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Introduction: Exposure to sevoflurane in neonatal rats disrupts energy 
metabolism during brain development, which is associated with anesthetic-
induced neurodevelopmental toxicity. Hepatic fatty acid metabolism plays 
a critical role in response to brain energy supply. However, how sevoflurane 
exposure affect hepatic fatty acid metabolism remains unclear.

Methods: We employed multiple analytical methods in neonatal rats following 
sevoflurane exposure to: (1) Analyze alterations in hepatic fatty acid metabolism-
related gene expression and immune cell infiltration; (2) Decipher associated 
metabolic pathways, including cholesterol metabolism and the expression 
changes of Dhcr24; (3) Conduct enrichment analyses (GO, KEGG, GSEA, 
GSVA) and functional investigations via Friends analysis; (4) Construct mRNA-
miRNA-lncRNA regulatory networks; (5) Identify key genedrug small molecule 
interactions based on IC50 differences and (6) Verify the expression of key genes 
involved in fatty acid metabolism and the activation of immune cells.

Results: Significant alterations were observed: (1) Identification of 15 key fatty 
acid metabolism-related differentially expressed genes (DEGs and RT-PCR); (2) 
Significant enrichment of 40 GO terms and 5 KEGG pathways; (3) GSEA/GSVA 
revealed 130 up-regulated and 62 down-regulated GO gene sets, along with 5 up-
regulated and 2 down-regulated KEGG pathways; (4) Friends analysis highlighted 
Dhcr24 as a critical player in cholesterol metabolism; (5) Network analysis identified 
pivotal mRNA and lncRNA nodes within the regulatory networks; (6) Screening 
yielded 43 key gene-drug combinations with significant IC50 differences; and (7) 
Immunofluorescence confirmed the activation expression of relevant immune cells. 
Bioinformatics analysis pinpointed diagnostic biomarkers for both hepatic fatty acid 
metabolism perturbations and immune cell infiltration following exposure.

Discussion: These findings demonstrate that neonatal sevoflurane exposure 
profoundly affects hepatic fatty acid metabolism and immune cell infiltration, 
involving specific key genes (including Dhcr24), perturbed pathways, and 
regulatory networks. The identified biomarkers and potential therapeutic targets 
provide a crucial foundation for developing more specific countermeasures 
against sevoflurane-induced neurodevelopmental toxicity, potentially via 
targeting the liver-brain metabolic axis.
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1 Introduction

Sevoflurane is an inhaled general anesthetics that is widely used 
for induction and maintenance of general anesthesia across all age 
groups and surgical sites. It was shown that exposure to sevoflurane at 
a critical stage of brain development impaired learning and memory 
(Apai et al., 2021; Qiu et al., 2024). The underling mechanism has not 
been fully understood. Several studies (Liu et al., 2015; Ju et al., 2017; 
Yang et al., 2021) have confirmed that neonatal sevoflurane anesthesia 
inhibits the metabolism of fatty acids in liver and brain tissue in 
neonates, causing systemic energy deficiency and neuron injury. 
However, further research is required to reveal that how sevoflurane 
exposure affect hepatic fatty acid metabolism and whether there are 
diagnostic biomarkers for fatty acid metabolism in neonates.

The liver is a vital organ that utilizes fatty acids to generate energy 
through a multi-step process, which involves beta-oxidation and beta-
hydroxybutyric acid production (Molenaar et al., 2017). The developing 
brain relies on glucose and ketone bodies produced by the liver cells as 
energy substrates (Antunes et al., 2024). In addition to the metabolic 
functions, the liver is an important immune organ. It was shown that 
a well-regulated immune system is needed for proper brain 
development and function (Filiano et al., 2015). Furthermore, the liver 
and brain have their unique dialogue to transmit metabolic messages 
(Yang et al., 2024). Thus, we proposed that impairment of learning and 
memory following sevoflurane exposure was the consequence that 
sevoflurane disturbed liver metabolism and immunity of neonatal rats. 
Lymphocytes, including helper/induced T lymphocytes (CD3 + CD4+) 
and inhibitory/cytotoxic T lymphocytes (CD3 + CD8+), are a crucial 
cell population in the immune system. The CD4+/CD8+ ratio reflects 
change of immune system, and a decreased ratio often indicates a 
serious illness and poor prognosis (Hadj-Moussa et al., 2021). B cells 
play a crucial role in specific humoral immunity through producing 
antibodies. They also act as important antigen-presenting cells. NK 
cells, on the other hand, are crucial immunoregulatory cells that can 

regulate T cells, B cells, and bone marrow stem cells. They control the 
immune function by releasing lymphokines (Wang et al., 2014). It was 
reported that exposure to sevoflurane reduced the peripheral blood 
lymphocyte (Elena et al., 2003), indicating that sevoflurane exposure 
affected immunity. However, the change of immune cell in liver after 
sevoflurane exposure remains unclear.

In this study, we used high-throughput sequencing technology to 
perform whole-genome transcriptome sequencing on sevoflurane-
exposed neonatal rat liver to obtain a large amount of gene expression 
data. Subsequently, bioinformatics methods were used to process and 
analyze these data, screen out genes closely related to fatty acid 
metabolism, and further to verify their expression changes in 
sevoflurane-exposed neonatal rats. Through in-depth study of 
potential biomarkers, we will understand the mechanism of that 
sevoflurane influences fatty acid metabolism in rat liver. In addition, 
the biomarkers may be a powerful tool for assessing 
neurodevelopmental toxicity of sevoflurane and predicting an 
individual sensitivity to it, which will provide an important theoretical 
basis for the safety evaluation of sevoflurane in neonatal applications. 
The technical route of this study is shown in Figure 1. After 
transcriptome sequencing of 19 rat liver samples, the regulatory 
mechanism of sevoflurane exposure on fatty acid metabolism was 
systematically explored through differential analysis, multi-omics 
integration, and functional verification.

2 Materials and methods

2.1 Animal model and grouping

The experimental protocol was approved by the Xi’an Jiaotong 
University Laboratory Animal Administration Committee (No. 
2020-4). Calculated from sample size, 19 postnatal day (PND) 7 rats 
(Rattus Norvegicus), weighing 15–18 g with males and females, from 

FIGURE 1

Technology roadmap. Differential gene expression (DEG); gene ontology (GO); Kyoto Encyclopedia of Genes and Genomes (KEGG); messenger RNA 
(mRNA); protein–protein interaction (PPI); microRNA (miRNA); long noncoding RNA (IncRNA); gene set enrichment analysis (GSEA); gene set variation 
analysis (GSVA); transcription factor (TF).
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the Laboratory Animal Centre of Xi’an Jiaotong University were 
divided randomly into control group (n = 8) and sevoflurane group 
(n = 11), To minimize experimental error, the rats in the two groups 
were subdivided control (C1–C3) and (C4–C8), as well as sevoflurane 
(S1–S3) and (S4–S11), respectively. According to previous report, the 
rats in sevoflurane group were placed in a placed into an 
R-CU500-PRO small animal ICU incubator (RWD corporation) to 
maintain body temperature constant at 37°C, loaded with 60% 
air-oxygen mixture, then exposed to 3.4% sevofurane (Hengrui 
Pharmaceutical Group Corporation, Shanghai, China) in a 2 L min−1 
gas mixture for 6 h. The gas mixture entered from the upper air inlet 
on the left side of the anesthetic chamber through a threaded tube and 
then discharged from the lower air outlet on the right side of the 
anesthetic chamber. The exhaust gas was connected to a gas analyzer 
(Drager Inc., German) to monitor the concentrations of sevofurane 
and CO2. The pulse oxygen saturation (SpO2) was measured on the 
abdomen of anesthetized pups using an infant pulse oximetry probe. 
The rats in control group were placed in a holding box with the same 
concentration of oxygen for 6 h. The absence of hypoxia and carbon 
dioxide retention was also verified by testing arterial blood gas 
analysis. At the end of the exposure, 300–500 mg of liver was retained 
by ice saline infusion and then quickly frozen in liquid nitrogen for 
3 min before being transferred to −80 degrees Celsius refrigerator for 
freezing and preservation.

2.2 Data acquisition and pre-processing

19 PND7 rats liver samples were used to sequence the whole 
transcriptome (mRNA, lncRNA and miRNA) based on a DNA 
sequencing (DNA-seq) platform. A total of 11 samples were suppressed 
after sevoflurane exposure and the other 8 samples were used as 
controls. The above sequencing data were quality-controlled and then 
analyzed the downstream to obtain the expression matrix. In order to 
ensure the accuracy and reliability of subsequent analysis, the following 
measurements were adopted. (1) Quality control: the data quality of all 
samples was first assessed using the FastQC software to check for low 
quality areas or contamination. For unqualified data, the problem 
sequence was resequenced or removed from the sample. (2) Removal 
of adapter sequences: since additional artificial sequences (e.g., primers, 
adapters, etc.) may be introduced during library construction, the 
Trimmomatic tool is required to identify and remove these non-target 
fragments. (3) Filter low-quality reads: set a threshold criterion, such 
as bases with a Phred quality score below 20 will be marked as 
uncertain and removed from the data set. In addition, reads that are 
too short (usually less than 50 BP) were filtered out. (4) Align the 
reference genome: map the cleaned high-quality reads to the known 
rat reference genome, and use the STAR algorithm to complete this 
task. The purpose of this measurements is to determine the specific 
location information of each read and its corresponding gene 
annotation. (5) Quantification of expression: the relative abundance of 
each gene/transcript was calculated based on the alignment results. The 
commonly used methods are statistical models such as RSEM 
(RNA-Seq by Expectation Maximization) or DESeq2. (6) Outlier 
detection and handling: use the box plot or other visual means to 
identify the sample points that significantly deviate from the population 
distribution as potential outliers; further confirm their significance 
level through t test or ANOVA test to determine whether to retain 

them in the final data set for subsequent analysis. (7) Standardized 
adjustment: in order to eliminate the influence of technical variation 
that may exist between different batches, it is also necessary to compare 
the total readings of each sample and normalize them to make them 
comparable. Differential analysis was performed based on the DESeq2 
package (Chen et al., 2022), with the threshold of |logFC| ≥ 1 and 
P. adjust ≤ 0.05 to obtain differential mRNA, lncRNA and miRNA.

2.3 Analysis of differential gene expression 
related to fatty acid metabolism

The keyword “fatty acid metabolism” was used to obtain h.all.
v7.5.1.symbols.gmt, c2.cp.kegg.v7.5.1.symbols.gmt and c2.cp.
reactome.v7.5.1.symbols.gmt through Molecular Signature Database 
(MSigDB, v7.5.1) package (Chen et al., 2021). kegg.v7.5.1.symbols.
gmt and c2.cp.reactome.v7.5.1.symbols.gmt for fatty acid metabolism-
related datasets (Rollins et al., 2019; Yu et al., 2022). After removing 
duplicate genes from different datasets, 299 fatty acid metabolism-
related genes were obtained (Table 1). The fatty acid metabolism-
related genes were jointly taken as intersection with differentially 
expressed genes and visualized by ggheatmap for heat map based on 
their expression levels (Liu et al., 2022).

2.4 Functional and pathway enrichment 
analysis of differentially expressed genes

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Zhao et al., 2020) are common databases for 
enrichment studies. GO contains three sections: biological process (BP), 
molecular function (MF) and cellular component (CC), which could 
systematically annotate the properties of genes and their products. The 
KEGG focuses on genomes, enzymatic pathways and biochemicals, and 
can be used to query the network of molecular interactions in cells. We 
performed enrichment analysis of differential expressed genes based on 
the org.Rn.eg.db (3.15.0) database using the clusterProfiler package (Liu 
et al., 2022), correcting the p-value by the Benjamini-Hochberg (BH) 
method, with a threshold of corrected P.adjust less than or equal to 0.05. 
The significantly enriched gene set was obtained. Visualization was 
performed using ggplot2 (Gustavsson et al., 2022), enrichplot (Li et al., 
2022) and Cytoscape (Zhang et al., 2022).

2.5 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) is used to evaluate the 
trend of distribution of genes in a predefined gene set in a table of 
genes ordered by their phenotypic correlation and thus determine 
their contribution to the phenotype (Yang et al., 2023). In this study, 
GSEA of samples was performed using the clusterProfiler package 
based on the c5.go.v7.5.1.symbols.gmt and c2.cp.kegg.v7.5.1.symbols.
gmt gene set. This enrichment analysis was performed using the 
following parameters: each gene set contained a minimum of 10 
genes and a maximum of 500 genes, and the p-value correction 
method was Benjamini-Hochberg (BH). Significantly different gene 
sets were obtained with a P.adjust less than or equal to 0.05 as the 
threshold and visualized by the enrichplot package.
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2.6 GSVA enrichment analysis

Gene set variation analysis (GSVA), is a non-parametric 
unsupervised analysis method that is used to evaluate the gene set 
enrichment results of the microarray nuclear transcriptome by 
converting the expression matrix of genes between samples into the 
expression matrix of gene sets between samples. Thus, to assess 
whether different pathways are enriched between different samples 
(Shi et al., 2022). In this study, GSVA was performed on rat liver 
samples by GSVA package based on c5.go.v7.5.1.symbols.gmt and 
c2.cp.kegg.v7.5.1.symbols.gmt gene sets obtained from MsigDB 
database, and differential analysis of enrichment results was performed 
using limma package (Shi et al., 2022), with logFC absolute values 
greater than or equal to 0.5 and P.adjust less than or equal to 0.05 as 
the threshold to obtain significantly different gene sets.

2.7 Analysis of protein–protein interaction 
networks

Protein–Protein Interaction (PPI) Networks are composed of 
proteins that interact with each other and are closely related to various 
aspects of life processes such as biological signaling and regulation of 
gene expression. STRING database can be used to retrieve known or 
predicted protein interactions (Xie et al., 2022). In this study, the 
screened differential genes were imported into the STRING database, 
and the appropriate query parameters were set (confidence was set to 
0.7), so that those interactions considered to have high confidence were 
included in the network. This selection criterion helps to filter out 
unreliable data, thus enhancing the effectiveness and accuracy of network 
construction. After obtaining the protein–protein interaction data 
returned from the STRING database, we imported these data into 
Cytoscape software for visual analysis. Cytoscape is a powerful open-
source software platform that can be used to map complex networks and 
help researchers intuitively understand the interactions between proteins. 
With the corresponding modular setup, the resulting PPI network will 

contain nodes (representing different proteins). And edges, which 
represent interactions between them, with the size of the nodes adjusted 
according to the number or strength of interactions. Once the network 
was constructed, we utilized Cytoscape’s cytoHubba plugin for further 
analysis. In this study, we adopt the MCC (Maximum Clique Centrality) 
algorithm to evaluate the importance of each gene in the network (Zeng 
et al., 2022). The MCC algorithm identifies important genes that play a 
key role in the network structure by considering the connectivity and 
interaction patterns of nodes. Based on the calculation results of MCC 
algorithm, we identified the first six differential genes as hub genes. To 
further visualize the distribution of these key genes in the genome, we 
used the RCircos tool. RCircos is a visualization tool that combines 
genomic data with interaction networks to generate circular graphs that 
integrate genomic location and interaction information. In RCircos, we 
annotate the chromosomal location information of key genes, so that we 
can quickly identify the specific location of key genes on the genome and 
their clustering on specific chromosomes (An et al., 2015).

2.8 Key gene friends analysis

The semantic comparison of GO annotations provides a 
quantitative method to calculate the similarity between genes and 
genomes. In this study, the semantic similarity of key genes was 
derived based on the GOSemSim package (Bi et al., 2021), and the 
final score was obtained by calculating their geometric mean at 
different levels of GO (BP, MF and CC) and visualized using ggplot2.

2.9 Differential mRNA-differential 
miRNA-differential lncRNA network 
analysis

Competing endogenous RNA (ceRNA) represents a novel mode 
of gene expression regulation, which could compete for miRNA 
binding and deregulate miRNAs to enhance target gene expression. 
mRNAs and lncRNAs could “communicate” with each other through 

TABLE 1  GO ORA partial enrichment results.

Description Ontology p value p.adjust q value

Cholesterol biosynthetic process BP 1.09E-07 1.05E-05 6.43E-06

Sterol biosynthetic process BP 1.45E-07 1.05E-05 6.43E-06

Steroid biosynthetic process BP 1.70E-07 1.05E-05 6.43E-06

Cholesterol metabolic process BP 4.01E-06 0.000165521 0.000101167

Sterol metabolic process BP 4.89E-06 0.000165521 0.000101167

Fatty acid metabolic process BP 1.74E-05 0.000448942 0.000274396

Peroxisome CC 9.42E-08 1.13E-06 8.43E-07

Microbody CC 9.42E-08 1.13E-06 8.43E-07

Oxidoreductase activity, acting on 

the CH-OH group of donors, NAD 

or NADP as acceptor

MF 0.000220857 0.005602281 0.002307576

Oxidoreductase activity, acting on 

CH-OH group of donors
MF 0.000278175 0.005602281 0.002307576

NAD binding MF 0.001867062 0.021471214 0.008843978

BP, biological process; CC, cellular component; MF, molecular function.
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MREs (microRNA Response Elements), thus forming a genome-wide 
regulatory network. We have used miRanda (Zhu et al., 2022) and 
TargetScan (Li et al., 2023) to predict miRNA target genes and 
construct mRNA-miRNA-lncRNA networks for differential expressed 
genes related to fatty acid metabolism and visualize them by Cytoscape.

2.10 Transcription factor network 
construction for key genes

Transcription factor (TF) could interact with cis-acting elements 
of eukaryotic genes to activate or repress the transcription of genes. In 
this study, a transcription factor network was constructed for key 
genes by Network Analyst (Yue et al., 2022) based on the ENCODE 
(Yang et al., 2020) transcription factor-gene interaction database and 
visualized by Cytoscape.

2.11 Small molecule analysis of key gene 
drugs

To investigate the association between key genes and drug small 
molecule sensitivity, we then calculated the Pearson correlation 
coefficient between key gene expression levels and different drugs by 
using the CellMiner database (Zhou et al., 2022), and the results of the 
analysis were screened based on a p < 0.01 cut-off. The expression data 
were divided into two groups, high and low expression, separated by 
the median expression level of key genes, and the comparison between 
the two groups was performed based on a Wilcoxon rank sum test, 
and the gene-drug combinations with p < 0.01 were selected to draw 
box line plots based on ggpubr (Cheng et al., 2021).

2.12 Immune infiltration analysis

The immune microenvironment is an integrated system consisting 
mainly of immune cells and various cytokines and chemokines, etc., 

and immune infiltration analysis has an important guiding role in 
disease research, etc. CIBERSORT is an algorithm based on the 
principle of linear support vector regression for inverse convolution 
analysis, which can be used for estimation of cell type abundance 
(Zhou et al., 2022). To investigate the differences in immune 
infiltration between the two groups of samples, this study assessed the 
level of immune cell infiltration in each sample by IOBR package 
(Cheng et al., 2021) using the CIBERSORT algorithm based on the 
marker genes of 25 immune cells obtained from the literature, and 
then used ggplot2 to draw box plots and immune cell composition 
stacked histograms by ggstatsplot (He et al., 2022) to calculate the 
correlation between key genes and immune cells, and corrplot (Bi et 
al., 2022) to visualize the correlation between immune cells.

2.13 Liver gene expression

To verify the expression of different genes in the liver, we 
determined the expression levels of hepatic fatty acid metabolism-
related genes Acot2, Dhcr24, Idi 1, Odc 1, Slc22a5, Acot12, Hsd17b7, 
Prkag2, Amcar, Mapkap1, HCCS, Idh and Elovl2 using real-time 
PCR. Briefly, RNA was extracted from the livers of neonatal rats after 
sevoflurane exposure using Trizol reagent (Invitrogen), and then 
reverse transcribed into cDNA using the PrimeScript™RT kit 
(Takara). cDNA levels of the target genes were amplified and 
quantified using the Bio-Rad iCycler Real-time PCR system. The 
cDNA level of the target gene was amplified and quantified using the 
Bio-Rad iCycler Real-time PCR System. The 2−ΔΔCt method was used 
to calculate the gene expression level of each sample, which was 
repeated three times. The primer sequences are shown in Table 2.

2.14 Immunofluorescence staining of liver 
tissue

Rats were deeply anesthetized with sodium pentobarbital (50 mg/
kg) and then perfused transcardially with saline (4°C). Livers were 

TABLE 2  Primer sequences used for qRT-PCR.

Gene Forward sequence Reverse sequence

Acat2 AGAGAAACATACCCCAGGACAC ATGAAGCAGGCATAGAGCAAAC

Dhcr24 ATGCTGGTACCCATGAAATGC CGAGATCTTGTCATACACCTC

Idi1 ACAGGTTCAGCTTCTAGCAGA CCTTTAAGCGCTTCTGTGCTG

Odc1 TGCTTGACATTGGTGGTG TTCTCATCTGGCTTGGGT

Slc22a5 TGGGCAAGTTTGGAATCACC CACCAAAGCTCTCTGGGAAG

Acot12 CATGGCGTGGATGGAGACA TTGACGATGGCATTGAAGACAAG

Prkag2 CAGCGTCTCCTCCTCTCCATC GCGGCTTTCTAGGCGTTCAG

Amcar GACTCTACAGCAGGACAATCCAAAG GGACACCTGACAAAGCCACATAG

Ugdh ACATTAGCAAATACCTGATGGACGAG CCGCTGAGACGCCTGGATG

Them5 CGTGGGCTCTCTGGCTGTC CACTGTCTGCTTGTCTCTGCTC

Idh ATGGCGGTTCTGTGGTGGAAATG GGTCATTGGTGGCATCCCGATTC

Mapkap ACCTGCTCTGTGCCTGTGAC CGGTAGCTGCGTCGGACTC

Hccs GATTGATTACTATGATGGCGGTGAG AGCAACTTTCATTCTGTCCCATACTG

Elovl2 GCTTCTTCGGACCAACCCTGAAC GCATGGACGGGAACACAGACAG
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fixed and then serially sliced into 10-μm-thick transverse sections 
using a cryosectioning machine (Leica, CM1950, Germany) and 
mounted on gelatin-coated glass slides. All slides were blocked with 
10% goat serum for 2 h at room temperature and then incubated with 
the corresponding primary antibody overnight. Primary antibodies 
used were Mouse Anti-CD4 Antibody (1:200, YM3070, Immunoway), 
MouseNAnti-CD86 Antibody (1:200, ab238468, abcam), Rabbit Anti-
Perforin 1 Antibody (1. 200, YT5792, Immunoway). The next day, the 
sections were rewarmed for 15 min, rinsed with PBS (3 times for 
15 min each), and then incubated with the corresponding secondary 
antibodies for 2 h at room temperature. The secondary antibodies 
were CoraLite594 -conjucated Goat anti-Mouse IgG (1:200, 
SA00013-3, proteintech), CoraLite594 -conjucated Goat anti-Rabbit 
IgG (1:200, SA00013-4, proteintech), and CoraLite594 -conjucated 
Goat anti-Rabbit IgG (1:200, SA00013-4, proteintech), respectively. 
Sections were rinsed with PBS after DAPI re-staining (3 times for 
15 min each). Fluorescence images were acquired using a microscope 
(Axioscope5, ZEISS, Germany). Four sections were taken from each 
liver, and 5 fields of view were taken from each section for cell 
counting. The average of 5 fields of view represented the number of 
positive cells in that section. The average of positive cells in 4 sections 
represented the average for that liver.

2.15 Statistical analysis

All analyzes in this article were based on R software (Version 
4.2.0) and SPSS 13.0. Wilcoxon rank sum test was used to compare the 
differences between the two groups. Comparison of data between the 
two groups was done using t test. Pearson correlation coefficient was 
used to analyze the relationship between gene expression and drug 
sensitivity. This study involved multiple comparisons (e.g., comparison 
of expression levels of multiple genes, analysis of sensitivity to multiple 
drugs, etc.), which may increase the risk of false positive results. 
Therefore, in the statistical analysis, we used the Benjamini-Hochberg 
correction method to reduce this risk. By adjusting the p-value, it can 
control the increase of the first type error rate caused by multiple tests 
to a certain extent, so as to make the final conclusion more reliable. 
The results were based on p < 0.05 as the criterion for significantly 
different results.

3 Results

3.1 Differential gene analysis

Differential gene analysis was performed by DEPseq2 for the two 
mRNA sequencing results of the samples, and differential genes were 
defined by the threshold of |log2FC| greater than or equal to 1 and a 
corrected P.adjust less than or equal to 0.05. A total of 816 significantly 
up-regulated genes and 639 significantly down-regulated genes 
(Figure 2A) were obtained in the first sequencing group (S1–S3) 
compared with a control group (C1–C3), and 606 up-regulated genes 
and 507 down-regulated genes (Figure 2B) were obtained in the second 
sequencing group (S4–S11) compared with a control group (C4–C8). A 
heat map of the expression levels of the differentially sequenced genes in 
the two groups shows a clear distinction between the control group and 
the sevoflurane group (Figures 2C,D).

3.2 Expression analysis of differentially 
expressed fatty acid metabolism-related 
genes

To reduce the experimental error, the intersection of the different 
genes obtained from the two sequencing groups was taken to obtain the 
co-existing different genes. To detect the expression of fatty acid 
metabolism-related differential genes, we obtained the list of fatty acid 
metabolism-related genes based on KEGG, Reactome and Hallmark 
databases, and further intersected with the list of intersecting differential 
genes to obtain a total of 8 fatty acid-related differential genes with 
significantly high expression, such as Acat2, Dhcr24, Hccs, Hsd17b7, 
Idi1, Odc1, Mapkap1, and Mapkap2. Idi1, Odc1, Mapkapk2 and Them5, 
and 7 fatty acid-related different genes with significantly low expression, 
such as Idh1, Slc22a5, Ugdh, Acot12, Amacr, Elovl2 and Prkag2 
(Figure 3A). A heat map of the expression of these 15 fatty acid 
metabolism-related different genes showed that their expression levels 
were significantly differential expressed between the control and 
sevoflurane group (Figures 3B,C).

3.3 GO and KEGG enrichment analysis of 
differential genes related to fatty acid 
metabolism

By using the ClusterProfiler package, we enriched the list of 
intersecting differential genes based on GO and KEGG databases, and a 
total of 40 GO genes were significantly enriched, such as: cholesterol 
biosynthetic process, sterol biosynthetic process and steroid biosynthetic 
process. Biosynthetic process, etc. In addition, five KEGG pathways were 
significantly enriched, such as Steroid biosynthesis, Terpenoid backbone 
biosynthesis and Fatty acid elongation (Figure 4A; Tables 1, 3). Network 
mapping of the significantly enriched gene set showed that differential 
expressed genes such as Acat2, Amacr and Dhcr24 are involved in 
multiple biological pathways simultaneously (Figure 4B). We further 
combined the different gene log2FC with the enrichment results to show 
the association between the gene set and the corresponding differential 
expressed genes in the form of a heat map (Figures 4C,D). log2FC greater 
than 0 represents up-regulation of gene expression compared to the 
control group, while less than 0 represents down-regulation.

3.4 GSEA and GSVA enrichment analysis

Traditional Over Representation Analysis (ORA) only considers 
different genes, which might be missed for genes with small variation but 
large effects. Therefore, we further performed GSEA by the 
ClusterProfiler package and obtained 126 significantly up-regulated GO 
gene sets (e.g., cholesterol biosynthetic process and cholesterol metabolic 
process), 11 KEGG pathways (e.g., Circadian entrainment, etc.), 80 
significantly down-regulated GO gene sets (e.g., negative regulation of 
canonical Wnt signaling pathway, regulation of canonical Wnt signaling 
pathway and Wnt signaling pathway, etc.) and 12 KEGG pathways (e.g., 
Chemokine signaling pathways, Cytokine-cytokine receptor interaction 
and NOD-like receptor signaling pathway, etc.) (Tables 4, 5), with 
P.adjust less than or equal to 0.05 as the threshold. We then ranked the 
genes based on P.adjust and visualized the top 3 gene sets (Figures 5A,B). 
In addition, we performed GSVA based on the GSVA package, and 
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analyzed the expression level of each gene set by limma package, and 
obtained a total of 130 significantly up-regulated GO gene sets and 5 
KEGG pathways and 62 significantly down-regulated GO gene sets and 
2 KEGG pathways with a threshold of logFC absolute value greater than 
or equal to 0.5 and P.adjust less than or equal to 0.05. We then obtained 
130 significantly up-regulated GO gene sets and 5 KEGG pathways and 
62 significantly down-regulated GO gene sets and 2 KEGG pathways 
based on the threshold of 0.05. We then ranked the top 50 different GO 
gene sets and all different KEGG pathways based on P. adjust and drew 
a heat map (Figure 5C). The results of several gene sets obtained by 
different enrichment analysis methods are consistent, such as: ribosome 
biogenesis, ribonucleoprotein complex biogenesis and ribosome binding.

3.5 Analysis of differential gene networks 
related to fatty acid metabolism

We then constructed a protein interaction network based on the 
STRING database for fatty acid metabolism-related differential genes 

and visualized them by Cytoscape (Figure 6A), and used the 
CytoHubba plug-in MCC algorithm to obtain the most critical six 
different genes as key genes, such as Dhcr24, Acat2, Hsd17b7, Idi1, 
Acot12 and Them5 (Figure 6B). Acot12 and Them5 (Figure 6B), and 
visualize the localization of each key gene on the chromosome by 
RCircos package (Figure 6C).

To compare the importance of different key genes in the pathway, 
we performed Friends analysis based on the GOSemSim package, 
suggesting that Dhcr24 might play a more critical role in the pathway 
(Figure 6D).

3.6 Analysis of mRNA-miRNA-lncRNA 
networks of differential genes related to 
fatty acid metabolism

In order to explore the regulatory relationship of differential 
expressed gene network, we further constructed mRNA-miRNA-
lncRNA networks for differential genes related to fatty acid 

FIGURE 2

Differential gene analysis volcano plots of differential gene analysis for group 1 sequencing (A) and group 2 sequencing (B), with |log2FC| ≥ 1 and 
P.adjust ≥0.05 as thresholds, log2FC on x-axis and −log10 (P.adjust) on y-axis; heat map based on differential gene expression levels for group 1 
(C) and group 2 (D), with rows representing different genes and columns representing different samples. Log2FC (log2 fold change).
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metabolism and visualized them by Cytoscape. Novel_311, 
Novel_85 and Novel_86 in miRNA, MSTRG.51971, 
MSTRG.177216 and MSTRG.139093 in lncRNA, and Flvcr2 in 
mRNA play important roles in the regulatory network 
(Figure 7A).

3.7 Analysis of key gene transcription factor 
networks

Since transcription factors play an important role in gene 
regulation, we constructed a transcription factor network based on the 
ENCODE database by NetworkAnalyst for the six key genes 
(Figure 7B), and the results suggested that transcription factors such 
as MEFZA, MX11 and ELF1 might play more critical roles 
in regulation.

3.8 Small molecule drug analysis of key 
genes

To explore the relationship between key genes and small molecule 
drug sensitivity, RNA expression data (RNA: Rna-Seq) and drug data 
(Compound activity: DTP NCI-60) from CellMiner database were 
used, with IC50 values representing drug resistance level. The 
correlation between key gene expression data and drug small molecule 
IC50 was examined by Pearson correlation analysis, and key gene-
drug small molecule combinations was further screened by the 
threshold of p < 0.01. The Wilcoxon rank sum test was used to 
investigate whether IC50 values of small molecule drugs were 
significant differences between the high-expression and 
low-expression groups of key genes. Defined by p < 0.01, there were 
significant differences in the IC50 of 43 key gene-drug small molecule 
combinations. For example, high expression of Dhcr24 reduced 

FIGURE 3

Expression analysis of fatty acid metabolism-related genes. (A) Venn diagram of differential genes and intersection of fatty acid metabolism-related 
genes from two sequencing groups; heat map of fatty acid metabolism-related differential genes from the sevoflurane group (B) and the control group 
(C). Rows represent different fatty acid-associated differential expressed genes and columns represent different samples. The orange annotated bars 
represent sevoflurane group and the purple annotated bars represent the control group.
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significantly the resistance to actinomycin D, vinblastine, Danobicin, 
epirubicin, Eribulin mesylate, AMG-900 and AK Plk inhibitors, while 
increased significantly the resistance to XAV-939. High expression of 
HCCS reduced significantly the resistance to Fluorouracil (Figure 8).

3.9 Immuno-infiltration analysis

The immune infiltration analysis of each sample was performed 
by CIBERSORT algorithm based on the marker genes of 25 immune 

cells obtained from the literature and visualized using box line plots 
and stacked histograms (Figures 9A,B), which showed that CD4 
memory T cells (T Cells CD4 Memory, p = 0.018), immature dendritic 
cells (DC Immature, p = 0.031), and active NK cells (NK Actived, 
p = 0.013) were significantly different from active dendritic cells (DC 
Actived, p = 0.018) in the control and sevoflurane group samples. We 
then examined the correlation between key genes and the level of 
immune cell infiltration, where a significant positive correlation was 
found between Elovl2-active dendritic cells (DC Actived, p = 0.00071, 
r2 = 0.71) (Figure 9C) and Slc22a5 – active dendritic cells (DC 

FIGURE 4

GO and KEGG database ORA analysis (A) partial enrichment result histogram of GO and KEGG ORA analysis, the x-axis is −log10 (P.adjust), the y-axis is 
gene set name, the color represents different gene set types; (B) partial gene–gene set association mesh, orange represents gene sets, gray represents 
differential genes; (C) partial GO enrichment results combined with corresponding differential gene logFC heat map; (D) KEGG enrichment results 
combined with corresponding differential gene logFC heat map. GO (Gene Ontology); BP (biological process); CC (cellular component); MF 
(molecular function); KEGG (Kyoto Encyclopedia of Genes and Genomes); ORA (over representation analysis); Log2FC (log2 fold change).
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Actived, p = 0.000011, r2 = 0.83) (Figure 9C). A significant positive 
correlation was found between the two sample groups (Figure 9D). In 
addition, the correlation between immune cells in the two sample 
groups showed that some immune cell correlations were altered and 
the immune microenvironment differed between the two groups 
(Figures 9E,F), e.g., Neutrophil Cells were negatively correlated with 
plasma cells in the control group and positively correlated in the 
sevoflurane group; initial B cells (B Cells Naive) were negatively 
correlated with CD4 initial T cells (T Cells CD4 Naive) in control 
group and positively correlated in the sevoflurane group; Th2 cells 
(Th2 Cells) were positively correlated with CD8 initial B cells (T Cells 

CD8 Naive) in the control group and negatively correlated in the 
sevoflurane group. Macrophage (M0 Macrophage) and CD8 memory 
T cells (T Cells CD8 Memory) were negatively correlated in the 
control group and positively correlated in the sevoflurane group; Th17 
cells (Th17 Cells) and M1 macrophages (M1 Macrophage) were 
positively correlated in the control group and negatively correlated in 
the sevoflurane group. Immature dendritic cells (DC Immature) were 
positively correlated with CD4 initial T cells (T Cells CD4 Naive) in 
the control group and negatively correlated in the sevoflurane group; 
monocytes were positively correlated with Th17 cells (Th17 Cells) in 
the control group and negatively correlated in the sevoflurane group.

3.10 RT PCR analysis of liver

Detailed are shown in Figure 10. To further validate the 
experimental results, we conducted further validation on 15 
differentially expressed genes. The results showed that Elovl2 was 
significantly down regulated in the sevoflurane group (p = 0.002), 
Slc22A5, Acot12, Udgh, Amcar, Idh, Prkag2 were also significantly 
down regulated, Dhcr24 was significantly up-regulated in the 
sevoflurane group (p = 0.005), Idi 1, Odc 1, Hsd17b7, Mapkap1, HCCS 
were also significantly up-regulated, which is consistent with the 
previous experimental results.

3.11 Identified by 
immunohistofluorescence staining

Detailed are shown in Figure 11.

4 Discussion

This study utilized a validated bioinformatics approach to 
investigate the impact of metabolic genes associated with liver tissue 
on brain energy supply following sevoflurane exposure. Some 
diagnostic biomarkers were also identified. Compared to normal liver 
tissue, the expression of genes related to fatty acids was significantly 
altered. These genes were involved in cholesterol, sterol, and steroid 
biosynthesis. Several biological pathways, such as bile acid signaling, 
ketone body catabolism, liver development, fatty acid biosynthesis, 
and sphingolipid biosynthesis, were affected by different genes, 
including Acat2, Amacr, and Dhcr24. Ketone bodies and fatty acids, 
which are products related to fatty acid metabolism, are significant 
sources of energy for brain metabolism (McKenna et al., 2015; Delp 
et al., 2018). They can be directly taken up and used by the brain. 
Supplementation with ketone bodies and fatty acids may reduce 
neonatal hypoxia and ischemia, pediatric traumatic brain injury, and 
brain damage secondary to prematurity (McKenna et al., 2015; 
Demers-Marcil and Coles, 2022). Under physiological conditions, 
hypoglycemia stimulates the secretion of glucagon, which causes the 
mobilization of fat to produce fatty acids and glycerol (Thorens, 2024). 
These can be oxidized directly or metabolized by the liver into ketone 
bodies that are transported outside the liver as an energy substrates 
(Delezie et al., 2012), which are crucial for providing energy for all 
cellular processes required for brain development and function. This 
includes ATP formation, synaptogenesis, neurotransmitter synthesis, 

TABLE 3  KEGG ORA partial enrichment results.

Description p value p.adjust q value

Steroid biosynthesis 0.00048869 0.018633617 0.014892364

Terpenoid backbone 

biosynthesis
0.000767892 0.018633617 0.014892364

Fatty acid elongation 0.001035201 0.018633617 0.014892364

Pyruvate metabolism 0.002595976 0.035045672 0.028009212

Fatty acid 

metabolism
0.00452394 0.048858553 0.039048746

KEGG, Kyoto Encyclopedia of Genes and Genomes; ORA, over-representation analysis.

TABLE 4  GO GSEA partial enrichment results.

Description Ontology NES p value p.adjust

Cholesterol 

biosynthetic process
BP 2.0536663 6.58E-06 0.00135068

Negative regulation 

of canonical Wnt 

signaling pathway

BP −1.6858465 0.00028139 0.01862825

Regulation of 

canonical Wnt 

signaling pathway

BP −1.5629753 0.0004913 0.02578336

Wnt signaling 

pathway
BP −1.4119254 0.00061745 0.02976631

Cell–cell signaling by 

wnt
BP −1.4125734 0.00070301 0.03230913

Cholesterol 

metabolic process
BP 1.70620758 0.00078489 0.03463896

GO, gene ontology; GSEA, gene set enrichment analysis; BP, biological process.

TABLE 5  KEGG GSEA partial enrichment results.

Description NES p value p.adjust

Chemokine signaling 

pathways
−1.9988821 0.00000031 0.00005200

Cytokine-cytokine 

receptor interaction
−1.6837167 0.00007040 0.00387406

NOD-like receptor 

signaling pathway
−1.5977521 0.00172893 0.02716892

Circadian 

entrainment
1.69433341 0.00217536 0.03263046

KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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FIGURE 5

GSEA and GSVA (A) partial enrichment score (ES) diagram of GO GSEA (based on the top 3 gene sets sorted by P.adjust); (B) partial ES diagram of KEGG 
GSEA (based on the top 3 gene sets sorted by P.adjust); (C) heat map of GSVA, behavior of different gene sets and pathways of GO/KEGG database, 
listed as different samples. GO (Gene Ontology); KEGG (Kyoto Encyclopedia of Genes and Genomes); GSEA (gene set enrichment analysis); GSVA 
(gene set variation analysis).
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release and uptake, maintenance of ion gradients and redox states, and 
myelination (Etchegaray and Mostoslavsky, 2016; Knobloch, 2017; 
Ryan et al., 2019). 5 pivotal genes, Dhcr24, Acat2, Hsd17b7, Idi1, 
Acot12, and Them5, were screened to compare the importance of 
different key genes in the pathway. It appears that Dhcr24 may play a 
more critical role in the pathway.

DHCR24 is an important key synthase for cholesterol 
synthesis in the brain (Ma et al., 2022). Mutations in the DHCR24 
gene inhibit its enzyme activity, leading to cholesterol deficiency 
and accumulation of delipid lipids in the brain (Bai et al., 2022). 
DHCR24 has been found to be associated with brain and 
peripheral health properties. Additionally, DHCR24 has a novel 
role in the metabolism of triglyceride-rich lipoproteins, possibly 
involving omega-3 fatty acids, particularly DHA, which could 
affect peripheral metabolism and brain health (Sliz et al., 2021; 
Mai et al., 2022). However, there is no data to determine the 
effects of sevoflurane on hepatic cholesterol metabolism. 
Downregulation in brain regions associated with Alzheimer’s 
disease has been reported. Seladin-1, a key enzyme in the 
cholesterol pathway, has been shown to have a neuroprotective 
effect (Kelicen-Ugur et al., 2019). Additionally, Seladin-1 has been 
shown to regulate lipid raft formation. A recent study showed that 

Dhcr24 affects energy transfer between neurons and astrocytes by 
promoting cholesterol metabolic differentiation. Overexpression 
of DHCR24 prevented the overactivation of Ras/MEK/ERK 
signaling by increasing cellular cholesterol content, thereby 
decreasing tau hyperphosphorylation in astrocytes (Mai et al., 
2022). Research has shown that developing cortical neurons rely 
on endogenous cholesterol synthesis and utilize apolipoprotein 
complex cholesterol and sterol precursors from their surrounding 
environment. Both developing neurons and astrocytes release 
cholesterol into their local environment (Genaro-Mattos et al., 
2019). Additionally, it was discovered that Dhcr24 is highly 
expressed mainly in neonatal murine livers exposed to sevoflurane. 
Therefore, as Dhcr24 plays a vital role in abnormal cholesterol 
metabolism, it could serve as a diagnostic biomarker.

In the present study, we observed significant changes in the 
expression of genes related to fatty acid metabolism in rat liver after 
sevoflurane exposure. This finding suggests that sevoflurane may 
indirectly affect brain development by affecting energy metabolism in 
the liver. Specifically, the rat model used in the experiment showed that 
some key genes played a crucial role in fatty acid metabolism, and the 
pattern of changes in these genes was consistent with human 
physiological characteristics, especially in the growth and development 

FIGURE 6

Fatty acid metabolism-associated differential gene network analysis (A) protein interaction network of fatty acid metabolism-associated differential 
genes based on STRING database; (B) key genes based on cytoHubba plug-in MCC algorithm; (C) chromosomal localization of key genes; (D) cloud 
and rain map of key gene Friends analysis.
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of children with high energy requirements to support their rapid 
growth and brain development (Chen et al., 2022). This study reveals 
a potential mechanism of sevoflurane influencing fatty acid 
metabolism: by changing the activity level of key enzymes or regulators 
involved in fatty acid synthesis, decomposition and transport in the 
liver, the energy balance of the whole body is affected, which provides 
a new perspective for understanding how anesthetics act on non-target 

organs. In addition, it is worth noting that the above changes in specific 
molecular markers in fatty acid metabolic pathways not only help to 
explore the biological basis behind sevoflurane-induced cognitive 
dysfunction or other neurodevelopmental abnormalities, but also open 
the way for the development of new diagnostic tools.

In this study, CIBERSORT algorithm was used to analyze the 
immune infiltration of different samples. It was shown that there were 

FIGURE 7

Analysis of the regulatory network of fatty acid metabolism-related differential genes (A) mRNA-miRNA-lncRNA network of fatty acid metabolism-
related differential genes, visualizing nodes with no less than 110 neighboring nodes within 2 nodes interval, yellow represents mRNA, purple 
represents lncRNA, green represents miRNA; (B) regulatory network of key gene transcription factors, yellow represents key genes, purple represents 
transcription factors.
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significant differences in the infiltration level of various immune cells 
between two groups. Initial B cells were negatively correlated with CD4 
initial T cells in the control group and positively correlated in sevoflurane 

group. In the control group, Th2 cells showed a positive correlation with 
CD8 initial B cells, while in sevoflurane group, they showed a negative 
correlation. Similarly, Th17 cells and M1 macrophages were positively 

FIGURE 8

Boxplot of small molecule drug analysis of key genes. (A) IC50 boxplots of different DHCR24 expression levels versus actinomycin D resistance. 
(B) IC50 boxplots of different DHCR24 expression levels versus vinblastine resistance. (C) IC50 boxplots of different DHCR24 expression levels versus 
daunorubicin resistance. (D) IC50 boxplots of different DHCR24 expression levels versus epirubicin resistance. (E) IC50 boxplots of different DHCR24 
expression levels versus Eribulin mesylate resistance. (F) IC50 boxplots of different DHCR24 expression levels versus XAV-939 resistance. (G) IC50 
boxplots of different DHCR24 expression levels versus AMG-900 resistance. (H) IC50 boxplots of different DHCR24 expression levels versus TAK PIk 
inhibitor resistance. (I) IC50 boxplots of different HCCS expression levels versus fluorouracil resistance. (J) IC50 boxplots of different ODC1 expression 
levels versus hydroxyurea resistance. (K) IC50 boxplots of different ODC1 expression levels versus fostamatinib resistance. (L) IC50 boxplots of different 
ODC1 expression levels versus pralatrexate resistance. (M) IC50 boxplots of different ODC1 expression levels versus PLX-4720 resistance. (N) IC50 
boxplots of different ODC1 expression levels versus ST-3595 resistance. (O) IC50 boxplots of different MAPKAPK2 expression levels versus wortmannin 
resistance. (P) IC50 boxplots of different MAPKAPK2 expression levels versus rapamycin resistance. * p < 0.05; ** p < 0.01; *** p < 0.001. IC50, half-
maximal inhibitory concentration. ODCI, ornithine decarboxylase 1. MAPKAPK2, Mitogen-activated protein kinase-activated protein kinase 2.
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FIGURE 9

Immune infiltration analysis. (A) Box plot of the percentage of each immune cell, purple represents control group, orange represents sevoflurane 
group; (B) Stacked bar graph of immune cell composition of each sample, different colors represent different immune cells; (C) Scatter plot of the 
correlation between Elovl2 gene and active dendritic cells (DC Actived); (D) Scatter plot of the correlation between Slc22a5 gene and active dendritic 

(Continued)
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correlated in the control group but negatively correlated in sevoflurane 
group. Immature dendritic cells were positively correlated with CD4 
initial T cells in the control group and negatively correlated in sevoflurane 
group. In the control group, monocytes showed a positive correlation 

with Th17 cells, while in sevoflurane group, they showed a negative 
correlation. This suggests that exposure to sevoflurane causes significant 
changes in T lymphocytes and NK cells, which in turn affects immune 
function and may be associated with the occurrence of 

cells (DC Actived); (E) Heat map of the correlation between 25 immune cells in control group; (F) Heat map of the correlation between 25 immune 
cells in sevoflurane group cells (DC Actived) correlation scatter plot; (E) Correlation heat map of 25 immune cells within control group; (F) Correlation 
heat map of 25 immune cells within the sevoflurane group. * Represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.

FIGURE 9 (Continued)

FIGURE 10

RT-qPCR analysis showed that compared with the control group, the expression of Slc22a5, Acot12, Udgh, Amcar, Idh, Prkag2, Elovl2 genes was 
relatively reduced and the expression of Dhcr24, Idi 1, Odc 1, Hsd17b7, Mapkap1, HCCS genes was relatively increased in the sevoflurane group. * 
Represents p < 0.05.

FIGURE 11

Fluorescence staining results of liver CD4, CD86 and perforin after sevoflurane exposure. Fluorescence staining results of CD4, CD86 and perforin in 
neonatal 7-day-old rats after exposure to 3.4% sevoflurane for 6 h. The red fluorescent labels are 594-positive cells and the blue fluorescent labels are 
DAPI-positive cells as shown in the figure. In the figure, scale bars = 20 μm.
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neurodevelopmental abnormalities. Moreover, two important genes 
related to fatty acid metabolism, Elovl2 and Slc22a5, were highly 
consistent with the number of activated dendritic cells, indicating that 
the fatty acid metabolic pathway may be a key link in regulating 
immune activity.

The 15 differentially expressed genes closely related to fatty acid 
metabolism (including but not limited to Acat2, Dhcr24, etc.) screened 
from this study are expected to become new indicators for assessing the 
nervous system health of patients in the future. Regular monitoring of 
the changes in the expression levels of these genes is helpful for early 
identification of those who are at higher risk of developing 
neurodevelopmental disorders and timely intervention (Elena et al., 
2003). Given the importance of fatty acid metabolism in maintaining 
normal immune function, it is particularly important to develop targeted 
therapies for this process. For example, the potential harm caused by 
narcotic drugs can be mitigated by optimizing the energy supply of the 
brain by supplementing specific types of fatty acids or by using drugs that 
enhance the production of endogenous fatty acids (Etchegaray and 
Mostoslavsky, 2016). In addition, improving the overall nutritional status 
is also one of the effective means to improve the treatment effect. Finally, 
based on these findings, future research should focus more on exploring 
how to effectively manage the immune response of perioperative 
patients. This includes, but is not limited to, finding new 
immunomodulators and improving existing treatment regimens to 
reduce the incidence of side effects. Fine regulation of immune system 
function can not only reduce the incidence of complications, but also 
significantly improve the quality of recovery after surgery, and ultimately 
achieve the purpose of improving the prognosis.

This study identified several diagnostic biomarkers for hepatic 
fatty acid metabolism and immune cell infiltration after 
sevoflurane exposure. However, there were some limitations as 
following: (1) the data mining nature based on genome 
sequencing. This means that when we used the relevant genes to 
create credible predictive features, we did not conduct 
independent experimental studies to further validate these 
findings. For example, we did not perform cellular or animal 
experiments to confirm directly the existence of reliable predictive 
features. Therefore, our findings and conclusions need to be 
verified and strengthened by more experimental studies. (2) the 
data in this study was derived entirely from genome sequencing, 
which may lead to the problem of insufficient sample size. (3) the 
study did not use internal validation, such as using cross-
validation or Bootstrap, to ensure that the results were not 
generated by chance. (4) Current animal studies on 
neurodevelopmental damage caused by sevoflurane have focused 
on small animals and primates, and the results of whether similar 
reactions exist in clinical settings and how population factors such 
as genetics, environment, and lifestyle may influence sevoflurane 
exposure have not yet been widely verified.

In conclusion, a total of 15 fatty acid metabolism-related 
differential genes including Acat2, Dhcr24, Hccs, Hsd17b7, Idi1, 
Odc1, Mapkap1, and Mapkap2, Idh1, Slc22a5, Ugdh, Acot12, Amacr. 
Elovl2 and Prkag2 might be potential diagnostic and therapeutic 
biomarkers for neurodevelopmental abnormalities after sevoflurane 
exposure. Acat2, Amacr and Dhcr24 were involved in multiple 
biological pathways, and Dhcr24 might play a more critical role in the 
pathway. These changes in liver lipid metabolism suggested a potential 
mechanism for neurodevelopmental toxicity of sevoflurane.
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