding models of TLRs and Notch 
suggest their novel roles and interactions (also see Figures 4, 5).

The majority representation of the Notch/J/D binding model 
assumes Notch, Jag, and Dll as stiff sticks protruding perpendicularly 
to the cellular membrane and interacting similarly, deep within the 
extracellular matrix and away from a cell membrane. From the above-
given information, Notch is a tangled dome-like protein complex that 
needs ligands to remove protection mechanically and enable message 
transduction. For this to happen, J/D must be in the precise structural 
orientation for groove exposure and proximity of potential binding 
partners (Luca et al., 2015, 2017; Handford et al., 2018). The lipophilic 
property of J/D C2 domain (Chillakuri et al., 2013; Suckling et al., 
2017) could prime the interaction with a signal-receiving cell. It is 
reasonable to suggest that Jag and Dll span the distance and are loosely 
tensioned between two cells. Lipid-C2 interactions are an open 
invitation for anchoring protein that will maximize the conformational 
flex of the J/D structure and be a docking tool for signal-receiving 
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cells. The cross-talk between the C2 domain of J/D and lipids on 
signal-receiving cells is the point where TLR4 enters the story. By 
interactive visualization of molecular structures we  were able to 
observe that TLR4 recognizes J/D, binds and locks it in an active 
conformation, and delivers it to selected Notch (Figure  4A). The 
described interaction indicates a potential role of TLR4 as a molecular 
anchorage in signal-receiving cells. We assume that the J/D tethered 
with a TLR4 would provide an energetically favorable environment 
and support for flex conformation to ensure its availability for 
interaction with Notch. The TLR2 with interacting partners TLR1 and 
TLR6 could be a Notch sorting and ‘decision-making’ tool. Distinct 
TLR2 heterodimer complexes would recognize the ligand fetched by 
TLR4 and choose the appropriately accessorized Notch receptor. The 
glycosylation status of Notch receptors and J/D ligands may be a motif 
that allows TLR2 to sort and choose binding combinations 
(Figure 4D). This mode of action indicates that establishing interaction 
between TLR4/J/D leads to a Notch-binding tension-generating step 
in the cascade. We propose that TLR4 and TLR2 act as a fly ‘buttoning’ 
Notch and J/D. The J/D/TLR4-tether generates tension between two 
membranes, and the tension’s release might be a cue for the signal-
sending cell membrane invagination resulting in Notch dissociation 
and proteolysis on the signal-receiving cell. We hypothesize that TLR4 
and TLR2 support Notch and J/D ligand binding, resulting with 
promotion of NICD downstream cascade in signal-receiving cells.

The signal-sending cell supposedly integrates the molecular events 
by gathering stimuli from the pulled NECD/J/D complex. Here, based 
on analyzed molecular structure, we propose that TLR5 acts as an 
answer-receiving tool. TLR5 may sense the tension and recognize 
non-interacting J/D and NECDs EGF domains (Figure  4C). The 
NECD/J/D complex interface facing the signal-sending cell is 
bifurcated and shaped like ligands recognized by TLR5. With the help 
of TLR5, the complex is taken inside the cell, where it would 
be contextualized. In the endosome, degradation releases strands of 
Notch EGF repeats, NECD/J/D binding complex, unbound J/D 
ligands, and J/D ligand intracellular domain. Each degradation 
product is a piece of valuable information for signaling cells. 
We propose TLR3 recognizes and gives context to cleaved NECD/J/D 
binding complex (Figure 4C) while TLR7, TLR8, and TLR9 bind EGF 
repeats (Figure 4E) giving necessary information about cell-receiving 
cells responses. One single strand-recognizing TLR could also 
be sensing the degradation product of the cell’s unused ligands and 
help the signal-sending cell react appropriately to the neighboring 
population dynamics.

During differentiation, asymmetric inheritance is induced by 
cellular touch (Casas Gimeno and Paridaen, 2022). TLR links Notch 
inductors’ direct genetic input to TAB/TAK adductors’ rearrangements 
in cytoplasmic and membrane phenotypes to accommodate genetic 
identity-specific protein output. Notch signaling cascades may form an 
activated membrane patch that integrates changes in signal-receiving 
cell. Sequestering and ratio of specific IKK(α/β/γ) and IKK-like (TBK1 
and IKKi) pathways are most likely needed for modulation of NF-κB-
dependent and independent pathways, creating identity commitment 
signaling and metabolic landscapes. It is likely that TLR signaling 
modulates NF-κB signals induced by growth factors and synergistically 
affects PI3K signaling. TLR also activates IKK complex and its 
downstream mTORC1 and mTORC2 metabolic programmes that are 
highly active in neurodevelopment (Switon et al., 2017). The mTORC1 
conducts neuronal cytoskeletal organization and mTORC2, which is 

located in endosomes and orchestrates lipid metabolism, crucial for 
genesis of membranes—cellular ‘skin’ and communication platform of 
all neural cells (Switon et al., 2017). TLRs also induce MAPK cascades, 
like p38, JNK and ERK which are known to participate in proliferative 
and differentiative cellular programs in stem cells (Johnson and 
Lapadat, 2002). MAPK/ERK pathway is IKK-dependant  - these 
pathways could change and dictate daughter cell fate, behavior and 
metabolism and could be crucial for the timeline of neurodevelopment 
(Figure 6).

We believe that the hypothesized model introduces the needed 
complexity and integrative perspective of the mammalian Notch 
signaling in brain development. Namely, the current model focuses 
mostly on the signal-receiving cell as the active player, while the role of 
the signal-sending cell in Notch signaling is not fully understood and 
is thus overlooked. The current model resembles instruction-giving 
rather than communication-based decision-making between the cells. 
We advocate that TLRs untangle the information given by Notch and 
J/D ligand structure features and provide necessary information and 
instruction both to signal-sending and signal-receiving cells. Here 
hypothesized model involving the TLR family in the Notch signaling 
pathway takes into account two-way intercellular communication in 
which both cells actively interpret responses in order to efficiently 
coordinate developmental and homeostatic processes.

6 Relevance of the hypothesized 
Notch/Toll system for the molecular 
basis of neurodevelopment

Notch signaling is one of the central cellular homeostatic 
mechanisms able to exert adaptive responses both during development 
and in mature cells. In this respect, incorporating TLRs and their 
putative role as fundamental parts of Notch signaling provides a new 
perspective for neurodevelopment- and neuroimmune-related studies.

It is reasonable to assume that TLRs play a role in two overlapping 
pathways in the brain—the TLR Notch-dependent (ND) cellular 
development/homeostasis pathway and the environment-dependent 
(ED) cellular (immune) response. Differentiation between the two 
pathways would add to the understanding of molecular aspects of 
neurodevelopment at the phylogenetic and ontogenic levels. The 
TLR-ND pathway would be best studied in the course of development 
to confirm the exact steps of how specific TLR, Notch, and J/D ligands 
achieve formation of cellular identity and communication during 
maturation and adulthood when established identity becomes a 
matter of innate immunity. The TLR-ED pathway is intertwined with 
ND-mediated cellular crosstalk, homeostatic neural cell-to-cell 
communication and its environmental influence surveillance by 
immune cells. In this context, innate immunity proves that TLR 
proteins are of utter importance for the brain and its homeostasis. In 
order to prevent cellular miscommunication, microglia, like all innate 
immunity cells, express the entire TLR repertoire, functioning as an 
affinity bead that siphons environmental molecular patterns, PAMPs 
and DAMPs. The immune component of TLR-ED has been widely 
studied, and some of the phenomena described involve developmental/
homeostatic ND pathway. The way the environmental stimuli 
influence individual cellular TLR-ND and ED pathways will 
be further discussed.
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First, we briefly recapitulate the roles of TLRs and their cellular 
and time-dependent expression patterns during brain development 
(Table 1) and propose the following sequence of neurodevelopmental 
events accompanied by TLRs actions. Let us imagine the developing 
nervous system and the emerging complexity course depending on 
the cellular ability to communicate with the environment, more 
precisely, neighboring cells. TLR scaffold, Jag and Dll ligand type on 
the signal-sending cell, and available Notch receptor on the signal-
receiving cell drive the course of proliferation, differentiation, and 
specialization, e.g., axon, dendrite, and synapse formation.We 
suggest that NPC TLR-ND system starts as a simple TLR5/TLR3 
answer-reading machine for low-specificity Notch binding events. 
With increasing number of NPCs, the growing density of TLR3-
sensing Notch events may allow the emergence of TLR4, TLR7, 
TLR8, and TLR9. Hipothetically, this quartet slowly silences 
proliferation and guides NPC asymmetric division and gradual 
specialization in progenitor subtypes (radial glia, ventral and basal 
radial glia, retinal progenitor cells, immediate progenitors, 
oligodendrocyte progenitor cells). The colonization of the brain is 
now set off.

Waves of climbing young neurons create layers upon layers, as 
they travel from densely populated, supposedly high-Notch regions, 
to unpopulated, presumed low-Notch regions.We anticipate that the 
juxtacrine input of “older” neurons maintains progenitor cell identity 
on the way to its destination within growing layers. As development 

proceeds, documented specific changes of TLRs expression paterns 
(Bsibsi et al., 2002; Shmueli et al., 2018) suggest that TLR3 could 
be potentially a progenitor and immature phenotype program switch, 
while TLR4 and TLR9 a differentiative and mature program switches. 
When situated, TLR7-driven axonal outgrowth (Ma et  al., 2007) 
creates a foundation for establishing the regional-specific neuronal 
circuitries and networks. The upcoming gliogenesis builds the cell-
type diversity; thus, new TLRs emerge (TLR1 and TLR6) which most 
likely support the novel identity choice. Once positioned glial cells 
could shed J/D ligands and convey signal to incoming glial progenitors 
about area population density, creating regions of cell-diverse clusters. 
When colonization is complete, maturation can take place. Young 
neurons start to branch, forming inter-regional connections, and 
oligodendrocytes start myelination in the presumed TLR-ND fashion, 
where TLR2 and partners support the ongoing Notch events. 
Astrocytes and already infiltrated microglia mature and continue 
supporting decades-long network formation and calibration (Schafer 
et  al., 2012, 2013; Miyamoto et  al., 2013; Ikegami et  al., 2019). 
Microglial action acquires the brain’s environmental experience and 
plastic potential, e.g., network malleability, progenitor number, and 
potency, providing necessary adaptation mechanisms for survival and 
growth. TLR proteins react to the differences in environmental 
stimuli, creating unique cellular makeup, connection variety, cellular 
mosaicism, and organism-specific circuitry, resulting in various 
neurophenotypes, behaviors, conditions, and pathologies. To address 

FIGURE 5

Representation of the proposed Notch-TLR pathway. Each step of the Notch cascade is accompanied by TLR dimerization and downstream signal 
amplification. TLR1/2/6 Notch sorting and choosing (1) binds DSL ligand fetched by TLR4 (2). The other cell senses the tension and pulls of NECD/DSL 
complex where TLR5 confirmes catch (5). In endosome, TLR3 signals if NECD/DSL complex is present (4) while TLR7/8/9 fine tunes the answer by 
examination of EGF PTMs (5 and 6). The accumulation of Notch stimulation of individual TLR proteins regulates NF-κB, JNK, ERK and p38 programes 
input driving cellular behavior. Created in BioRender. BioRender.com/a30x851.
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these varieties, one would need to explore the immune response 
landscape by tracking TLRs involved in ED and address the influence 
on the ND counterpart pathway.

Multiple neurodivergent phenotypes and conditions are indicated 
to stem from environmental challenges during pregnancy and 
neonatal period of neurodevelopment and involve TLRs. For example, 
autism spectrum disorder (ASD) (Chung et al., 2021; Yu et al., 2023; 
Vacharasin et  al., 2024), attention-deficit/hyperactivity disorder 
(ADHD) (Ganna et al., 2018; Kim et al., 2020), schizophrenia and 
neurodevelopmental disorders (NDDs) are associated with maternal 
immune activation (MIA)(Baghel et  al., 2018; Baines et  al., 2020; 
Talukdar et al., 2021; Anderson et al., 2022). In all mentioned NDDs, 
specific differences in total brain volume or volume of particular 
regions compared to controls have been documented by neuroimaging 
studies (Courchesne et al., 2001; Hyakkoku et al., 2010; Lukito et al., 
2020; Li T. et al., 2022). Is it possible that these NDDs are associated 
with MIA disturbance of TLR-ND pathway? If the TLR challenge 
coincides with neurogenesis, depending on infectious agent and the 

spatio-temporal neurodevelopmental stage, there is a firm possibility 
that diversity in neuronal type and number is introduced. The number 
of neurons residing in specific brain regions (amygdala, hippocampus, 
cortex, cerebellum) or even sub-structural clusters, can vary, induce 
mosaicism, and build the potential for alterations of neuronal 
networks and connections. As described earlier, bacterial LPS induces 
neuronal overgrowth (Humann et al., 2016; Mann et al., 2023) and 
dsRNA silences proliferation (Yaddanapudi et al., 2011). Importantly, 
the essential role of TLR signaling in neurodevelopment is 
corroborated by a recent finding of the 16p11.2 deletion syndrome 
which has phenotypic features of ASD (Chung et al., 2021). One of the 
affected genes in the 16p11.2 deletion syndrome is coding for ERK1 
protein (Pucilowska et al., 2015), a downstream element of the TLR 
cascade. In other words, ASD neurophenotypes may be exacerbated 
through inhibition of TLR cascade. Viral and bacterial coinfection 
effects on the TLR2/4 and TLR3 systems probably participate in 
molecular events underlying an ASD-described increase and decrease 
in the volume of particular regions. Persistence and duration of 

FIGURE 6

Proposed impact of Notch/TLR system on neurodevelopment. Presuming that Notch/TLR system is responsible for cellular adaptation to various 
stimuli and subsequent formation of cellular identity, challenged TLR system could evolve different environmentally dictated phenotypes in a sex-
dependent manner. Male and female neurophenotypes could be challenged to generate variations in density and identity of cellular populations which 
eventually influences on neural cytoarchitecture, circuitres and behavioral phenotypes. Created in BioRender. BioRender.com/d80v300.
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infection could be attributed to the range of ASD phenotypic diversity 
in individuals.

On the other hand, TLR3 inhibition by viral dsRNA could lower 
proliferation and neurogenesis capacity which may be associated with 
decreased number of neurons, atypical cellular density and changed 
brain volumes in ADHD and schizophrenia. Further, in challenging 
periods that coincide with neuronal outgrowth and branching 
involving the TLR7/8/9 system, neurons may shape unusual 
connections resulting in differential synaptic landscape formation and 
neural circuitries. The same applies to gliogenesis - if progenitor pool 
potential is disturbed, the fate of oligodendrocytes and astrocytes can 
change, and individuals become susceptible to various 
pathological processes.

When elaborating neuroimmunity in the context of TLRs actions, 
we should also consider infections caused by the herpes virus family, 
Epstein–Barr (EBV) and herpes simplex (HSV) virus, and related 
pathologies, multiple sclerosis (MS) (Hernández-Pedro et al., 2013; 
Baecher-Allan et al., 2018) and Alzheimer’s disease (AD) (Landreth 
and Reed-Geaghan, 2009; Cameron and Landreth, 2010). 
Pathogenesis of MS involves innate and adaptive immunity responses 
related to demyelination, neuronal loss, and lesion formation 
(Hernández-Pedro et  al., 2013). Potential role of TLRs in MS 
pathogenesis may be related to viral microRNA. Namely, it has been 
shown that HSV and EBV regulate immune answer and viral life cycle 
via viral microRNA-filled extracellular vesicles (Forte and Luftig, 
2011; Kim et al., 2017; Wang et al., 2018; Cone et al., 2019). EBV 
infection in adolescence and later life could affect the pool of brain-
residing progenitor cells involving the EBV infected cells release of 
microRNA, exhibiting immune-and viral cycle-regulating properties 
(Forte and Luftig, 2011; Wang et al., 2018). It is possible that distinct 
microRNA, circulating via extracellular vesicles, is taken by OPC and 
NPC. Once in cells, it could be  that microRNAs doublestranded 
harpins bind TLR3 and dysregulate its activity causing the loss of 
TLR3 information. This drives progenitor cells to premature 
differentiation (Yaddanapudi et al., 2011; Bsibsi et al., 2012), apoptosis, 
and lower plastic ability. The myelinating oligodendrocyte has to be in 
contact with the neuron, astrocyte, progenitor, and immune cell to 
successfully fullfill its duty to become a new oligodendrocyte and if 
not, it is non-invasively removed by microglia (Berghoff et al., 2021). 
If there is a lack of Notch input due to TLR3 inhibition following a 
viral infection, the dying OPC/oligodendrocyte identity may 
be obscured and astrocytes and microglia could mistake it for an 
invading agent. The resulting innate immunity response might 
instruct adaptive immunity to attack specific subgroups of 
oligodendrocytes. We  suggest that as adaptive immunity attacks 
myelin, dying cells produce other TLR ligands (particularly ligands of 
the TLR2 and TLR4, previously shown to affect regulation of 
oligodendrocyte life-cycle)(Church et  al., 2016; Sanchez-Petidier 
et al., 2022; Brandt et al., 2023) which continue to disrupt homeostasis, 
leading to loss of neuronal networks integrity and emergence of MS 
symptoms as an autoimmune condition. Similarly, sporadic AD is 
frequent in individuals infected with HSV. The reoccurring infection 
could be detrimental to the hippocampal progenitor cell pool (Walker 
et al., 2018) and compromise astrocyte-dependent neuron identity 
and homeostasis by releasing TLR2 and TLR9 ligands (Lima et al., 
2010; Zolini et  al., 2014). Interestingly, utilizing a molecular 
visualization tool, we have observed probable processing of amyloid-
precursor protein (APP) similarly to Notch: α-secretase cleavage 

releases the extracellular domain with two distinct structural motifs. 
APP E2 domain resembles TLR5 ligand flagellin and functions in cis-
and trans-ligation (Rossjohn et al., 1999; Barnham et al., 2003; Wang 
and Ha, 2004). The extracellular part of APP has many similarities 
with the Notch/J/D complex, and APP presence is confirmed in 
dimers with Notch (Di Chen et al., 2006) (Figure 4B2a). Is it possible 
that APP is one of the natural Notch and TLR ligands, and its ligation 
and shedding give information about cellular environment and 
condition of neurons, resulting with growth and repair? Astrocytes 
seem to be most affected by miscommunication and may play an 
essential role in bridging the connection between neurons, 
oligodendrocytes, and microglia (Krasowska-Zoladek et al., 2007; 
Guerrero-García, 2020; Werkman et al., 2020; Wang et al., 2021). MS 
and AD-like pathologies have been previously considered in the 
context of viral infections, however, taking into account TLR signaling 
may shed light on events which include cellular response to 
environmental cues leading to disruption in developing and 
homeostatic pathways.

Brain tissue damage and injuries are cellular environment-
changing events that also affect the microglial TLR system and 
influence the presumed TLR-ND cellular response. TLR is implicated 
as an essential player in traumatic injuries, tissue damage, and repair, 
and its many immunity-related roles in responding to tissue damage 
have been resolved by studies in genetically modified mouse models 
with TLR deficiency (Zhang et al., 2011; Ishizuka et al., 2013; Winters 
et al., 2013; Church et al., 2016; Gorup et al., 2019; Wasko et al., 2019; 
Polsek et al., 2020). The cellular environment in brain injury becomes 
saturated with DAMPs, and binding events affect the microglial TLR 
system, influencing TLR-ND cellular communication (Shi et  al., 
2013). TLR2 and TLR4 influence post-injury cellular recruitment and 
axonal tissue regeneration potency (Winters et al., 2013; Gorup et al., 
2019). Lack of TLR2 is shown to protect the brain from immune 
invasion and has a poor prognosis in injury repair and tissue 
regeneration (Gorup et al., 2019). TLR4 activation/inhibition, on the 
other hand, has regenerative quality, and aids OPC recruitment and 
axon remyelination (Schonberg et al., 2007). The basic cellular load 
of mRNA coding for TLR2-engaged downstream scaffold proteins is 
differential in TLR2KO mice; an increase in load of IRAK1, IRAK4, 
IKKβ, and IL-6 and a decrease in IRAK3 has been observed (Winters 
et al., 2013). Since increased neuronal numbers are a phenotypical 
trait, we can assume that IRAK1, IRAK4, and IKKβ echo neuronal 
identity metabolism. At the same time, the observed IL-6 increase 
could be  a constant signal for OPC premature maturation and 
apoptosis, lowering OPC regenerative capacity.

Finally, TLR and Notch signaling pathways may interfere with 
modeling and functional effects of hormones during sex-dependent 
differentiation of the brain. Since the presented data suggests that the 
Notch-TLR pathway is involved in the formation of cellular identity 
during neurodevelopment, we  could make another intriguing 
assumption as to whether the building up of individual sex-related 
behavioral (psychological) patterns depends on the same signaling 
system, activated in response to myriads of environmental stimuli 
(Figure 6). Certainly, the resolving in more details the interplay of the 
environment with central cellular homeostatic and adaptive signaling 
pathways during neurodevelopment and brain maturation may 
substantially broaden our understanding of sex-related differences of 
clinical phenotypes reported for several neurodevelopmental, 
neurological and psychiatric disorders (ASD, ADHD, schizophrenia, 
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MS, AD) (Krementsov et al., 2014; Carney, 2019; Lins et al., 2019; Hui 
et al., 2020; Merikangas and Almasy, 2020; Dunstan et al., 2024).

7 Conclusion

We proposed a theoretical framework backed up by preliminary 
modelling of structural and functional assembly of TLRs and Notch 
which enables highly coordinated actions of both signaling pathways 
crucial for intercellular communication and cellular adaptation to 
environment. We point out so far underappreciated roles of TLRs in 
neurodevelopment and describe striking functional similarities of 
TLRs and Notch signaling during embryonic and postnatal brain 
development. Several possible interactions of TLRs and Notch are 
introduced and evidenced by preliminary analysis of visualized 
molecular structures which speaks in favor of the hypothesized 
intriguing cooperation of Notch and specific TLR isoforms in signal-
sending and signal-receiving cellular milieu. We expect that a pilot 
supportive evidence for here presented hypothesis may provide sound 
basis for revisiting current viewpoints about interplay of TLR and 
Notch signaling. Future experimental studies, by including some of 
our proposed approaches, should better delineate the likely 
fundamental molecular Notch-TLR interactions which in the nervous 
system may underlie formation of cellular identity, cytoarchitecture, 
neural circuitries and diverse neurobehavioral phenotypes.
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