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α-Synuclein ubiquitination – 
functions in proteostasis and 
development of Lewy bodies
Hung-Hsiang Ho 1,2 and Simon S. Wing 1,2*
1 Department of Medicine, McGill University and Research Institute of the McGill University Health 
Centre, Montreal, QC, Canada, 2 Integrated Program in Neuroscience, McGill University, Montreal, QC, 
Canada

Synucleinopathies are neurodegenerative disorders characterized by the accumulation 
of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational 
modification, has been recognized as a pivotal regulator of α-synuclein’s cellular 
dynamics, influencing its degradation, aggregation, and associated neurotoxicity. 
This review examines comprehensively the current understanding of α-synuclein 
ubiquitination and its role in the pathogenesis of synucleinopathies, particularly 
in the context of Parkinson’s disease. We explore the molecular mechanisms 
responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases 
and deubiquitinases implicated in the degradation process which occurs primarily 
through the endosomal lysosomal pathway. The review further discusses how 
the dysregulation of these mechanisms contributes to α-synuclein aggregation 
and LB formation and offers suggestions for future investigations into the role 
of α-synuclein ubiquitination. Understanding these processes may shed light on 
potential therapeutic avenues that can modulate α-synuclein ubiquitination to 
alleviate its pathological impact in synucleinopathies.
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1 Introduction

Α-synuclein (αS) is a presynaptic neuronal protein whose aggregation into insoluble fibrils 
in Lewy bodies (LBs) is a pathological hallmark of Parkinson’s disease (PD). Ubiquitination 
of αS was observed many years ago and subsequent research has provided evidence that this 
ubiquitination plays important roles in regulating αS’s stability, aggregation, and toxicity. 
Understanding the specific ubiquitination events that lead to αS degradation or accumulation 
could therefore provide valuable insights into potential therapeutic strategies to mitigate 
PD progression.

In this review, we  provide brief overviews of ubiquitination and the role of αS in 
neurodegenerative diseases. We then trace the discovery of ubiquitin in LBs and its pivotal 
functions in proteolytic degradation pathways. The review then focuses on key studies that 
identify the E3 ligases (Table 1) and deubiquitinases enzymes (DUBs; Table 2) involved in αS 
ubiquitination and the structural and biological consequences of this ubiquitination. Finally, 
we discuss some knowledge gaps in this area and propose a model that integrates the role of 
αS ubiquitination with other contributing mechanisms in the formation of LBs (Lashuel, 2020; 
Moors and Milovanovic, 2024).
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2 Ubiquitination

2.1 Overall structure and functions

Ubiquitin is a highly conserved 76 amino acid peptide found in 
all eukaryotes. In humans, it is encoded by four genes: UBB, UBC, 
UBA52, and RPS27A (Lenkinski et al., 1977; Vijay-Kumar et al., 1987), 
each of which encodes either polyubiquitin or ubiquitin-fused to a 
ribosomal subunit (Finley et  al., 1989; Redman and Rechsteiner, 
1989). The polyprotein products of these genes are co-translationally 
cleaved by deubiquitinases (DUBs) to generate free ubiquitin.

Ubiquitin exerts almost all its functions by being conjugated to 
other proteins. Ubiquitin has a β-grasp globular structure and a 
flexible C-terminal tail of 6 residues (Vijay-Kumar et al., 1987). The 
globular surface includes recognition patches such as the hydrophobic 
patch formed by Leu8, Val70, and Ile44, which is recognized by most 
ubiquitin-binding domains (UBDs) and the ubiquitin receptors on the 
26S proteasome (Dikic et al., 2009). Ubiquitin covalently attaches to 
substrates via its C-terminal Gly76, most commonly to the ε-amino 
group of the side chain of lysine residues in the target protein to form 
an isopeptide bond. Occasionally, it can also be conjugated to the side 
chain thiol or hydroxyl group of Cys, Ser, and Thr residues or to the 
N-terminal amino group of the protein (Cadwell and Coscoy, 2005; 
Ishikura et al., 2010; Shimizu et al., 2010; Trausch-Azar et al., 2010; 
Wang et al., 2007; Williams et al., 2007). Additionally, ubiquitin can 
also be conjugated onto one of the seven lysine residues (Lys6, Lys11, 
Lys27, Lys29, Lys33, Lys48, and Lys63) or N-terminal Met1 of the 
ubiquitin already attached to the target protein and the repetition of 
this reaction results in the formation of a polyubiquitin chain 
(Komander and Rape, 2012).

The many different possible products of the above ubiquitination 
reaction and their molecular and cell biological consequences has been 
referred to as the ubiquitin code. These different types of ubiquitination 
can be  categorized based on the number and arrangement of the 

ubiquitins attached to the substrate: monoubiquitination (a single 
ubiquitin on one residue of the substrate protein), multi-
monoubiquitination (single ubiquitins on multiple residues), and 
polyubiquitination (a chain of ubiquitins on one or more residues; 
Figure 1). Polyubiquitination can be further divided into homogeneous 
chains (single linkage type) and heterogeneous chains (multiple linkage 
types), leading to mixed or branched chains (Dongdem et al., 2024). 
Different linkages result in distinct chain conformations, allowing this 
code to be deciphered through the binding of different proteins to these 
distinct structures of ubiquitin on the target protein. This complexity 
is further enhanced by post-translational modifications of ubiquitin 
such as phosphorylation, acetylation and ADP-ribosylation (Song and 
Luo, 2019). In addition to recruiting other proteins, the ubiquitination 
of a protein can alter the latter’s structure and/or its binding partners, 
thereby influencing the latter’s biological functions.

The earliest and best described function of ubiquitination is its 
ability to target its conjugated protein for degradation by the 
proteasome. Classically, Lys48 polyubiquitin chains target proteins 
substrates to the proteasome, but it is now apparent that other chain 
types can also do so. Subsequently, ubiquitination of proteins – in 
particular with Lys63 chains  - was shown to target to lysosomal 
proteolysis via autophagy (Shaid et al., 2013) or endosomes (Urbé, 
2005). Other processes regulated by ubiquitination include immune 
activation, DNA damage response, and vesicular trafficking and some 
of these employ linear polyubiquitination or monoubiquitination as 
the signal (Chen and Sun, 2009; Clague et al., 2019; Komander and 
Rape, 2012; Schnell and Hicke, 2003). In this review, we will focus on 
functions of ubiquitin that are most relevant to αS homeostasis in PD.

2.2 The ubiquitination process

The ubiquitin code is generated through the coordinated action 
of three enzymes: E1 (ubiquitin-activating enzyme), E2 

TABLE 1 Ubiquitin ligases for α-Syn.

Ubiquitin 
ligase name

Ubiquitination 
site on α-Syn

Research model used 
for Ub sites 
identification

Ub linkage type Effects on αS

NEDD4/NEDD4-1 K12, K21, K45, K58, 

K60, K96

HEK293 cell; primary mice 

neuron and patient samples for 

K45/58/60 only

K63-polyUb chain Promotes uptake of αS into endosomes for lysosomal 

degradation

SIAH-1 and SIAH-2 K10, K12, K21, K23, 

K34, K43, K96

Cell-free assay MonoUb Promotes formation of αS insoluble aggregates and/or 

proteasomal degradation of αS.

SCF-FBXL5 K45, K58, K60 SH-SY5Y cell K48-K63 branched chain Promotes degradation of αS fibrils through both 

proteasomal and lysosomal degradation pathways.

LUBAC M1 SH-SY5Y cell, primary mice 

neuron, patient samples

Linear polyUb chain Ubiquitinates αS aggregates for p62-dependent 

autophagic/lysosomal degradation (aggrephagy).

CHIP Unknown Monoubiquitination Inhibits αS oligomerization potentially through 

association with HSC70 and promotes proteasomal/

lysosomal degradation.

Parkin Unknown PolyUb; Linkage type 

unknown

Specifically targets O-linked glycosylated αS for 

ubiquitination, but the consequence is unknown.

E6-AP Unknown Linkage type unknown Decreases endogenous αS olgiomerization likely by 

enhancing proteasomal degradation.
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(ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase). E1 
activates ubiquitin in an ATP-dependent process and transfers the 
activated ubiquitin to E2. E2, in conjunction with E3, facilitates 
ubiquitin conjugation to the substrate, with E3 providing substrate 
specificity. Both E2 and E3 enzymes influence the type of ubiquitin 
linkage formed.

Humans have two E1 genes, approximately 40 E2s and about 600 
E3s (Li et al., 2008). E3s can be categorized into three families: RING 
(Really Interesting New Gene), HECT (Homologous to E6AP 
Carboxyl Terminus), and RBR (RING-between-RING).

RING E3s comprise approximately 95% of ligases, can be single 
or multi-subunit complexes. They act as scaffolds, bringing together 
the substrate and ubiquitin-charged E2 enzyme which binds to the 
Zn containing RING finger domain on the E3. Within RING E3 
mediated polyubiquitination, linkage specificity is determined by the 
particular E2 enzyme recruited (Ye and Rape, 2009). U-box type 
RING E3s have a similar RING finger structure but without 
coordinated Zn atoms. Cullin-RING and APC/C type ligases are 
examples of multi-subunit E3 complexes in which one of the subunits 
contains the RING finger domain and another the substrate 
recognition domain. HECT E3 ligases have a catalytic cysteine 
residue at their C-terminal lobe, which directly receives ubiquitin 
from E2 enzymes, thus determining linkage specificity independently 
of the E2 partner. Among HECT E3 ligases are the Nedd4 and HERC 
subclasses, members of which share conserved domains N-terminal 
to the catalytic HECT domain (Rotin and Kumar, 2009). RBR E3s use 
a hybrid RING/HECT mechanism, featuring three Zn-binding 
domains: RING1, in-between RING (IBR), and RING2. RING1 binds 
the E2-Ub complex like RING E3s, while RING2 contains a catalytic 
cysteine that transfers ubiquitin from E2 to the E3, similar to 
HECT E3s.

2.3 Deubiquitination

Ubiquitination, like all post-translational modifications, is 
reversible. In addition to processing newly synthesized ubiquitin, 
deubiquitinases (DUBs) counteract ubiquitination by cleaving 
ubiquitin from substrates. In mammalian cells, more than half of the 
ubiquitins found are monoubiquitinated, often on histones, with the 

remainder forming chains (~15%) or existing freely (~20%) (Kaiser 
et al., 2011). There are ~100 identified DUBs, divided into seven 
families: Ubiquitin-Specific Proteases (USPs), Ubiquitin C-terminal 
Hydrolases (UCHs), Ovarian Tumor Proteases (OTUs), Josephin 
Domain DUBs (MJDs), Motif Interacting with Ubiquitin-N-
terminal Y domain (MINDY), Zinc finger with UFM1-specific 
peptidase domain protein (ZUFSP), and JAMM/MPN. All DUB 
families are cysteine proteases, except JAMM/MPN, which are 
Zn-dependent metalloproteinases (Clague et al., 2019). Although 
some DUBs have broad specificity, many are selective and achieve 
this selectivity by targeting specific substrates through protein 
interaction domains or recognizing specific ubiquitin chain 
architectures. In the latter case, the end product is usually a 
monoubiquitinated substrate. Linkage selectivity is determined 
either by the catalytic domain of the DUBs or their ubiquitin-
binding domains (UBDs) or associated proteins (Mevissen and 
Komander, 2017).

3 A-synuclein

3.1 Biochemical features

αS is a 14 kDa protein, comprising three regions: (1) an N-terminal 
helix (residues 1–60) required for lipid-binding (Davidson et al., 1998; 
Eliezer et al., 2001), (2) a central non-amyloid-β component (NAC; 
residues 61–95) essential for aggregation (Giasson et al., 2001; Uéda 
et al., 1993), and (3) a C-terminal disordered region (residues 96–140) 
that interacts with ions and promotes SNARE complex assembly 
(Burré et al., 2010; Figure 2). Recent studies have revealed overlapping 
functions of these regions, suggesting the importance of intra- and 
inter-molecular interactions between them (Doherty et  al., 2020; 
Fusco et al., 2014; Fusco et al., 2016; Ulamec et al., 2022).

ɑS is part of a protein family that includes beta-synuclein (βS) and 
gamma-synuclein (γS), each encoded by distinct genes (George, 2002) 
Phylogenetic studies show that ɑS and βS are more closely related to 
each other than to γS (Siddiqui et al., 2016). All synucleins share a highly 
conserved N-terminal sequence and are mainly expressed in the brain 
according to the Human Protein Atlas. Synuclein orthologues are absent 
in invertebrates, consistent with their crucial role in the central nervous 
system of higher organisms. The ɑS protein sequence is highly conserved 
between humans and rodents, differing by only six amino acids.

Initially considered a cytosolic protein with an intrinsically 
disordered monomeric structure, subsequent cross-linking studies 
indicate that αS exists predominantly as a tetramer. This tetramer has 
a compact structure shielding the NAC region, preventing spontaneous 
aggregation (Bertoncini et al., 2005; Kang et al., 2012; Theillet et al., 
2016). The tetrameric structure is in equilibrium with the disordered 
monomer and dependent on αS concentration (Bartels et al., 2011; 
Wang et al., 2011). Furthermore, the tetramer can be formed upon 
membrane binding where it becomes functional for SNARE complex 
assembly (Burré et al., 2014). αS disease causing mutations such as 
A53T, E64K and G51D, alter the tetrameric/monomeric ratio and are 
associated with neuronal toxicity (Dettmer et al., 2015a; Dettmer et al., 
2015b; Nuber et al., 2018; Nuber et al., 2024).

However, the existence of a stable tetrameric form has been 
challenged, as the tetrameric species have failed to be detected by 
other groups (Burré et al., 2013; Corbillé et al., 2016; Fauvet et al., 

TABLE 2 Deubiquitinases for α-Syn.

Deubiquitinase 
Name

Effects on αS

USP9X Stabilizes αS by possibly preventing its degradation. 

Degradation pathway remains unknown.

UCH-L1 (PGP9.5) Increases aS insolubility and possibly prevents αS 

proteasomal degradation.

USP8 Counteracts NEDD4- dependent K63 polyUb. Inhibits 

αS endosomal degradation and increases endogenous αS 

level particular in the soma region of iPSC neurons.

USP13 Stabilizes αS by possibly preventing its degradation. 

Degradation pathway remains unknown.

USP19 Promotes αS secretion through misfolding associated 

protein secretion (MAPS) and reduces αS ubiquitination 

to facilitate aggregate formation.
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FIGURE 2

Schematic diagram of α-synuclein structure, illustrating its division into the N-terminal helix, non-amyloid-β component (NAC) domain, and C-terminal 
disordered region. Lysine and M1 residues potentially involved in ubiquitination are highlighted in yellow. Ubiquitination sites confirmed in different 
models are labeled as follows: *-cell-lines; $-primary mice neurons; #-human samples; !-cell free assay.

2012). These opposing views highlight the ongoing debate in the field, 
with some arguing that αS exists in multiple equilibrium states, 
varying between monomers, tetramers, and other higher-order 
oligomers depending on cellular and environmental contexts (Burré 
et al., 2014; Fauvet et al., 2012).

3.2 Physiological functions

The most prominent physiological function for αS is its role in 
synaptic vesicle (SV) regulation due to its localization at the 
presynaptic terminal (Maroteaux et al., 1988) and its affinity for high-
curvature membranes (Davidson et  al., 1998). During synaptic 
transmission, calcium influx prompts the recruitment of SVs to the 
presynaptic active zone, where they fuse with the presynaptic 
membrane to release neurotransmitters. Fluorescence resonance 
energy transfer assays suggest that ɑS acts as a SNARE complex 
chaperone by binding to phospholipid membranes and multimerizing 
at the presynaptic membrane (Burré et al., 2014; Burré et al., 2010; 
Lou et al., 2017). An interaction between VAMP2 (synaptobrevin-2) 
and the ɑS C-terminus at the docking site allows ɑS to promote SV 

exocytosis by preventing SV fusion pore closure (Logan et al., 2017). 
Overexpression of ɑS restricts neurotransmitter release by clustering 
SVs, a process requiring ɑS multimerization and association with 
VAMP2 and synapsin (Larsen et  al., 2006; Nemani et  al., 2010). 
Phosphorylation of ɑS at S129, a marker of pathological ɑS aggregates, 
enhances this clustering (Parra-Rivas et  al., 2023), inhibiting SV 
movement to the presynaptic active zone and reducing synaptic 
transmission (Atias et al., 2019; Diao et al., 2013; Sun et al., 2019). 
Besides these critical functions at the SV, recent research has also 
suggested roles for αS in regulating mRNA stability (Hallacli et al., 
2022), gene transcription (Davidi et al., 2020), and DNA stability 
(Vasquez et al., 2020).

3.3 Pathophysiology of αS: from monomer 
to aggregates

The mechanisms by which soluble monomers or tetramers of αS 
become converted into insoluble fibrils mostly localized at the 
neuronal soma remain unclear. This is partly due to the long time 
required for fibril development in vivo and the underexplored 

FIGURE 1

Types of ubiquitin linkages. Proteins can be conjugated with a single ubiquitin (monoubiquitination), or a ubiquitin on multiple lysine residues (multi-
monoubiquitination) or with a chain of ubiquitin moieties (polyubiquitination). The color of ubiquitin (dark blue or light blue) indicates different types of 
linkage. Each ubiquitin in the chain can be conjugated to the more proximal ubiquitin at the latter’s M1, K6, K11, K27, K29, K33, K48, or K63 residue. 
Homotypic chains employ only one type of linkage. Heterotypic polyubiquitination contains at least two different types of ubiquitin linkages and 
potentially combine multiple chain types within a single polyubiquitin structure.
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protein–protein interactions of native ɑS. Recent research highlights 
the dynamic interaction of ɑS with its paralogues, βS and γS, at SVs 
(Carnazza et  al., 2022). These studies show that the equilibrium 
between cytosolic ɑS monomers and SV-binding multimers is 
regulated by ɑS/βS and ɑS/γS heteromers. Specifically, heteromer 
formation inhibits ɑS from binding to SVs, and decreases the cytosolic 
concentration of unfolded monomeric ɑS, which might 
be aggregation-prone (Bartels et al., 2011; Wang et al., 2011).

Maintaining normal levels of ɑS is crucial, as multiplication of the 
SNCA gene encoding ɑS can induce PD pathology (Ibáñez et al., 2004; 
Polymeropoulos et  al., 1997; Singleton et  al., 2003). Although ɑS 
knockout has little effect on synaptic function and neuronal survival 
(Abeliovich et al., 2000; Chandra et al., 2005), ɑS is essential under 
stressful conditions, such as the loss of the synaptic protein CSPɑ/
DNAJC5 (Chandra et al., 2005; Greten-Harrison et al., 2010).

Cell free biophysical studies suggest that the formation of ɑS 
amyloid fibril containing stable parallel β-sheet structures arises from 
a nucleation-polymerization process (Cremades et al., 2012; Iljina 
et al., 2016). During primary nucleation, soluble monomers nucleate 
to generate oligomers. Initially formed oligomers are transient and can 
rapidly undergo secondary polymerization to form fibrils or convert 
into more kinetically stable and toxic oligomers, potentially causing 
cell membrane damage (Fusco et  al., 2017; Kayed et  al., 2003). 
Fragmented fibrils can also act as seeds to promote secondary 
nucleation (Cohen et al., 2011). Oligomers, with a greater surface-to-
volume ratio, show higher toxicity in cells compared to fibrils (Chen 
et al., 2015; Cremades et al., 2012). However, in contrast to consistent 
fibrillar structures, oligomers are a mixture of heterogeneous 
structures with variabilities in size, β-sheet content, and toxicity (Chen 
et al., 2015; Cremades et al., 2012; Gallea and Celej, 2014). Increased 
membrane damage by oligomers could be due to antiparallel β-sheet 
content which exposes hydrophobic side chains that interact with 
cellular lipids (Celej et al., 2012; Chen et al., 2015).

Interestingly, in vivo studies show that injection of fragmented 
fibrils are more toxic than non-fragmented ones or oligomers in mice 
brains (Froula et al., 2019). The increased seeding capacity of these 
fragmented fibrils suggests that aggregate propagation and formation 
—whether through oligomer polymerization or fibril fragmentation—
play a critical role in the pathogenesis of PD. Research in cellular 
systems demonstrate that oligomers released from fibrils cause 
neuronal dysfunction, while stable fibrils can prevent ɑS toxicity 
(Cascella et al., 2021; Lam et al., 2016). These findings highlight the 
importance of oligomer dynamics during aggregate formation in PD 
(Conway et  al., 2000; Mahul-Mellier et  al., 2020; Mahul-Mellier 
et al., 2015).

Other factors, such as lipid vesicles and pH, also strongly affect 
aggregate formation (Buell et  al., 2014; Flagmeier et  al., 2016; 
Galvagnion et al., 2015; Grey et al., 2011; Kumari et al., 2021; Lee et al., 
2005). In vitro, small unilamellar vesicles (SUVs) promote ɑS primary 
nucleation, contributing to amyloid fibril formation (Galvagnion 
et al., 2015). The secondary nucleation process is promoted by a low 
pH environment, suggesting that endo-lysosomal vesicles with acidic 
microenvironments in cells may play a key role in aggregate formation 
(Buell et al., 2014; Kumari et al., 2021).

The discovery of ɑS in cerebrospinal fluid (El-Agnaf et al., 2003) 
and LBs in fetal grafted neurons of Parkinson’s patients (Kordower 
et al., 2008; Li et al., 2008) support a prion-like behavior. Studies show 
that exogenous ɑS preformed fibrils (PFFs) can induce LB-like 
structures in cultured cells and in vivo, promoting ɑS fibril elongation 

(Luk et  al., 2012; Luk et  al., 2009; Volpicelli-Daley et  al., 2011). 
Endogenous ɑS is required for fibril formation, and these fibrils can 
spread from injection sites, even outside the CNS such as the gut, 
indicating inter-neuronal propagation (Ayers et al., 2017; Macdonald 
et al., 2021; Osterberg et al., 2015). However, the exact mechanisms and 
the nature of ɑS species responsible for this spreading remain largely 
unknown, raising questions about how ɑS is released and taken up.

4 Characteristics of ubiquitinated 
α-synuclein in Lewy bodies

αS is the main protein component of LBs, the pathological 
hallmark of PD (Spillantini et al., 1997), LBs have been known to stain 
with anti-ubiquitin antibodies since the late 1980s, well before αS was 
identified as the major protein component (Baba et al., 1998; Kuzuhara 
et  al., 1988; Lennox et  al., 1989; Spillantini et  al., 1997). Initially, 
ubiquitin staining was observed at the peripheral rim of LBs 
(Kuzuhara et al., 1988). However, multiplex confocal imaging revealed 
that ubiquitin is either colocalized with αS in less compact LBs or 
present in the center of more compact LBs and partially colocalized 
with αS, which is stained mainly at the peripheral shell (Gai et al., 
2000). The discovery of C-terminal truncated αS at Asp119/Asn122 
(Anderson et al., 2006; Baba et al., 1998; Dufty et al., 2007; Li et al., 
2005) and phosphorylated α-S (p129-αS) (Fujiwara et al., 2002) as the 
predominant αS species in LBs, coupled with techniques such as 
three-dimensional reconstruction, multicolor antibody labeling, and 
high-resolution stimulated emission depletion (STED) imaging have 
led to further elucidation of the intricate structure of classical 
concentric LBs. Altogether, these data suggest a model where αS 
conjugates with ubiquitin and recruits non-ubiquitinated αS, maturing 
into a compact LB structure. Ubiquitin and C-terminal truncated αS 
are found in the core, p129 or full-length αS in the middle layer, and 
neurofilaments and cytoskeletal proteins in the outer layer of LBs 
(Kanazawa et al., 2008; Moors et al., 2021; Prasad et al., 2012).

Although imaging studies revealed co-localization of ubiquitin 
and αS, it was studies using two-dimensional gel electrophoresis that 
identified αS as the primary ubiquitinated protein in LBs. In these 
studies, the shifted αS (Syn-1 antibody-positive bands) corresponded 
with anti-ubiquitin antibody staining (Anderson et al., 2006; Tofaris 
et al., 2003). Interestingly, ubiquitinated αS was primarily associated 
with p129-αS species, which constitute more than 90% of the insoluble 
αS species in dementia with Lewy bodies (DLB) brains, and are 
modified by mono-, di-, or, to a lesser extent, poly-ubiquitin 
(Anderson et al., 2006; Hasegawa et al., 2002; Tofaris et al., 2003). 
Mass spectrometry analysis identified three ubiquitination sites on αS: 
Lys12, Lys21, and Lys23 (Anderson et  al., 2006). However, the 
biological consequences and regulatory mechanisms of these 
modifications remain largely unexplored.

5 Functions of ubiquitination of 
α-synuclein

5.1 Ubiquitination and intracellular 
proteolytic systems

Ubiquitination is involved in both major intracellular proteolytic 
systems - the proteasome and lysosome (Figure 3). The latter receives 
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cargo through several pathways, in particular through autophagy and 
endosomes. Autophagy can be further divided into macroautophagy 
(MA), chaperone-mediated autophagy (CMA), and microautophagy. 
Below, we  briefly introduce the mechanisms of these protein 
degradation pathways, which have been reviewed in detail elsewhere 
(Clague and Urbé, 2010; Collins and Goldberg, 2017; Finley, 2009).

5.1.1 Proteasome
The proteasome was the first proteolytic machinery linked to the 

ubiquitination system, establishing the connection between 
ubiquitination and protein homeostasis (Waxman et al., 1987). The 
proteasome consists of two main components: the 20S core particle 
(CP) and the 19S regulatory particle (RP). The CP contains the 
proteolytic site, with a barrel-shaped structure composed of α7β7β7α7 
heteroheptameric rings of subunits. Among these, the β1, β2, and β5 
subunits are responsible for proteolytic cleavage with each subunit 
having different amino acid specificities for cleavage. The entrance of 
the lumen of the free CP is closed by the N-terminal tails of the α 
subunits but opens when the RP caps the CP to form the holoenzyme.

The RP recognizes ubiquitinated proteins, removes the ubiquitin 
chains, and unfolds the proteins for entry into the narrow CP channel 
for degradation. This recognition requires either direct binding of the 
ubiquitin chain on the substrate to ubiquitin receptor subunits of the 
RP or indirect binding of the ubiquitin to intermediary shuttling 
factors such as Ddi1, Dsk2, and Rad23. These factors contain both 
ubiquitin-associated (UBA) domains which associate with 
ubiquitinated substrates and ubiquitin-like (UBL) domains which 
bind the RP. Both direct and indirect bindings involve RP ubiquitin 
receptors such as PSMD4/Rpn10, ADRM1/Rpn13, and PSMD2/Rpn1, 
which use ubiquitin-interacting motif (UIM), Pleckstrin-like receptor 
for ubiquitin (Pru) domain, and T1 site, respectively to bind 
ubiquitinated substrates (Shi et al., 2016).

After the initial binding of ubiquitinated substrates, a tight-binding 
step occurs in an ATP-dependent manner (Peth et al., 2010). This 
transition step allows a loosely folded region of the substrate to 
be tightly bound to the ATPase ring of the RP for subsequent unfolding 
and translocation into the CP for degradation (Prakash et al., 2004). 
Before degradation, ubiquitin chains are removed and released, 

FIGURE 3

Proteolytic pathways of α-synuclein mediated by ubiquitination, including the proteasome pathway (A), the endosome-lysosome pathway (B), and the 
macroautophagy-lysosome pathway (C). (A) In the proteasome pathway, α-synuclein undergoes ubiquitination which targets the protein for 
recognition and degradation by the proteasome. (B) The endosome-lysosome pathway has emerged as a major route for α-synuclein degradation, 
predominantly involving K63-linked polyubiquitination. The ubiquitinated α-synuclein is recognized by NBR1, which may interact with the ESCRT 
complex to facilitate endosomal engulfment and the formation of multivesicular bodies (MVBs). The endosomes carrying α-synuclein either fuse with 
lysosomes or follow a maturation pathway, where a gradual decrease in pH activates proteolytic enzymes, ultimately leading to the degradation of 
α-synuclein. (C) The macroautophagy-lysosome pathway primarily targets polyubiquitinated α-synuclein aggregates. Ubiquitin chains on these 
aggregates are recognized by aggrephagy adaptor proteins, such as p62. The polymerization of p62 facilitates phase separation of the sequestered 
aggregates and serves as a platform for interaction with LC3, aiding in phagophore formation. The autophagosome containing the aggregates then 
fuses with the lysosome, where degradation occurs.
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enabling substrate passage through the CP channel and generating free 
ubiquitin for reuse. This process is regulated by proteasome-associated 
DUBs, including PSMD14/Rpn11, USP14/Ubp6, and UCH37/UCHL5. 
These DUBs may also act as proofreading mechanisms to release 
substrates not committed to proteasome degradation (Crosas et al., 
2006; Jacobson et al., 2009; Lu et al., 2015).

PD has been linked to proteasome machinery since proteasomes 
were identified in LBs (Ii et al., 1997). αS has been confirmed to 
be degradable by the proteasome, with the familial A53T mutant 
being degraded less efficiently (Bennett et al., 1999). In-vitro studies 
have shown that monoubiquitinated αS has a higher degradation 
rate by the proteasome compared to free αS, with ubiquitination at 
Lys6, Lys12, Lys21, and Lys32 having the strongest effect 
(Abeywardana et al., 2013; Shabek et al., 2012). However, whether 
the proteasome is impaired in PD remains controversial, as 
functionally impaired forms have been reported (McNaught et al., 
2002; McNaught and Jenner, 2001). Tofaris et al. demonstrated that 
proteasome function is impaired specifically in the substantia nigra 
in PD brains, while proteasomal function remains intact in other 
brain regions. Importantly, this regional deficit in proteasomal 
activity was not associated with a corresponding regional 
accumulation of ubiquitinated αS, suggesting that proteasome 
impairment is not associated with ubiquitinated αS accumulation 
(Tofaris et al., 2003).

5.1.2 Macroautophagy
Like the ubiquitin-proteasome system (UPS), components of the 

autophagy machinery have also been discovered in LBs of PD patients 
by immunohistochemistry (Alvarez-Erviti et al., 2010; Dehay et al., 
2010). Several PD risk genes associated with autophagy-lysosome 
pathways (ALP) such as LRRK2, ATP13A2 and VPS35 have been 
identified in genome-wide association studies (GWAS) (Chang et al., 
2017; Nalls et al., 2014). While these genes are associated with ALP, 
they also have broader effects on endolysosomal function, such as 
regulating endosomal trafficking and membrane dynamics, which 
may indirectly influence autophagy. Additionally, enzymatic activities 
of lysosomal proteins are decreased in PD patients (Moors et  al., 
2019). These findings suggest that ALP plays an important role in αS 
homeostasis in PD.

In MA, the autophagosome, a double-membrane structure 
decorated with LC3/ATG8, engulfs targeted cargoes before fusing with 
lysosomes for degradation. The selectivity of ubiquitinated cargoes is 
achieved through intermediary autophagy receptors. These receptors 
contain both ubiquitin-binding domains (UBDs) and LC3-interacting 
region (LIR) motifs, allowing them to bridge ubiquitinated proteins 
and autophagosomes (Lamark and Johansen, 2012).

MA plays a significant role in the clearance of protein aggregates, 
unlike proteasomes, which target single protein molecules for 
unfolding (Pohl and Dikic, 2019). The selective removal of protein 
aggregates by autophagy is termed aggrephagy (Øverbye et al., 2007). 
Numerous aggrephagy receptors have been identified, including p62/
SQSTM1 (Janssen et al., 2018; Komatsu et al., 2007; Lim et al., 2015; 
Matsumoto et al., 2011; Pankiv et al., 2007; Tanji et al., 2015; Zellner 
et al., 2021), NBR1 (Nicot et al., 2014; Odagiri et al., 2012; Rué et al., 
2013; Zellner et  al., 2021), OPTN/optineurin (Korac et  al., 2013; 
Osawa et  al., 2011; Shen et  al., 2015; Zellner et  al., 2021), ALFY 
(Clausen et al., 2010; Filimonenko et al., 2010), Tollip (Lu et al., 2014; 
Zellner et al., 2021), TAX1BP1 (Sarraf et al., 2020; Turco et al., 2021), 

and CCT2 (Ma et al., 2022; Pavel et al., 2016). Among these, p62 
(Mahul-Mellier et al., 2020; Tanji et al., 2015; Watanabe et al., 2012), 
NBR1 (Odagiri et al., 2012), TAXBP1 (Lannielli et al., 2022), and 
Tollip (Chen et al., 2017) have been shown to directly associate with 
αS for MA turnover.

p62 has been characterized since its early identification in LBs 
(Kuusisto et  al., 2003) and is well-studied for its role in 
ubiquitination and aggrephagy. Aggrephagy receptors typically 
prefer K63-linked over K48-linked polyubiquitin chains on 
substrates (Kirkin et al., 2009; Long et al., 2008; Matsumoto et al., 
2011; Seibenhener et al., 2004; Sun et al., 2018; Wurzer et al., 2015; 
Zaffagnini et al., 2018), though some show better affinity for Met1-
linked linear ubiquitin chains (Wurzer et al., 2015). The molecular 
mechanism of aggrephagy involves the binding of ubiquitinated 
aggregates, requiring p62 clustering, polymerization, and phase 
separation (Sun et al., 2020). K48 chains can disrupt this process 
(Ciuffa et al., 2015; Sun et al., 2018; Wurzer et al., 2015; Zaffagnini 
et  al., 2018). These protein clusters act as platforms for 
autophagosome formation, which eliminates ubiquitinated 
aggregates by fusing with lysosomes (Agudo-Canalejo et al., 2021; 
Kageyama et al., 2021). Interestingly, this clustering process may 
also facilitate the formation of protein inclusions. Studies on K63 
polyubiquitination have shown that overexpression of ubiquitin 
specific for K63 linkage accelerates the formation of protein 
inclusions, while a K63R mutant construct inhibits this process 
(Lim et al., 2005; Olzmann et al., 2007; Tan et al., 2008; Wang et al., 
2012). These findings highlight an important role for ubiquitination 
and MA in the formation of LBs.

5.1.3 Chaperone-mediated autophagy
CMA is discovered as a lysosomal degradation pathway for αS 

in rat ventral midbrain cultures, as suggested by significant 
inhibition of degradation by lysosomal inhibition (ammonium 
chloride) and minimal impact from macroautophagy 
(3-methyladenine) and proteasome (epoxomicin) inhibition 
(Cuervo et al., 2004). In CMA, the Hsc70 chaperone recognizes the 
KFERQ-like motif on αS (95VKKDQ99) independently of 
ubiquitination and forms a complex with it. This complex 
associates with the lysosomal membrane receptor LAMP2A, the 
rate-limiting component of CMA, which forms a multimeric 
protein complex to facilitate αS translocation into the lysosomal 
lumen. Interestingly, αS A53T and A30P mutants block this 
translocation by tightly binding to LAMP2A receptors (Cuervo 
et  al., 2004; Xilouri et  al., 2009), suggesting the importance of 
CMA in αS homeostatic clearance. CMA efficiency decreases with 
aging, and mutations in PD risk genes such as LRRK2 can interfere 
with CMA by blocking the LAMP2A multimerization required for 
translocation (Ho et al., 2020; Kabuta et al., 2008; Orenstein et al., 
2013; Xilouri et al., 2009), resulting in αS accumulation on the 
lysosomal membrane and accelerating αS oligomerization (Ho 
et al., 2020; Orenstein et al., 2013). However, since CMA substrate 
translocation depends on their unfolding, similar to the 
proteasome pathway, it is unlikely that CMA is directly involved in 
clearing αS aggregates.

5.1.4 Microautophagy and endosomal pathways
Microautophagy, initially studied in yeast, involves lysosomes 

directly engulfing targeted substrates (Wang et al., 2023). Recently, 
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endosomal microautophagy (eMI) has been discovered in 
mammalian cells, where targeted substrates are delivered to late 
endosomes before fusing with lysosomes (Sahu et al., 2011). Unlike 
CMA, eMI can remove substrates without requiring their unfolding; 
therefore, eMI can target protein clusters (Sahu et al., 2011). eMI 
selectively uses Hsc70 for substrate recognition (Morozova et al., 
2016; Sahu et al., 2011), but does not depend on LAMP2A receptors 
for translocation. Instead, it relies on the ESCRT systems and Hsc70 
interactions with endosomal membranes to internalize cargo into late 
endosomes, forming multivesicular bodies (MVBs) for lysosomal 
degradation (Sahu et al., 2011). The degradation of αS via endosomal 
pathways, where αS is trafficked to endosomes before lysosomal 
degradation (Boassa et al., 2013; Gerez et al., 2019; Sugeno et al., 
2014; Tofaris et al., 2011; Zenko et al., 2023) has also been reported. 
However, the uptake of αS degradation in this endosomal pathway 
does not require Hsc70 binding. Instead, NEDD4 catalyzes 
K63-polyubiquitination of αS which allows it to associate with the 
ESCRT complex for endosomal uptake (Tofaris et al., 2011, Zenko 
et al., 2023).

6 Enzymes regulating ubiquitination 
of α-synuclein

6.1 Neural precursor cell expressed 
developmentally down-regulated protein 4

NEDD4-1 is a member of the NEDD4 subset of HECT E3s (Rotin 
and Kumar, 2009). These E3s contain WW domains that recognize PY 
motifs (PPxY or LPxY amino acid sequences) or phosphorylated 
serine/threonine residues in target proteins. NEDD4 is the most 
studied E3 in αS ubiquitination, recognizing αS through the interaction 
of its WW domain with the C-terminal proline-rich region 
120-(PDNEAYEMPSEEGY)-133 (Tofaris et  al., 2011). αS is 
co-immunoprecipitated with NEDD4 from both mouse and human 
brain lysates and colocalized with LBs in pigmented neurons (Tofaris 
et al., 2011).

NEDD4 polyubiquitinates αS with mainly K63 chain linkages. This 
leads to αS degradation via endosomal pathways as knocking down the 
ESCRT III core component VPS24 or the ESCRT I core component 
TSG101 blocked NEDD4-dependent αS degradation (Tofaris et al., 
2011). This conclusion is also supported by studies in which SH-SY5Y 
cells were exposed to recombinant αS oligomers (~40 kDa) in the 
medium (Sugeno et  al., 2014). The oligomers accumulated within 
endolysosome vesicles, including Rab7 (late endosome) and lysotracker 
(lysosome) positive vesicles. This internalization into endosomes was 
promoted by NEDD4 ubiquitination of membrane associated 
αS. Overexpression of a catalytic mutant (C867A) and ΔWW form of 
NEDD4 decreased its ability to sort αS to endosomes compared to 
wild-type NEDD4. Knocking down the ESCRT III component 
CHMP2B prevented the NEDD4-dependent αS degradation 
confirming the trafficking through endosomes.

Besides these effects on αS monomers and oligomers, Mund et al. 
demonstrated using cell free assays that most NEDD4 family ligases 
prefer to polyubiquitinate αS fibrils over monomers, with NEDD4-1 
showing the strongest ubiquitination capacity. This linkage type 
appeared to be K63, based on cleavage susceptibility by deubiquitinases 
with varying specificities (Mund and Pelham, 2018). Deletion analysis 

of the C2 domain of NEDD4 decreased its ability to polyubiquitinate 
αS fibrils, while further deletion of the WW domain had a minor 
effect, suggesting NEDD4 binds αS fibrils via the C2 domain rather 
than WW-PY interaction (Mund and Pelham, 2018).

The role of NEDD4 in handling aggregates in cells was tested in 
HEK293 cells expressing αS fused to split halves of Venus fluorescent 
protein and aggregates detected as punctate bimolecular fluorescence 
complementation (BiFC) signals. Knocking down NEDD4 in these 
cells showed that αS ubiquitination occurs mainly at αS K45/58/60 
residues via K63 poly-ubiquitin chains (Zenko et  al., 2023). This 
ubiquitination is essential for αS turnover, mediated by the aggrephagy 
receptor NBR1, but not by p62, OPTN, or TAX1BP1. Knocking down 
autophagy core protein ATG7 or CMA/eMI core protein HSC70 did 
not affect αS turnover, but knocking down ESCRT components 
(TSG101, CHMP3) did, highlighting the role of an endosomal 
mediated pathway for degradation.

An antibody raised against αS conjugated with di-Gly peptides at the 
K45/58/60 ubiquitination sites was confirmed to predominantly 
recognize αS ubiquitinated by NEDD4 and BiFC puncta in the cells. This 
antibody colocalized with ubiquitin in LBs from PD brains and the 
autophagy adaptor protein NBR1, as well as with lysosomal marker 
LAMP1+ vesicles, but not with autophagosome marker LC3II in primary 
neurons. This supports the role of NBR1 in the endosomal degradation 
pathway of K45/58/60-ubiquitinated αS in the neurons (Zenko et al., 
2023). NEDD4’s effects on αS ubiquitination are also indirectly regulated 
by the DUB YOD1, which stabilizes NEDD4  in a dose-dependent 
manner (Park et al., 2023), and by the SUMO enzyme PIAS2 which by 
SUMOylating αS inhibits NEDD4-mediated αS ubiquitination (Rott 
et al., 2017). In vivo, NEDD4 can rescue PD-associated pathology. AAV 
expression of A53T αS in rat substantia nigra causes dopaminergic 
neuron loss and increases αS aggregates. These pathologies can 
be reduced by co-injection of AAV expressing wild-type NEDD4, but 
not a catalytic mutant (Davies et  al., 2014). Taken together, these 
observations underscore NEDD4’s role as a prominent E3 ligase that can 
target αS for lysosomal degradation via endosomes.

6.2 Seven in absentia homolog 1 and 2 and 
USP9X

SIAH-1 and SIAH-2 are RING-type E3s initially identified for 
their interaction with synphilin-1, a protein associated with αS in LBs 
(Engelender et al., 1999; Liani et al., 2004; Wakabayashi et al., 2000). 
Later immunohistochemical staining also identified SIAH proteins in 
LBs (Liani et  al., 2004). Both SIAH-1 and SIAH-2 can promote 
ubiquitination of αS in cells, but SIAH-2 appears to have stronger 
affinity for αS and ubiquitinates it more effectively in a cell free system 
(Liani et  al., 2004; Rott et  al., 2008). Mass spectrometry analysis 
identified several ubiquitination sites on αS mediated by SIAH-2 in a 
cell free assay, including K10, K12, K21, K23, K34, K43, and K96 (Rott 
et  al., 2008). These findings align with previous reports of αS 
ubiquitination sites at K12, K21, and K23 observed in LBs (Anderson 
et al., 2006). Notably, even with two-thirds of these ubiquitination sites 
abolished, αS ubiquitination by SIAH-2 persisted, demonstrating the 
flexibility of the ubiquitination process (Hanna et al., 2007; Kim et al., 
2011). Neither enzyme promotes polyubiquitination, but inhibitors of 
autophagy-lysosome system (ALS) or the proteasome have been 
observed to stabilize αS following overexpression of SIAH2 (Rott et al., 
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2008), suggesting that these ubiquitinated forms of αS do target 
for degradation.

Other studies have indicated that SIAH isoforms mediated 
monoubiquitination promotes formation of insoluble aggregates both 
in cells and cell free systems (Lee et al., 2008; Liani et al., 2004). In 
addition, silencing of the deubiquitinase USP9X which counteracts 
SIAH-2-dependent αS monoubiquitination in SH-SY5Y cells increases 
αS aggregation and cytotoxicity under proteolytic (lactacytstin, NH4Cl 
and 3-MA) inhibition. Under normal conditions without proteolytic 
inhibition, such silencing of USP9X facilitates αS degradation (Rott 
et al., 2011; Rott et al., 2017). In cell-free systems, αS monoubiquitinated 
by recombinant SIAH2 can be degraded by purified proteasome (Rott 
et al., 2011; Rott et al., 2017). USP9X expression is decreased in PD and 
DLB brains which would be  consistent with the above proposed 
mechanisms. Overall, the consequences of SIAH-dependent αS 
monoubiquitination—whether leading to degradation or aggregation—
and its regulation through deubiquitination require further exploration 
in vivo to verify their precise roles in PD.

6.3 The SKP1-CUL1-F box protein complex

The SCF complex E3s are a subset of the Cullin-RING ligase family 
and consist of the scaffold protein Cullin-1 (Cul1), adaptor protein 
S-phase Kinase-associated Protein 1 (SKP1), the ligase RING-box 
protein (RBX1), and various F-box proteins that bind substrates 
(Zheng et al., 2002). Immunohistochemistry staining confirmed that 
Cul1 and SKP1 are colocalized with αS in LBs from the brains of 
patients with PD and DLB. Proteome analysis of SH-SY5Y cells 
revealed that SCF components, particularly Cul1 and SKP1, are 
upregulated in response to exposure of the cells to detergent-resistant 
αS fibrils. The exogenous fibrils accumulated within endolysosomal 
structures marked by Rab5A and LAMP1, suggesting involvement of 
the endosomal degradation pathway. Prolonged exposure to the fibrils 
beyond 6 h caused vesicle rupture, leading to seeding of endogenous 
αS and formation of high molecular weight aggregates, confirmed 
by immunoblotting.

The release of the fibrils into the cytoplasm resulted in their 
ubiquitination. A siRNA screen targeting 31-box proteins in HeLa 
cells identified FBXL5 as the specific F-box protein responsible for the 
ubiquitination (Gerez et al., 2019). Knockdown of other components 
of the SCF complex also prevented the ubiquitination of the fibrils. 
Mass spectrometry analysis showed that SCF ubiquitinates the fibrils 
primarily at K45, 58, and 60, forming K48-K63 branched ubiquitin 
chains. Interestingly, these lysine residues are typically buried within 
the fibril core according to cryo-EM studies (Guerrero-Ferreira et al., 
2019; Yang et al., 2022), raising questions about the accessibility of 
these residues for ubiquitination. Knockdown of Cul1 or SKP1 in 
SH-SY5Y, BV-2 (microglia-like cell line), and COS-7 cells inhibits the 
degradation of the fibrils, which involves both lysosomal and 
proteasomal pathways, as evidenced by effects of their respective 
inhibitors, bafilomycin A1 and MG132 (Gerez et al., 2019).

In transgenic mice expressing human αS, which spontaneously 
form αS aggregates, injection of the fibrils induces LB-like pathology. 
Injection of lentivirus silencing SKP1 increased αS inclusions in those 
brain regions compared to injection with control virus. In 
nontransgenic mice, silencing SKP1 or FBXL5 led to p129-αS 
aggregates spreading, indicating SCF-FBXL5 inhibits LB-like pathology 

initiation and propagation induced by extracellular αS seeds (Gerez 
et  al., 2019). These results support an important role for the SCF 
complex in mediating the degradation of internalized αS fibrils and 
thereby inhibiting subsequent seeding and further propagation.

6.4 Linear ubiquitin chain assembly 
complex

LUBAC is an RBR E3 complex renown for regulating immune and 
inflammatory responses, particularly NF-κB signaling, through the 
formation of linear (Met1-linked) ubiquitin chains. LUBAC consists 
of three main components: Haem-oxidized IRP2 ubiquitin ligase-1 
(HOIL-1 L), HOIL-1 Interacting Protein (HOIP), and SHANK-
associated RH domain interacting protein (SHARPIN). HOIL-1 L 
contains a C-terminal RING domain functioning as an E3 ligase, 
while HOIP is an RBR E3 possessing a linear ubiquitin chain 
determining (LDD) domain crucial for synthesizing linear ubiquitin 
chains. SHARPIN stabilizes the LUBAC complex through its 
interaction with HOIL-1 L (Gao et al., 2023).

A key target of LUBAC is NEMO and the M1-linked ubiquitin 
(M1-Ub) chain on NEMO serves to recruit critical subunits of the 
IκB kinase complex to promote NFκB signaling. M1-Ub and NEMO 
colocalize with αS in LBs from PD patients, and M1-Ub colocalizes 
with p129-αS in primary neurons treated with A53T preformed 
fibrils (PFFs), suggesting LUBAC’s involvement in protein 
aggregation (Furthmann et al., 2023). In SH-SY5Y cells, exposure to 
αS PFFs results in αS aggregates that associate with LUBAC 
components (Furthmann et al., 2023). Overexpression of wild-type 
NEMO or HOIP decreased αS aggregates and this reduction in αS 
aggregates depends on the aggrephagy adaptor p62 binding to 
M1-ubiquitin chains and is inhibited by bafilomycin A1, indicating 
the involvement of autophagy. NEMO promoted p62 condensation 
at αS aggregates, facilitating aggrephagy. This important role for 
NEMO in clearance of aggregates is supported by observations in a 
patient with Incontinentia pigmenti due to expression of a 
C-terminal truncated Q330X NEMO mutation. This patient 
developed early-onset PD with proteinopathies, including 
aggregations of αS, amyloid-β, tau, TDP-43, and ubiquitin 
(Furthmann et al., 2023). Wild-type NEMO, not the Q330X mutant, 
is recruited to αS aggregates and promotes M1-ubiquitination on 
itself and the aggregates. The Q330X truncation in NEMO decreases 
its association with HOIP and the ubiquitination of αS. In support 
of the above, KO of NEMO in murine embryonic fibroblasts (MEFs) 
promotes protein aggregate formation under proteasome/lysosome 
inhibition or heat stress (Furthmann et al., 2023).

6.5 Carboxyl terminus of Hsp70-interacting 
protein

CHIP is a U-box domain E3 (Jiang et al., 2001) with an N-terminal 
tandem tetratricopeptide repeat (TPR) domain that interacts with the 
HSP70 chaperone (Ballinger et al., 1999). CHIP has been found to 
colocalize with αS in LBs (Shin et al., 2005). In an H4 glioma cell 
model co-expressing aggregation prone truncated αS and synphilin-1 
to induce αS aggregation (McLean et al., 2001), synphilin-1 interacts 
with αS to promote the formation of cytoplasmic inclusions 
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resembling LBs found in PD. Using this model with proteasome or 
lysosomal inhibitors, CHIP was found to regulate αS turnover through 
two pathways: its TPR domain associates with HSC70 to promote 
proteasomal degradation, while its U-box domain facilitates lysosomal 
degradation. Notably, deletion of CHIP’s TPR domain leads to 
increased αS inclusion size (Shin et al., 2005).

In studies using BiFC assays to monitor αS oligomerization/
aggregation, CHIP expression inhibits αS oligomerization and toxicity. 
Deletion of the TPR domain abolished these effects supporting 
Hsp70’s role in this process (Kalia et al., 2011; Tetzlaff et al., 2008). 
Additionally, CHIP can promote αS monoubiquitination in H4 cells 
and in cell-free systems incubated with the E2 enzymes UbcH5a/b 
(Kalia et al., 2011). BAG5 can negatively regulate this ubiquitination 
indirectly through its binding to Hsp70. Concomitant with the 
decreased ubiquitination, there is increased αS oligomerization. It 
remains unknown which αS Lys residues are ubiquitinated by CHIP.

6.6 Parkin

Parkin is an RBR-type E3 ubiquitin ligase extensively studied in PD 
as its mutation causes early-onset PD (Madsen et al., 2021). It is recruited 
to mitochondria upon activation of mitophagy and plays an important 
role in the process through its ubiquitination of mitochondrial 
membrane proteins. Its role in αS ubiquitination is controversial. Parkin 
has been identified in LBs and co-immunoprecipitation studies in 
human brain lysates revealed its association with UbcH7 and a novel 
22-kDa O-linked glycosylated isoform of αS (αSp22), but not with the 
native 16-kDa αS monomer (Shimura et al., 2001). Although Parkin 
immunoprecipitated from normal brains was shown to promote αSp22 
polyubiquitination, these findings have not been consistently reproduced 
by others (Chung et al., 2001) and so further investigation is warranted 
to clarify its role in αS ubiquitination.

6.7 E6-associated protein

E6-AP, a HECT E3, has also been found in LBs (Mulherkar et al., 
2009). Its colocalization with αS, and ability to increase αS 
ubiquitination have been recapitulated in-vitro, using Neuro2a cells 
under proteasome inhibition (Mulherkar et al., 2009). In addition, 
E6-AP can increase the turnover of αS and reduce oligomer species in 
Cos-7 cells. Inhibitors suggest that this degradation occurs via the 
proteasome (Mulherkar et al., 2009). However, little is known about the 
type of ubiquitination stimulated by E6-AP, and its regulation in vivo.

6.8 UCH-L1 (PGP9.5)

UCH-L1 was first implicated in PD when a mutation was associated 
with familial disease (Leroy et  al., 1998). However, recent studies 
challenge its monogenic role in PD, instead implicating UCH-L1 in 
spastic paraplegia, a neurodegenerative disorder characterized by optic 
atrophy and muscle weakness (Das Bhowmik et al., 2018; Rydning et al., 
2017). Nevertheless, reduced levels of UCH-L1 have been reported in 
sporadic disease and the protein may play a role in regulating αS 
ubiquitination, suggesting its involvement in broader neurodegenerative 
processes.(Barrachina et al., 2006; Lowe et al., 1990; Yasuda et al., 2009). 
UCH-L1 co-immunoprecipitates with free and di-ubiquitinated αS 

species from rat brains (Liu et al., 2002). It can deubiquitinate αS derived 
from LB brain lysates (Sampathu et al., 2003) and its expression in cells 
promotes αS deubiquitination (Imai et al., 2000) and accumulation (Liu 
et al., 2002). Despite the documented DUB activity, it remains unclear 
whether UCH-L1’s actions modulate proteasome-mediated degradation 
of αS. UCH-L1 has been reported to interact with the CMA receptor 
LAMP2A and the I93M mutation enhances this association, thereby 
interfering with αS degradation (Kabuta et  al., 2008). In a cell-free 
system, UCH-L1 has been reported to exhibit ubiquitin ligase activity, 
but this may be due to the high concentrations of enzyme and substrate 
used in the study (Liu et al., 2002).

6.9 Ubiquitin specific peptidase 8

The D442G activity enhancing mutation in USP8 is a cause of early-
onset PD (Wu et al., 2023). This DUB can remove K6-linked ubiquitin 
chains from Parkin to activate it (Durcan et al., 2014) and can attenuate 
endosomal engulfment of membrane receptors by removing K63-linked 
ubiquitin chains (Mizuno et  al., 2005). An additional role has been 
identified in HEK293T cells and iPSC-derived dopaminergic neurons 
where USP8 associates with αS primarily localized in early endosomes. 
Knocking down USP8  in SH-SY5Y cells promotes αS degradation 
through lysosomes and USP8 silencing in a Drosophila model of PD 
rescues αS-induced toxicity (rough eye phenotype, climbing function, 
and TH-positive neuron loss), while knockdown of the ESCRT I protein, 
Vps28, enhanced the rough eye phenotype (Alexopoulou et al., 2016). 
Most LBs stain with K63 but not K48 linkage specific anti-Ub antibodies 
(Alexopoulou et  al., 2016). Interestingly, USP8 expression has been 
observed to be increased in the substantia nigra of PD patients, and the 
level of USP8-positive inclusions is negatively correlated with K63-Ub-
positive inclusions (Alexopoulou et  al., 2016). iPSC dopaminergic 
neurons derived from PD patients expressing this USP8 mutation 
exhibited higher overall levels of αS, with increased accumulation in the 
soma and decreased levels in dendritic regions (Wu et al., 2023). These 
phenotypes were exacerbated by overexpressing the USP8 hyperactive 
D442G mutant. D442G mutant knock-in models showed similar 
phenotypes, with homozygous mutants exhibiting stronger effects than 
heterozygous ones, confirming a dosage effect. Mechanistic studies 
revealed a stronger association between αS and the D442G mutant, 
leading to reduced K63-polyubiquitination of αS (Wu et al., 2023). These 
findings suggest an important role for K63-ubiquitination in mitigating 
αS neuronal toxicity in PD. Finally, the K63-specific DUB activity of 
USP8 was recapitulated in vitro using recombinant αS bearing K63 
ubiquitin chains generated by NEDD4 (Alexopoulou et al., 2016). Taken 
together, these results suggest that USP8 interferes with endosomal 
degradation of αS by removing αS K63-linked ubiquitin chains.

6.10 Ubiquitin specific peptidase 13

USP13 expression has been observed to be increased in PD brains 
(Liu et al., 2019). Injection of mice with lentivirus expressing αS and 
USP13 or USP13 shRNA decreased or increased levels, respectively, 
of ubiquitinated αS detected by proximity ligation assay, compared to 
the non-injected hemisphere (Liu et al., 2019). Concomitant with the 
increased ubiquitinated αS, the USP13 KD also resulted in protection 
against dopaminergic neuronal death, and improved motor 
performance. Similar results were observed upon manipulating 
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USP13 levels in the A53T αS transgenic mouse model of PD. The 
effects of KD in transgenic mice were mimicked by administration of 
a small molecule inhibitor of USP13 (Liu et al., 2022; Liu et al., 2021). 
Interestingly, the inhibitor increased proteasome activity in a dose-
dependent manner in HEK cells expressing αS (Liu et al., 2022). These 
results suggest that USP13 can influence PD pathology by modulating 
αS ubiquitination and degradation. However, it remains unknown 
which type of ubiquitin linkage USP13 regulates and the downstream 
degradative pathway that is involved.

6.11 Ubiquitin specific peptidase 19

USP19 is a key modulator of an unconventional pathway of protein 
secretion that appears specific for misfolded proteins (MAPS). In this 
process, the ER localized isoform of USP19 deubiquitinates the 
misfolded protein and promotes its uptake into late endosomes in a 
process that involves Hsp70 and its co-chaperone DNAJC5/CSPα 
(Fontaine et al., 2016; Lee et al., 2023; Lee et al., 2016; Xu et al., 2018). 
Expressing αS or its disease-causing mutants in HEK293T cells results 
in secretion that can be  stimulated by USP19  in a dose dependent 
manner and diminished by silencing of USP19. DNAJC5 associates with 
MAPS substrates, including αS, and facilitates their lysosomal 
degradation. Overexpression of dominant-negative (DN) ESCRT 
component (VPS4) abolished lysosomal degradation of αS, in support 
of DNAJC5 mediating αS degradation via endosomes. This DN VPS4 
inhibition of lysosomal degradation enhanced MAPS secretion in the 
cells. Conversely, overexpression of DNAJC5 mutants associated with 
adult neuronal ceroid lipofuscinosis (ANCL) still facilitated αS 
endosomal/lysosomal degradation but failed to promote αS MAPS 
secretion (Lee et  al., 2023). These results suggest that endosomal 
degradation and MAPS secretion represent alternative outcomes of 
cargo taken up by endosomes.

To explore these cellular observations in vivo, our group inactivated 
the USP19 gene in transgenic mice expressing the A53T disease causing 
mutation of αS (Schorova et al., 2023). Knockout of USP19 decreased 
accumulation of pS-129-αS aggregates, but increased ubiquitination of 
these aggregates as well as soluble forms of αS. This reduction in αS 
aggregate accumulation was also observed in USP19 KO primary 
neurons. Higher levels of αS oligomers were detected by proximity 
ligation assays in primary neurons and biochemically in the soluble 
fractions of KO brains. These results suggest that USP19 inhibits αS 
ubiquitination to facilitate αS aggregate formation. USP19 can cleave 
multiple types of polyubiquitin chain linkages – K6- (Liu et al., 2021), 
K11- (Jin et al., 2016; Tian et al., 2023), K27- (Lei et al., 2019), K48- 
(Harada et al., 2016; Tian et al., 2023), and K63-(Lei et al., 2019; Zhang 
et al., 2021), but the ubiquitin linkage type it targets on αS remains unclear.

7 Cell free studies of the effects of 
ubiquitination of αS on fibril formation

The establishment of in vitro fibrillization assays and the ability to 
generate ubiquitinated αS by synthetic chemical methods has permitted 
the exploration of the effects of these modifications on formation of αS 
fibrils in cell free systems. Hejjaoui et al. created monoubiquitinated αS 
at K6 by linking two protein fragments: one from E. coli (residues 
19–140) and one synthetic (residues 1–18) using a specially modified 

lysine (δ-mercaptolysine) for ubiquitin conjugation (Hejjaoui et al., 
2011). K6-monoubiquitinated αS significantly inhibited αS fibrillization 
in vitro, while its interactions with synthetic lipid vesicles or 
phosphorylation by its kinases CK1, GFK5, and PLK3 remained 
unaffected (Hejjaoui et  al., 2011). K48-linked tetraubiquitin or 
diubiquitin chains conjugated at the αS K12 residue were similarly 
generated (Haj-Yahya et al., 2013). In vitro fibrillization assays showed 
that wild-type αS developed mature fibrils after extended incubation 
(8 days) as evaluated by TEM. In contrast, Tetra-Ub αS rapidly formed 
soluble but SDS-resistant aggregates within 48 h, which remained 
amorphous and unable to form amyloid fibrils after prolonged 
incubation, suggesting fibrillization blockade. In contrast to unmodified 
αS, di- or tetraubiquitinated αS at K12 could not be phosphorylated at 
S129 by PLK3, indicating disruption of the interaction with the kinase 
due to ubiquitination. Furthermore, both di- and tetra ubiquitinated αS 
were phosphorylated at Y125 by Syk, but this phosphorylation led to 
their precipitation, while similarly phosphorylated wild-type αS which 
remained soluble. Di- and tetraubiquitinated αS were efficiently 
degraded by the proteasome in HeLa cell extracts, whereas 
monoubiquitinated αS had its ubiquitin cleaved and was not degraded.

Meier et al. adopted a disulfide-directed ubiquitination approach, 
mutating individual αS lysine residues as well as the C-terminal 
glycine of ubiquitin to cysteine to permit linkage of ubiquitin to αS via 
disulfide bonds (Meier et al., 2012). Using this method, they generated 
monoubiquitinated αS variants (K6C, K10C, K12C, K21C, K23C, 
K32C, K34C, K43C, and K96C) for in vitro aggregation studies. Using 
thioflavin T fluorescence to monitor fibrillization, these studies 
revealed that while unmodified αS formed fibrils effectively, 
ubiquitination had varied effects depending on the modification site. 
K10C-Ub and K23C-Ub formed fibrils similar to wild-type αS, albeit 
with different kinetics. Modifications at K6C, K12C, and K21C 
inhibited fibril formation moderately, while ubiquitination at K32C, 
K34C, K43C, and K96C strongly inhibited fibril formation (Meier 
et al., 2012). Electron microscopy supported these findings, showing 
mature fibrils for unmodified, K10C-Ub, and K23C-Ub, while other 
sites formed short fibrils or amorphous aggregates. Notably, K96C-Ub 
formed oligomeric structures detected by the A11 anti-oligomeric 
antibody, indicating that ubiquitination at a specific site can inhibit 
fibril formation and promote oligomerization (Meier et al., 2012). 
Subsequent studies focusing on K6C-Ub, K23C-Ub, and K96C-Ub 
with more efficient and longer in vitro fibrillization protocols 
confirmed the inhibitory effects of these modifications on fibril 
formation, as evaluated by Thioflavin T (ThT) staining and TEM 
imaging (Moon et al., 2020). The stability of the fibrils was assessed by 
susceptibility to digestion by Proteinase K. This analysis confirmed the 
findings from ThT and TEM, suggesting that K23C-Ub promotes 
heterogeneous aggregate formation, while K96C-Ub results in a 
distinct fibril structure. Atomic force microscopy measurements 
showed that K96C-Ub fibrils had a shorter height compared to wild-
type fibrils, further indicating structural differences (Moon et  al., 
2020). These findings collectively suggest that monoubiquitination of 
αS generally inhibits fibrillization and destabilizes protein aggregates.

8 Conclusions and future perspectives

This review has illustrated the significant progress made in our 
understanding of the roles of ubiquitination of αS (Tables 1, 2). A 
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major function is its critical role in targeting αS to the endosomal/
lysosomal system. The SCF-FBXL5 E3 complex and NEDD4-
mediated K63-polyubiquitination can ubiquitinate fibrillar and 
endogenous αS, respectively, facilitating their uptake into 
endosomes and subsequent degradation in an NBR1 dependent 
manner. Consistent with this mechanism, αS colocalizes with 
endolysosomal vesicles, and its degradation is disrupted upon 
knockdown of key ESCRT machinery components, such as VPS28, 
VPS4, TSG101, CHMP3, and CHMP2B. Moreover, the 
deubiquitinase USP8, a counterpart to NEDD4, is also associated 
with endosomes and through its DUB activity inhibits αS lysosomal 
degradation. USP19/DNAJC5 promotes uptake of αS into late 
endosomes but this can promote secretion in addition to 
lysosomal degradation.

Although uptake of αS into endosomes plays a major role in 
targeting to lysosomes, macroautophagy still plays a role by clearing αS 
aggregates via aggrephagy. This involves LUBAC-mediated 
ubiquitination of αS, the aggrephagy adaptor proteins p62 and NBR1, 
and NEMO, all of which condense with linear ubiquitin chains at αS 
aggregates (Furthmann et  al., 2023). Although there is abundant 
evidence for ubiquitination of αS targeting it to the lysosomal system, 
we cannot exclude a minor role for the proteasome in αS degradation, 
though such degradation is likely limited to non-oligomeric/aggregated 
forms of αS.

Beyond proteolytic degradation, several lines of evidence—albeit 
conflicting—suggest that ubiquitination may modulate αS aggregation. 
SIAH1/2-mediated mono-ubiquitination of αS can promote insoluble 
aggregate formation in αS overexpression cell models under 
proteasome inhibition (Lee et al., 2008; Rott et al., 2008). Conversely, 
USP19’s deubiquitination of αS can facilitate aggregate formation in 
vivo and in primary neurons with PFF seeding (Schorova et al., 2023). 
This USP19 regulation may be explained by increased deubiquitination 
of αS leading to its propagation through MAPS-mediated αS secretion 
(Lee et al., 2016) or direct structural effects of ubiquitin removal on 
αS (Schorova et al., 2023). Indeed, in vitro studies have shown that αS 
ubiquitination can disrupt the autonomous fibrillization process, not 
only slowing fibrillization but also leading to the formation of 
amorphous aggregates or oligomers.

In addition to the potential role of ubiquitination in αS 
aggregation, emerging evidence suggests that alterations in 
trafficking of the above mentioned αS containing lipid vesicles may 
contribute to its aggregation (Galvagnion et al., 2015; Kakuda et al., 
2024; Stephens et al., 2023). Lipid components in LBs have long 
been recognized (Duffy and Tennyson, 1965; Forno and Norville, 
1976; Gai et al., 2000), and more recent studies have emphasized the 
significance of lipid organelle aggregation, including 
autophagosomes, lysosomes, and mitochondria in LB formation 
(Mahul-Mellier et al., 2020; Shahmoradian et al., 2019). In addition, 
the prion hypothesis for the propagation of LB pathology indicates 
that the release and subsequent uptake of pathogenic forms of αS 
plays an important role in the progression of disease over time. This 
is supported by observations that propagation of disease in mouse 
models occurs most efficiently in the presence of both endogenous 
production of αS as well as exogenous delivery of pathogenic 
aggregates of αS (Luk et  al., 2012; Luk et  al., 2009). These two 
sources of αS would most likely first come in contact in endosomes 
and traffic together into lysosomes.

Integrating all these findings, we  propose a model for LB 
formation (Figure 4). (a) Under normal, basal conditions, αS turnover 
may be mediated by multiple mechanisms including CMA and the 
ubiquitin dependent proteasome pathway. Any αS oligomers or 
aggregates formed because of the inherent propensity of αS to misfold 
may be cleared in lysosomes through ubiquitin dependent endosomal 
microautophagy and aggrephagic mechanisms. (b) Under abnormal 
conditions when there are increased levels of intracellular αS and its 
misfolded/oligomeric forms or increased uptake of extracellular αS, 
overloading of αS in endosomal vesicles occurs. (c) The high levels of 
αS in endosomes/lysosomes increases the risk of rupture of the 
vesicles with release of the contents including aggregation prone 
species (such as truncated αS generated potentially by lysosomal 
hydrolases, oligomers and fragmented fibrils) (Kakuda et al., 2024) 
and lipid fragments into the cytoplasm, creating a low pH 
microenvironment. This microenvironment facilitates the seeding of 
αS (Buell et al., 2014; Flagmeier et al., 2016; Galvagnion et al., 2015; 
Grey et al., 2011; Kumari et al., 2021; Lee et al., 2005) into aggregate-
prone species. This in turn recruits autophagy adaptor proteins and 
free ubiquitin chains which sequester the aggregated αS, facilitate 
phase separation and provide additional seeds for aggregation. (d) 
Some of these species may become ubiquitinated which may impede 
fibrillization and promote degradation by aggrephagy or be retaken 
up by endosomes as in step (a). (e) With persistent overloading of the 
endosomes/lysosomes with these various forms of αS including 
pathogenic ones, a vicious cycle is created whereby aggregates 
continue to enlarge, particularly ones that have accumulated lipids 
and non-ubiquitinable proteins on the surface which would prevent 
aggrephagy but lead to LBs which bear ubiquitinated αS located 
primarily in the core of the aggregate.

To explore this model and the mechanisms involved, cellular 
systems which can be maintained for prolonged periods to allow LB like 
aggregates (e.g., positive staining for pS129-αS, ThT, or the association 
of membranous organelles with the concentric protein structure) to 
form are required. At this time, the best systems are primary neurons 
exposed to αS preformed fibrils and iPSC-derived neurons from PD 
patients bearing αS mutations. These neurons can spontaneously form 
pSyn aggregates and induce mitochondrial and synaptic dysfunctions 
(Diao et al., 2021; Lin et al., 2016; Ludtmann et al., 2018). Furthermore, 
Tanudjojo et al. demonstrated that iPSC-derived neurons can effectively 
form LB-like aggregates upon extracellular PFF seeding (Tanudjojo 
et al., 2021), The ability to apply to these systems genetic tools or specific 
inhibitors/activators that target specific steps in these pathways will help 
identify critical steps in the pathogenesis of toxic forms of αS and LBs. 
These could ultimately lead to development of therapies that could halt 
the progression of PD at early stages of disease when there is minimal 
functional impairment.

The above model seeks to explore comprehensively the role of αS 
ubiquitination in LB formation. It should be noted though that other 
potential effects of this ubiquitination remain unexplored. For 
example, it is unclear whether αS ubiquitination affects the 
physiological functions of αS monomers and tetramers, impacts 
intracellular trafficking (e.g., between synapses and neuronal soma) 
and secretion of pathological aggregates, or interacts with other post-
translational modifications. Finally, there is ongoing debate regarding 
whether LBs are neurotoxic or represent a protective mechanism that 
sequesters toxic oligomers and aggregates.
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FIGURE 4

A proposed model for Lewy body formation: (a) Overloading of αS in endosomal vesicles can occur from overexpression of intracellular αS and uptake 
of extracellular αS. Ubiquitination of αS can facilitate the endosomal engulfment. (b) Rupture of endosomes or lysosomes in the cytosol is a stochastic 
event and in the absence of excessive loading in endosome, the released contents can be removed by macroautophagy (Kakuda et al., 2024) some of 
which depends on αS ubiquitination. Rupture occurs more frequently with overloading of αS and presence of pathogenic forms of αS (mutants, 
oligomers, aggregates). (c) With prolonged overloading of and more frequent rupture of endosomes, there is accumulation of fragments of 
endolysosomal lipid vesicles and creation of a low pH microenviroment which facilitates the seeding of αS (Buell et al., 2014; Flagmeier et al., 2016; 
Galvagnion et al., 2015; Grey et al., 2011; Kumari et al., 2021; Lee et al., 2005) into aggregate-prone species such as oligomers and truncated species. 
Autophagy adaptor proteins and free ubiquitin chains sequester aggregated αS, facilitate phase separation, providing additional seeds for aggregation. 
(d) Some of these species may become ubiquitinated which may impede fibrillization and promote degradation by aggrephagy or be retaken up by 
endosomes as in step (a). (e) With persistent overloading of the endosomes/lysosomes with these various forms of αS including pathogenic ones, a 
vicious cycle is created whereby aggregates continue to enlarge, particularly ones that have accumulated lipids and non-ubiquitinable proteins on the 
surface. Such surfaces lacking ubiquitination would prevent aggrephagy but lead to LBs which typically contain ubiquitinated αS located primarily in the 
core of the aggregate.
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