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Externalizing and internalizing behavioral tendencies underlie many psychiatric 
and substance use disorders. These tendencies are associated with differences in 
temperament that emerge early in development via the interplay of genetic and 
environmental factors. To better understand the neurobiology of temperament, 
we have selectively bred rats for generations to produce two lines with highly 
divergent behavior: bred Low Responders (bLRs) are highly inhibited and anxious in 
novel environments, whereas bred High Responders (bHRs) are highly exploratory, 
sensation-seeking, and prone to drug-seeking behavior. Recently, we delineated 
these heritable differences by intercrossing bHRs and bLRs (F0-F1-F2) to produce a 
heterogeneous F2 sample with well-characterized lineage and behavior (exploratory 
locomotion, anxiety-like behavior, Pavlovian conditioning). The identified genetic 
loci encompassed variants that could influence behavior via many mechanisms, 
including proximal effects on gene expression. Here we measured gene expression in 
male and female F0s (n = 12 bHRs, 12 bLRs) and in a large sample of heterogeneous 
F2s (n = 250) using hippocampal RNA-Seq. This enabled triangulation of behavior 
with both genetic and functional genomic data to implicate specific genes and 
biological pathways. Our results show that bHR/bLR differential gene expression is 
robust, surpassing sex differences in expression, and predicts expression associated 
with F2 behavior. In F0 and F2 samples, gene sets related to growth/proliferation are 
upregulated with bHR-like behavior, whereas gene sets related to mitochondrial 
function, oxidative stress, and microglial activation are upregulated with bLR-like 
behavior. Integrating our F2 RNA-Seq data with previously-collected whole genome 
sequencing data identified genes with hippocampal expression correlated with 
proximal genetic variation (cis-expression quantitative trait loci or cis-eQTLs). 
These cis-eQTLs successfully predict bHR/bLR differential gene expression based 
on F0 genotype. Sixteen of these genes are associated with cis-eQTLs colocalized 
within loci we previously linked to behavior and are strong candidates for mediating 
the influence of genetic variation on behavioral temperament. Eight of these 
genes are related to bioenergetics. Convergence between our study and others 
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targeting similar behavioral traits revealed five more genes consistently related to 
temperament. Overall, our results implicate hippocampal bioenergetic regulation 
of oxidative stress, microglial activation, and growth-related processes in shaping 
behavioral temperament, thereby modulating vulnerability to psychiatric and 
addictive disorders.

KEYWORDS

temperament, hippocampus, RNA-Seq, locomotor activity, anxiety, energy 
metabolism, eQTL

1 Introduction

Psychiatric disorders can be  classified using an internalizing 
versus externalizing model (Cerdá et al., 2010; Kendler et al., 1992; 
Krueger and Markon, 2006). Internalizing disorders are characterized 
by negative emotion, including depression, anxiety, and phobias, 
whereas externalizing disorders are characterized by behavioral 
disinhibition, including conduct disorder, antisocial behavior, and 
impulsivity. These internalizing and externalizing tendencies are 
associated with personality or temperament traits, such as neuroticism 
and sensation-seeking, that emerge early in development and are 
highly heritable (Bienvenu et al., 2001; Caspi et al., 1996; Clark et al., 
1994; Jardine et al., 1984; Kagan and Snidman, 1999; Karlsson Linnér 
et  al., 2021; Khan et  al., 2005; Sanchez-Roige et  al., 2018, 2019; 
Zuckerman and Cloninger, 1996; Zuckerman and Kuhlman, 2000). 
Thus, elucidating the genetic contribution to temperament could 
provide insight into the etiology of a variety of psychiatric and 
addictive disorders.

One compelling way to explore the genetic contribution to 
temperament is to selectively breed animals that show extreme 
behavioral traits. Selectively breeding laboratory rodents has confirmed 
the heritability of extreme anxiety-like and depressive-like behavior, risk-
seeking, exploratory behavior, substance use, and hyperactivity (Almeida 
et al., 2018; Brush, 2003; Castanon et al., 1995; Commissaris et al., 1986; 
Filiou et al., 2014; Hendley et al., 1983; Jónás et al., 2010; Kessler et al., 
2007; Overstreet et al., 1994; Rezvani et al., 2002; Terenina-Rigaldie et al., 
2003; Weiss et al., 1998; Wigger et al., 2001). Within our laboratory, 
we have selectively bred rats for two decades for either a high propensity 
to explore a novel environment (high responders to novelty) or a low 
propensity to explore a novel environment (low responders to novelty) 
(Stead et al., 2006; Turner et al., 2017). We have found that this locomotor 
response to a novel environment (LocoScore) predicts a broader 
behavioral phenotype in our bred lines, akin to human temperament 
(Flagel et al., 2014; Turner et al., 2017). The bred high responders (bHRs) 
have high exploratory locomotion and disinhibited, sensation-seeking, 
externalizing-like behavior. They show greater impulsivity, low anxiety, 
and an active coping style. They are highly sensitive to reward cues, 
which can become attractive and reinforcing in a Pavlovian conditioned 
approach (PavCA) task (“sign-tracking”) (Flagel et al., 2011). In contrast, 
bred low responders (bLRs) have low exploratory locomotion and 
inhibited, internalizing-like behavior. They show elevated anxiety- and 
depressive-like behavior, stress reactivity, a passive coping style (Aydin 
et al., 2015; Clinton et al., 2014; Flagel et al., 2014, 2016; Turner et al., 
2017), and primarily use reward cues for their predictive value (PavCA 
“goal-tracking”) (Flagel et al., 2011). These behavioral phenotypes appear 
early in development (Clinton et al., 2011; Turner et al., 2019) similar to 
temperament in humans (Mervielde et al., 2005; Saudino, 2005). Thus, 

the highly divergent bHR/bLR phenotypes model the heritable extremes 
in temperament predictive of internalizing and externalizing psychiatric 
disorders in humans. They can also model two paths to substance use 
disorders and addiction: sensitivity to reward cues and sensation-seeking 
makes bHRs more likely to initiate and re-initiate substance use, whereas 
bLRs increase substance use following stress (Flagel et al., 2014, 2016).

The extreme divergence in bHR/bLR behavior makes them a 
powerful model for investigating the heritable contributions to 
temperament. However, like all selective breeding models, the bHR/
bLR lines are likely to be enriched with genetic alleles contributing to 
the behavioral phenotype as well as alleles that are merely in linkage 
disequilibrium with the causal locus. To hone in on causal loci for our 
selected behavioral phenotype, we used a classic method of producing 
a series of crosses (F0-F1-F2) to generate a heterogeneous sample with 
well-characterized lineage. We bred bHRs with bLRs from generation 
37 (F0) to produce F1 cross offspring (Intermediate Responders, “IR”). 
These F1 offspring were then bred with each other to produce a 
re-emergence of diverse behavioral phenotypes in the F2 generation 
(Figure 1). We then performed exome and whole genome sequencing 
on the F0 and F2 rats (Chitre et al., 2023; Zhou et al., 2019) to reveal 
coding differences segregating the bHR/bLR lines (F0s) and 
chromosomal regions associated with variation in exploratory and 
anxiety-related behaviors in the F2 adults and juveniles [quantitative 
trait loci (QTLs)]. However, each of the loci associated with behavior 
(QTLs) in the F2 rats still encompassed many genetic variants segregated 
in the bHR/bLR rats, potentially influencing the expression of multiple, 
diverse genes. Thus, additional studies were necessary to pinpoint gene 
expression that might mediate functional effects on the brain leading to 
bHR/bLR behavior. This step is important, because the implicated 
genetic variants themselves are not necessarily translatable across 
species, or even across strains, but can guide us to causal pathways.

Therefore, our goal in the current study was to obtain brain gene 
expression data from the F0 and F2 animals which could provide 
insight into the functional mechanisms mediating the influence of 
genetic variation on behavioral phenotype. We chose to focus on the 
hippocampus due to its importance in behaviors that diverge between 
our bred lines, including novelty processing, exploration, behavioral 
inhibition, emotional regulation, environmental reactivity, and stress-
related responses (Campbell and Macqueen, 2004; Fanselow and 
Dong, 2010; Gerlach and McEwen, 1972; Gray, 1982; Johnson et al., 
2012; Papez, 1937; Schwarting and Busse, 2017) The hippocampus has 
also been linked to the heritable component of anxious or inhibited 
temperament (Oler et  al., 2010), and both internalizing and 
externalizing disorders (Campbell and Macqueen, 2004; Hoogman 
et al., 2017; Schmaal et al., 2016). Importantly, previous investigations 
found pronounced bHR/bLR differences in hippocampal function 
both in adulthood and early in development (Birt et al., 2021; Clinton 
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FIGURE 1

Experimental design: Crossbreeding bHR and bLR rats to identify genes implicated in exploratory, anxiety-like, and reward-related behaviors. After 37 
generations of selectively breeding rats for a high or low propensity to explore a novel environment, we have generated two lines of rats [high 
responders to novelty (bHRs) or low responders to novelty (bLRs)] with highly divergent exploratory locomotion, anxiety-like behavior, and reward-
related behavior [Pavlovian conditioned approach (PavCA)]. 1. Breeding Scheme: An initial set (F0) of bHRs were bred with bLRs to create 12 intercross 
families. The offspring of this intercross (F1) were then bred with each other to produce a re-emergence of diverse phenotypes in the F2 generation. 2. 
Behavior: All rats were assessed for locomotor activity in a novel environment (LocoScore) as well as exploratory and anxiety-like behavior in the 
elevated plus maze (EPM). For a subset of F2 rats, sensitivity to reward-related cues (Pavlovian Conditioned Approach (PavCA) behavior) was also 
measured. 3. Genotyping: To identify genomic loci associated with bHR/bLR phenotype (F0 population segregation) and behavior in F2 adults and F2 
juveniles (quantitative trait loci, QTLs), exome sequencing was initially performed on both F0 and F2 rats (Zhou et al., 2019), followed by a broader 

(Continued)

https://doi.org/10.3389/fnmol.2025.1469467
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Hebda-Bauer et al. 10.3389/fnmol.2025.1469467

Frontiers in Molecular Neuroscience 04 frontiersin.org

et al., 2011; McCoy et al., 2019; Perez et al., 2009; Simmons et al., 2012; 
Turner et al., 2008; Widman et al., 2019), suggesting that it might be a 
key region in the generation of the phenotype.

To identify the genes and biological pathways that shape 
temperament, the present study triangulated the newly-collected 
functional genomics data with previously-collected behavioral and 
genetic data (Figure 2). We first used RNA-Sequencing of hippocampal 
tissue from both male and female bHRs and bLRs (F0, n = 24) to 
confirm and expand upon our earlier results from a cross-generational 
meta-analysis of hippocampal gene expression in bHR versus bLR 
males (Birt et  al., 2021). We  then performed RNA-Sequencing of 
hippocampal tissue from a large sample of heterogeneous F2 intercross 
rats (n = 250) to identify differential expression that continued to 
correlate with exploratory locomotion, anxiety-like behavior, and 
reward-related behavior independent of the linkage disequilibrium and 
genetic drift specific to our bred lines. To determine generalizability, 
we compared these results to hippocampal differential expression from 
other rat models and to bHR/bLR differential expression in other brain 
regions. Then, to determine which differential expression was most 
likely to be driven directly by genetic variation, we  integrated our 
current F2 RNA-Seq data with previous whole genome sequencing 
results (Chitre et al., 2023) to identify genes with expression tightly 
correlated with proximal genetic variation (expression QTLs: cis-
eQTLs). We determined which of these cis-eQTLs were segregated in 
the bHR/bLR lines and co-localized with the loci that we  had 
previously linked to behavior (QTLs) within the larger F2 sample 
[adults and juveniles: Chitre et al., 2023]. This converging evidence 
revealed a set of differentially expressed genes that are particularly 
strong candidates for mediating the neurobiology of temperament.

2 Materials and methods

Full methods are in the Supplementary material, including the 
ARRIVE reporting checklist. Analysis code (R v.3.4.1-v.4.2.2, R-studio 
v.1.0.153-v.2022.12.0+353) has been released at https://github.com/
hagenaue/NIDA_bLRvsbHR_F2Cross_HC_RNASeq.

All procedures were conducted in accordance with the National 
Institutes of Health Guide for the Care and Use of Animals and 
approved by the Institutional Animal Care and Use Committee at the 
University of Michigan.

2.1 Animals

Selectively breeding rats for high or low locomotor activity in a 
novel environment (LocoScore) produced the bHR line (Wakil:bHR, 
RRID:RGD_405847397) and bLR line (Wakil:bLR, RRID:RGD_ 
405847400), respectively (Stead et al., 2006). After 37 generations, 12 

bHRs and 12 bLRs (F0) were chosen from 24 distinct families to 
crossbreed. The F1 offspring with similarly high or low LocoScores 
were then bred with each other to produce a re-emergence of diverse 
behavioral phenotypes in the F2 generation (Figure 1). These 48 F2 
litters generated 540 rats [n = 216 behaviorally phenotyped as 
juveniles (1 month old), n = 323 behaviorally phenotyped as young 
adults (2–4 months old)]. Our current study sampled a subset of the 
adults (F0: n = 24, n = 6/phenotype per sex; F2: n = 250, n = 125/sex) 
that overlapped with previous genetic studies (Chitre et  al., 2023; 
Zhou et al., 2019) but was distinct from our previous male-only meta-
analysis (Birt et al., 2021).

2.2 Behavioral analysis

Behavioral phenotyping for the F0 and F2 rats used in our current 
study was performed in adulthood, in the morning, with each test 
occurring on separate days. Testing order was counterbalanced for 
phenotype (bHR/bLR), with males tested before females on separate 
days. All F0 and F2 rats were tested for locomotor activity in a novel 
environment (protocol: Stead et al., 2006). During testing, rats were 
placed in a box akin to their home cage but located in a different room 
with novel cues. Over 60 min, lateral and rearing movements were 
counted via beam breaks, and the cumulative total defined as locomotor 
score (LocoScore). All F0 and F2 were tested for exploratory and anxiety-
related behaviors on an EPM [dimly lit (40 lux), protocol: Chitre et al., 
2023]. Rats began the five-minute test at the intersection of the arms. A 
video tracking system (Ethovision, Noldus Information Technology) 
recorded the percent time spent in the open and closed arms, distance 
traveled (cm), and time immobile (sec). A subset of F2s (n = 209) 
subsequently underwent seven sessions of PavCA training to measure 
their bias in favor of reward cues over the reward itself (protocol: Meyer 
et  al., 2012). To create a summary PavCA Index, three behavioral 
variables were averaged: (1) Probability difference: the probability of lever 
contact minus the probability of food magazine entries, (2) Response bias: 
the total conditioned stimuli (CS: lever) contacts minus the total food 
magazine entries, divided by the sum of the two behaviors. (3) Latency 
score: the average latency to enter the food magazine minus the average 
latency to contact the lever, divided by the length of the CS duration (8 s). 
The PavCA Index for the last 2 days of testing (days six and seven) was 
used to classify rats as “sign trackers” (ST: values > 0.5), “intermediate” 
(IN: values −0.5 to 0.5), or “goal trackers” (GT: values < −0.5).

For each of the continuous behavioral variables, the interacting 
effects of sex and phenotype (F0 bHR vs. F0 bLR vs. F2) were examined 
using analysis of variance (ANOVA type 3, contrasts = “contr.sum”). 
Exploratory analyses were also performed to examine the potential 
effect of batch-related variables, testing order, maternal lineage, and 
paternal lineage. Correlations between behaviors were characterized 
in the F0 and F2 datasets separately using parametric methods 

genome wide association study (GWAS) (Chitre et al., 2023). Within the GWAS, the whole genome was deeply sequenced for the F0 rats. This whole 
genome sequencing (WGS) data was then used in conjunction with low pass (~0.25x) WGS data from the larger cohort of F2 rats to impute the 
genotype of 4,425,349 single nucleotide variants (SNPs) for each rat (Chitre et al., 2023). 4. Molecular Phenotyping: RNA-Seq was used to characterize 
gene expression in the hippocampus of a subset of male F0 and F1 rats (n = 6/subgroup), which was included in a cross-generational bHR/bLR meta-
analysis (Birt et al., 2021). In our current study, RNA-Seq was used to characterize hippocampal gene expression in an independent set of males and 
females in the F0 (n = 24, n = 6 per phenotype per sex) and F2 (n = 250) rats to identify gene expression related to both bHR/bLR lineage and 
exploratory locomotion, anxiety-like behavior, and PavCA behavior.

FIGURE 1 (Continued)
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(Pearson’s R, simple linear model). For the F0s, Lineage was included 
as a dummy variable (bHR as reference 0, bLR coded as 1). For PavCA, 
a Fisher’s Exact Test was performed on the ratios of male to female 
animals classified as ST, IN, or GT.

2.3 Tissue dissection, RNA extraction, and 
sequencing

Adults (postnatal days 113–132) were decapitated without 
anesthesia and brains rapidly extracted (<2 min). For the F0s, whole 
hippocampus was immediately dissected and flash frozen. For the F2s, 

whole brains were flash frozen, and later hole punches from the dorsal 
and ventral hippocampus were pooled from four hemisected coronal 
slabs per rat (−2.12 to −6.04 mm Bregma; Paxinos and Watson, 2013). 
RNA was extracted using the Qiagen RNeasy Plus Mini Kit. A NEB 
PolyA RNA-seq library was produced and sequenced using a NovaSeq 
S4 101PE flowcell (targeting 25 million reads/sample).

2.4 Hippocampal RNA-Seq analysis

RNA-Seq data preprocessing was performed using a standard 
pipeline including alignment (STAR 2.7.3a: genome assembly Rnor6), 

FIGURE 2

Analysis methods: Using convergent evidence to identify differentially expressed genes that are the strongest candidates for mediating the influence of 
genetic variation on behavioral temperament. We first identified expression in the hippocampus that differentiated the bHR and bLR lines, using 
information from both our current F0 sample and previous cross-generational meta-analysis. We then identified gene expression that continued to 
correlate with bHR/bLR divergent behaviors in our large F2 intercross sample, indicating that the differential expression (DE) was not an artifact of 
genetic drift. To determine which DE was most likely driven by proximal genetic variation, we performed a cis-expression Quantitative Trait Loci (cis-
eQTL) analysis to determine which genes (eGenes) had expression that strongly correlated with nearby genetic variants (eVariants) using the F2 
genotype and F2 gene expression data, and then estimated the magnitude of that effect in Log2 fold change units (allelic fold change or aFC). 
We determined which eVariants were segregated in the bHR/bLR lines and confirmed that the predicted effect of this genetic segregation on gene 
expression matched the bHR/bLR DE observed in the F0s. We also determined which eVariants co-localized in regions of the genome previously 
identified as having strong relationships with behavior in the full sample of F2 adults and F2 juveniles (QTLs) using Summary-Data Based Mendelian 
Randomization (SMR) and compared the predicted direction of effect of this genetic variation on gene expression to the DE observed in the F2 adults in 
association with behavior. Finally, to be considered a top candidate gene for mediating the influence of genetic variation on behavioral temperament, 
we required that a gene have hippocampal DE related to both bHR/bLR phenotype and F2 behavior which appeared plausibly driven by genetic 
variation (cis-eQTL) that segregated in the bHR/bLR lines and correlated with behavior (SMR colocalization with QTL). Note that the sample sizes listed 
in the diagram reflect the sample sizes used in the analysis following quality control.
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quantification of gene level counts (Ensembl v103, Subread version 
2.0.0), and basic quality control. All downstream analyses were 
performed in Rstudio (v.1.4.1717, R v. 4.1.1). Transcripts with low-level 
expression (<1 read in 75% of subjects) were removed. Normalization 
included the trimmed mean of M-values (TMM) method (Robinson 
and Oshlack, 2010, edgeR v.3.34.1; Robinson et  al., 2010), and 
transformation to Log2 counts per million [Log2 cpm (Law et al., 
2016), org.Rn.eg.db annotation v.3.13.0; Carlson, 2019]. Following 
quality control, the F0 dataset contained n = 23 subjects (subgroups: 
n = 5 bHR females, n = 6 for each of the other subgroups: bHR males, 
bLR females, bLR males) with Log2 cpm data for 13,786 transcripts, 
and the F2 dataset contained n = 245 subjects (subgroups: n = 122 
males, n = 123 females) with Log2 cpm data for 14,056 transcripts.

Differential expression was calculated using the limma/voom 
method (Law et al., 2014, package: limma v.3.48.3) with empirical 
Bayes moderation of standard error and FDR correction. For the F2s, 
the same differential expression model was used for each variable of 
interest (LocoScore, EPM % time in open arms, EPM distance 
traveled, EPM time immobile, PavCA Index). Technical co-variates 
were included if they were strongly related to the top principal 
components of variation identified using Principal Components 
Analysis (PCA) or had confounding collinearity with variables of 
interest [covariates: percent of reads that were intergenic (%intergenic) 
or ribosomal RNA (%rRNA), dissector, sequencing batch, and PavCA 
exposure (“STGT_Experience”)].

Equation 1: F0 differential expression model:

 0 1 2 3 4~ % %y Lineage Sex rRNA Intergenicβ β β β β ε+ + + + +  (1)

Equation 2: F2 differential expression model:

 

0 1 2 3
4 5 6

7 8

~ %
% _

y VariableOfInterest Sex rRNA
Intergenic Dissector STGT

Experience SequencingBatch

β β β β
β β β

β ε−

+ + + +
+ +

+ +  (2)

2.5 Comparison of F0, F2, and previous 
hippocampal meta-analysis results

The full F0 and F2 differential expression results were compared to 
our previous meta-analysis of hippocampal RNA-Seq studies from late 
generation bHR/bLR males (Supplementary Table S2 in Birt et al., 
2021) using parametric and non-parametric methods (Pearson’s and 
Spearman’s correlation of Log2FC values) and visualized using gene 
rank-rank hypergeometric overlap [RRHO v. 1.38.0 (Plaisier et al., 2010; 
Rosenblatt and Stein, 2014), ranking by t-statistics] and VennDiagram 
[v.1.7.3 (Chen, 2022)]. For downstream analyses, we defined bHR/bLR 
differentially expressed genes as the 1,063 genes with FDR < 0.10 in 
either the F0s or late generation meta-analysis, or nominal replication 
(p < 0.05) in both with consistent direction of effect.

2.6 Comparison of bHR/bLR hippocampal 
results to findings from other regions

As an exploratory analysis, we compared bHR/bLR hippocampal 
differential expression to the pattern of differential expression in other 

brain regions in previous small transcriptional profiling studies of 
bHR/bLR adults, including publicly available data from the amygdala 
[GSE88874: n = 5/group, generation F31 (Cohen et al., 2015; McCoy 
et al., 2017), GSE86893: n = 6/group, generation F34-F36 (Cohen et al., 
2017)] and dorsal raphe [GSE86893, n = 6/group (Cohen et al., 2017)], 
and unpublished data from the cortex (GSE286181, n = 6/group) and 
hypothalamus (GSE286181, n = 6/group) from an early generation of 
selective breeding (F4). To run this comparison, differential expression 
was calculated for each dataset using the limma pipeline 
(Supplementary methods). To reduce noise and increase statistical 
power, we used a standardized pipeline (Hagenauer M. et al., 2024) to 
perform a simple random effects meta-analysis (Viechtbauer, 2010, 
package: metafor) to summarize the amygdala differential expression 
results (collective sample size of n = 11/group for 7,133 genes), and—to 
potentially identify bHR/bLR differences that might exist brain-wide—
all non-hippocampal differential expression results (collective n = 29/
group for 11,509 genes). These results were compared to our 
hippocampal findings using non-parametric methods [Spearman’s 
correlation of Log2FC values and RRHO v. 1.38.0 (Plaisier et al., 2010; 
Rosenblatt and Stein, 2014), ranking by t-statistics].

2.7 Gene set enrichment analysis

To elucidate functional patterns, we  ran Gene Set Enrichment 
Analysis (fgsea v.1.2.1, nperm = 10,000, minSize = 10, maxSize = 1,000, 
FDR < 0.05) using a custom gene set database (Brain.GMT v.1, 
Hagenauer M. H. et al., 2024) that included standard gene ontology, 
brain cell types, regional signatures, and differential expression results 
from public databases. We created a continuous variable representing 
bLR-like vs. bHR-like differential expression for each gene by averaging 
the t-statistics for bLR vs. bHR comparisons in the F0 dataset and former 
late generation RNA-Seq meta-analysis (Birt et al., 2021) and for each 
of the F2 behaviors (with bHR-like phenotype set as reference). A second 
non-directional analysis used the absolute value of the average t-statistic.

2.8 Constructing a hippocampal cis-eQTL 
database

Hippocampal cis-eQTL mapping was performed using published 
methods Munro et al. (2022, unpublished)1. Quality-controlled F2 
RNA-Seq data (Log2 CPM, n = 245 following quality control) was 
corrected for technical covariates (Equation 2, residualized), followed 
by rank-based inverse normal transformation ((see footnote 1) Ongen 
et  al., 2016). F2 genotypes were generated by low coverage whole 
genome sequencing followed by imputation (from data release for 
(Chitre et al., 2023): doi: 10.6075/J0K074G9, n = 4,425,349 SNPs). 
Principal Components Analysis was run on the gene expression 
matrix and genotype matrix [following pruning for linkage 
disequilibrium, Plink2 v.2.00a2.3 (Chang et al., 2015)], and principal 

1 Munro, D., Wang, T., Chitre, A. S., Polesskaya, O., Ehsan, N., Gao, J., et al. 

(2022). The regulatory landscape of multiple brain regions in outbred 

heterogeneous stock rats. Nucleic Acids Res. 50, 10882–10895. doi: 10.1093/

nar/gkac912 (unpublished).
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components 1–5 from both analyses included as covariates within the 
single-SNP linear regression for cis-eQTL mapping [tensorQTL v.1.0.6 
(Taylor-Weiner et  al., 2019)]. We  tested SNPs with minor allele 
frequency (MAF) >0.01 within ±1 Mb of each gene’s transcription 
start site (tss). A significant eVariant-eGene relationship (cis-eQTL) 
was defined using empirical beta-approximated p-values calculated 
using permutations for each gene, and false discovery corrected 
(FDR < 0.05) using results from the top SNP for all genes. When SNPs 
were in perfect linkage disequilibrium, a single SNP was selected 
randomly. Additional, conditionally independent cis-eQTLs for each 
eGene were identified using stepwise regression (tensorQTL: default 
settings). We estimated cis-eQTL effect size (allelic fold change, aFC) 
using an additive cis-regulatory model (package aFC.py) with raw 
expression read counts and the same covariates as cis-eQTL mapping 
(Mohammadi et al., 2017).

2.9 Predicting bHR/bLR differential 
expression using the cis-eQTL database

We extracted F0 genotype information for each eVariant (n = 10 
bHR/n = 10 bLR in Chitre et al., 2023, release: doi: 10.6075/J0K074G9) 
using VcfR (v1.14.0, Knaus and Grünwald, 2017).2 We defined partial 
bHR/bLR segregation using myDiff() Gst’ > 0.27 [(Hedrick, 2005), akin 
to all 0/0 vs. all 0/1 in our dataset]. We assigned the direction of effect 
for the Log2 aFC to reflect the bLR-enriched allele vs. bHR-enriched 
allele and compared these predictions to both the F0 differential 
expression results (Log2FC) and bHR/bLR late generation RNA-Seq 
meta-analysis results (estimated d) using parametric (linear 
regression) and non-parametric (Spearman’s rho) methods.

2.10 Co-localization of cis-eQTLs with 
regions of the genome associated with 
bHR/bLR-like behavior

We used Summary Data-based Mendelian Randomization (SMR; 
Zhu et al., 2016) to test for colocalization of cis-eQTLs with QTLs from 
the full F2 cohort [GWAS results: (Chitre et  al., 2023)] for adult 
behaviors included in our differential expression analysis (LocoScore, 
EPM time immobile, EPM distance traveled, EPM % time in open 
arms, PavCA Index) and juvenile behaviors targeting analogous traits 
(open field (OF) time immobile, OF distance traveled, OF % time in 
center). Z-scores for the cis-eQTL and GWAS associations with each top 
eVariant were used to calculate the SMR approximate chi-squared test 
statistic, with p-values determined using the chi-squared distribution’s 
upper tail [df = 1, FDR correction: mt.rawp2adjp() (proc = “BH”) in 
multtest v.2.26.0 (Pollard et al., 2005)]. Results were visualized using the 
manhattan() plot function in the qqman package [v.0.1.8 (Turner, 2018)].

To determine whether the strength of cis-eQTL/QTL 
co-localization (SMR t-statistic) correlated with F2 behavioral 
differential expression, we assigned a predicted direction of effect based 
on the relationship between genotype and behavior within the larger 
F2 sample (adults: n = 323 adults, juveniles: n = 216) and genotype and 

2 https://cran.r-project.org/web/packages/vcfR/vcfR.pdf

expression within the cis-eQTL analysis (n = 245). We then examined 
the correlation between the F2 Log2FCs for each adult behavior and the 
“directional” SMR T-statistics for the same adult behavior or analogous 
juvenile behavior (OF distance traveled, OF time immobile, OF % time 
in center), both in the full dataset (all 5,937 cis-eQTLs) and within the 
subset of cis-eQTLs that we had already confirmed were segregated in 
bHR/bLRs in a manner predictive of bHR/bLR differential expression 
(492 cis-eQTLs representing 456 eGenes).

To narrow down our pool of top candidate genes for mediating the 
effect of genetic variation on behavior, we required that our final top 
candidate genes have expression strongly related to genetic variation 
(cis-eQTLs) that is segregated in bHR/bLR (Gst’ > 0.27) in a manner 
that correctly predicts bHR/bLR differential expression and is 
co-localized with a QTL for behavior (SMR FDR < 0.10) in a manner 
that correctly predicts F2 differential expression. Using a conservative 
estimate (Supplementary methods), this convergence of results should 
only be observable once, at most, in our dataset due to random chance.

3 Results

3.1 Locomotor activity in a novel 
environment reflects a broader behavioral 
temperament in both selectively-bred 
bHR/bLR lines and F2 intercross rats

The bHR/bLR (F0) crossbreeding scheme produced F2 animals 
with behaviors ranging between the more extreme bHR and bLR 
phenotypes [all behaviors: p < 1.5e-06 for effect of group (F0 bHR vs. 
F0 bLR vs. F2); examples: Figures 3A,B; Supplementary Figure S4, full 
statistics: Supplementary Table S1]. F2 behavior sometimes appeared 
more similar to bLRs than bHRs (e.g., Figure 3B) suggesting a floor 
effect or that genetic contributions to internalizing-like behavior may 
be more dominant.

Exploratory locomotion, anxiety-like behavior, and PavCA behavior 
remained strongly correlated within the F2s, as previously observed in 
the bHR/bLR lines (examples: Figures 3C,D; Supplementary Figure S4, 
full statistics: Supplementary Table S2). Although these behaviors often 
differed by sex (example: Figure  3E, Supplementary Figure S4, full 
statistics: Supplementary Table S1), sex differences were not responsible 
for driving the correlation between different behaviors (with sex in the 
model: all behavior–behavior relationships still p < 0.0284). These 
findings are consistent with results using the full F2 cohort (Chitre et al., 
2023) and imply that locomotor activity in a novel environment echoes 
a broader behavioral temperament, reflecting genetic and environmental 
influences shared across anxiety, mood, and reward-related behaviors.

3.2 F0 RNA-Seq: selective breeding 
produced a robust molecular phenotype in 
the hippocampus that surpassed the effect 
of sex

The hippocampus plays an important role in many processes 
relevant to bHR/bLR behavioral phenotype, including novelty 
processing, exploratory behavior, behavioral inhibition, emotional 
regulation, environmental reactivity, and stress-related responses. 
We  observed robust bHR/bLR differential expression in the 
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hippocampus. Within the F0 RNA-Seq dataset, there were 131 
differentially expressed genes with elevated expression in bLRs versus 
bHRs, and 86 differentially expressed genes with higher expression in 
bHRs (False Detection Rate (FDR) < 0.10, Figures  4A,C, 
Supplementary Table S3). In contrast, despite the observed sex 
differences in behavior, there were only 21 genes upregulated in 
females (versus males) and 22 genes upregulated in males (versus 
females) (Figures 4B,C, Supplementary Tables S3, S4). The effect sizes 
(Log(2) Fold Changes, or Log2FC) for bHR/bLR differentially 
expressed genes were also larger than those for sex, with the exception 
of a few X and Y chromosome genes (Figures  4A,B, 
Supplementary Tables S3, S4). There were no significant interactions 
between the effects of Lineage and Sex on gene expression 
(FDR > 0.10), but our sample size was underpowered to detect these 
effects (n  = 5−6/subgroup). The presence of robust bHR/bLR 
hippocampal differential expression in both male and female F0s 
replicated previous male-only studies (Birt et al., 2021).

3.3 Current F0 study replicated bHR/bLR 
gene expression differences detected in 
previous studies

The bHR/bLR hippocampal differential expression in our 
current study replicated many effects observed in our previous 
meta-analysis of hippocampal transcriptional profiling studies in 
bHR/bLR males (Birt et al., 2021), with the F0 Log2FC correlating 
positively with the bLR versus bHR estimated effect size (d) 
observed in RNA-Seq data from later generations (Figures 5A,B). 
Sixty-two of the 984 bHR/bLR differentially expressed genes in 
either dataset (FDR < 0.10) were significant (FDR < 0.10) in both 
datasets (Figure  5C, Supplementary Table S3). More genes 
showed replication of nominal bHR/bLR effects (p < 0.05) with 
consistent direction of effect in both datasets, so that, in total, 
1,063 genes had evidence of bHR/bLR differential expression in 
the hippocampus (Figures 5D,E, Supplementary Table S3). As 

FIGURE 3

Behavioral phenotype: Locomotor activity in a novel environment reflects a broader behavioral temperament in both selectively-bred bHR/bLR lines 
and F2 intercross rats. (A) Locomotion in a novel environment (LocoScore: lateral + rearing counts over 60 min) is strongly influenced by genetics, as 
indicated by the divergence in LocoScore observed following the selective breeding of the bHR/bLR lines in both males (M) and females (F). The “F0” 
animals used in our crossbreeding experiment were taken from the 37th generation of selective breeding. (B) The bHR/bLR (F0) crossbreeding scheme 
produced F2 rats with intermediate behavior which fell between the extreme bHR and bLR phenotypes. Depicted are the LocoScores for the F0 and F2 
rats included in the current RNA-Seq experiment (effect of group: F(2, 268) = 212.764, p < 2.2E-16). The graphs for other measured behaviors (EPM 
Distance traveled, EPM time immobile, EPM % Time in Open Arms) are in Supplementary Figure S4. For all measured behaviors, group differences 
(ANOVA: F0 bHR vs. F0 bLR vs. F2) were highly significant (p < 1.5e-06, Supplementary Table S1). (C,D) Behaviors that diverged during bHR/bLR selective 
breeding for LocoScore remained correlated in F2s. Example scatterplots illustrate correlations between LocoScore and other bHR/bLR distinctive 
behaviors in the F2s. Red lines illustrate the relationship between the variables across both sexes. The correlations between all variables can be found in 
Supplementary Figure S4 and Supplementary Table S2. (C) Greater LocoScore predicted greater EPM % Time in Open Arms in the F2s (R = 0.30, 
p = 1.72E-06). Greater time spent in the open arms of the EPM is typically interpreted as indicating low anxiety. (D) Most F2s (n = 209) were tested for 
PavCA behavior. Greater LocoScore predicted an elevated PavCA Index in the F2s (R = 0.46, p = 3.22E-12). Rats with greater PavCA Index (>0.5) are 
considered sign-trackers (ST) and rats with lower PavCA Index (<−0.5) are considered goal-trackers (GT). (E) All behavioral variables showed a 
significant sex difference (p < 0.007) except for LocoScore. As an example, sex differences in PavCA index are illustrated with a boxplot. A higher 
percent of females than males were classified as Sign Trackers (ST) vs. Goal Trackers (GT) (Intermediate = IN) (Fisher’s exact test: p = 1.472E-06, OR: 
0.13; CI: 0.05–0.34). These observed behavioral sex differences are difficult to interpret, as the two sexes were tested on all tasks in separate batches 
but supported the inclusion of sex as a covariate in all statistical models.
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many generations of selective breeding for a behavioral phenotype 
are likely to produce an enrichment of eQTL alleles  
influencing the phenotype, these 1,063 genes were prioritized in 
downstream analyses.

As an exploratory analysis, we also compared the pattern of bHR/
bLR differential expression identified in the hippocampus in our 
current study to bHR/bLR differential expression in other brain 
regions using data from previous transcriptional profiling studies in 
bHR/bLR adults, including the amygdala [n = 5/group (Cohen et al., 
2015; McCoy et al., 2017), n = 6/group (Cohen et al., 2017)], dorsal 
raphe [n = 6/group (Cohen et al., 2017)], and unpublished data from 
the cortex (n = 6/group, Supplementary Table S5) and hypothalamus 
(n = 6/group, Supplementary Table S5). To increase power, 
we  performed a meta-analysis of the two amygdala datasets 
(collective n = 11/group, 7,133 genes, Supplementary Table S5) and a 
meta-analysis encompassing all of the non-hippocampal data to 
identify bHR/bLR differences that might exist brain-wide (n = 29/
group, 11,503 genes, Supplementary Table S5). These comparisons 
suggested that at least some of the bHR/bLR differential expression 
identified in the hippocampus may also be present in other brain 
regions, whereas other differential expression may be hippocampal 
specific (Supplementary results).

3.4 F0 hippocampal differential expression 
predicts expression related to F2 behavior

Since some bHR/bLR differential expression may be due to either 
linkage disequilibrium with causal variants or genetic drift specific to 
our bred lines, we performed RNA-Seq on hippocampal tissue from a 
large F2 intercross sample (n = 250) to identify differential expression 
that continued to independently correlate with exploratory 

locomotion, anxiety-like behavior, and reward-related behavior. 
Hippocampal gene expression associated with bLR lineage resembled 
the expression associated with lower F2 LocoScore, as indicated by the 
negative correlation between the F0 bLR vs. bHR Log2FCs for all genes 
and the F2 LocoScore Log2FCs for all genes (R = −0.20, p < 2.2e-16, 
Figure  6A, Supplementary Table S6). Similarly, gene expression 
associated with bLR lineage partially resembled expression in F2s 
exhibiting lower exploration (distance traveled) and greater anxiety 
(greater time immobile, less time in the open arms) on the elevated 
plus maze (EPM) task (Supplementary Table S6), and greater goal-
tracking behavior on the PavCA task (lower PavCA Index; 
Supplementary Table S6). This pattern of correlations confirmed that 
a portion of the hippocampal differential expression that emerged 
following selective breeding was related to behavioral temperament.

These correlations strengthened when focusing specifically on 
bHR/bLR differentially expressed genes (1,063 genes in 
Figures  5C–E), of which 1,045 were present in the F2 dataset 
(Supplementary Table S6). Of these genes, 111 showed both 
upregulation in bLR rats and at least one nominal (p < 0.05) 
association with bLR-like behavior in the F2s (i.e., expression 
correlated with decreased locomotor activity, decreased EPM 
distance traveled, increased EPM time immobile, decreased EPM % 
time in open arms, or decreased PavCA Index), a 3.27X enrichment 
beyond random chance (Fisher’s exact test: 95%CI: 2.61–4.08, 
p < 2.2e-16, Figure 6B), and 81 genes showed both upregulation in 
bHR rats and at least one nominal (p < 0.05) association with 
bHR-like expression in the F2s, a 2.72X enrichment beyond random 
chance (Fisher’s exact test: 95%CI: 2.10–3.51, p = 7.14e-13, 
Figure 6C).

However, we were unable to identify differentially expressed genes 
for F2 behavior with strong enough effects to survive false discovery 
rate correction (FDR < 0.10). This was also true when using a model 

FIGURE 4

A robust hippocampal (HPC) molecular phenotype: There was greater hippocampal differential expression associated with F0 bHR/bLR lineage than 
with sex. Differential expression associated with bHR/bLR Lineage and Sex were examined in the same dataset (F0) with comparable subgroup sample 
sizes (total n = 23). Shown are two volcano plots illustrating the differential expression associated with bHR/bLR phenotype (A) and sex (B). For both 
volcano plots, red depicts genes with a log2 fold change (Log2FC) > 1.0, green depicts genes with a False Discovery Rate (FDR) < 0.1, and gold indicates 
genes satisfying both criteria. In (A), the reference group was defined as bHR, therefore positive Log2FC coefficients indicate upregulation in bLRs, and 
negative Log2FC coefficients indicate upregulation in bHRs. In (B), males served as the reference group, therefore positive Log2FC coefficients indicate 
upregulation in females (F), and negative Log2FC coefficients indicate upregulation in males (M). For ease of visualization, six X and Y chromosome 
genes were not plotted due to extreme p-values (ranging from p = 5.71E-13 to 8.97E-26: Kdm5d, Eif2s3y, Uty, Ddx3, ENSRNOG00000055225, 
AABR07039356.2). The summary table (C) shows the number of differentially expressed genes (DEGs) for bHR/bLR Lineage and Sex. The full F0 bHR/
bLR differential expression results can be found in Supplementary Table S3 and the full F0 differential expression results for Sex can be found in 
Supplementary Table S4.

https://doi.org/10.3389/fnmol.2025.1469467
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Hebda-Bauer et al. 10.3389/fnmol.2025.1469467

Frontiers in Molecular Neuroscience 10 frontiersin.org

that included sex-specific differential expression for F2 behaviors 
(sex*behavior interaction: all FDR < 0.10). This inability to detect 
significant differential expression related to F2 behavior was 
particularly striking because the F2 sample size was much larger than 
the sample sizes used to detect differential expression in our bred 
model (F2: n = 250, F0: n = 24), and this greater statistical power lead 
to the expected increase in the detection of more subtle differential 
expression related to sex (1,679 genes with FDR < 0.10, Supplementary  
Figure S5, full results: Supplementary Table S4).

These findings drive home the role of cumulative small, polygenic 
effects in generating complex behavior, and suggest a need for larger 
sample sizes to reliably detect these polygenic effects on gene expression 
in a heterogeneous population. These findings also demonstrate the 
utility of selective breeding in behavioral genetics: the highly divergent 
phenotype and minimized within-group variability made it possible to 
detect relevant differential expression in a much smaller size. For 
downstream analyses, we chose to focus on the differential expression 
with the strongest converging evidence supporting its potential to 
mediate behavioral temperament from both the selectively bred lines 
and F2 rats (the 111 genes that were upregulated in bLRs and nominally 
with bLR-like behavior in the F2s and 81 genes upregulated in bHRs 
and nominally with bHR-like behavior in the F2s).

3.5 Multiple genes have hippocampal 
differential expression consistently 
associated with behavioral temperament in 
other rat models as well as in our F0 and F2 
studies

To determine generalizability, we  compared our list of 
differentially expressed genes implicated in behavioral temperament 
by converging evidence from the bred lines and the F2s (identified 
in Figures 6B,C) to a database of 2,581 genes previously identified 
as differentially expressed in the hippocampus of other bLR-like and 
bHR-like rat models targeting hereditary behavioral traits 
resembling extremes on the internalizing/externalizing spectrum 
[database from Birt et al. (2021), summarized in Figure 7A; Andrus 
et al., 2012; Blaveri et al., 2010; Díaz-Morán et al., 2013; Garafola 
and Henn, 2014; Meckes et  al., 2018; Raghavan et  al., 2017; 
Sabariego et al., 2013; Wilhelm et al., 2013; Zhang et al., 2005]. 
Sixteen of 111 genes that were upregulated in bLRs and with 
bLR-like behavior in our study were also upregulated in other 
bLR-like models (Figure 7B, enrichment OR: 2.50 (95%CI: 1.37–
4.29), Fisher’s exact test: p = 0.00242) and 14/81 genes that were 
upregulated in bHRs and with bHR-like behavior in our study were 

FIGURE 5

The current F0 study in males and females replicated bHR/bLR differential expression (DE) detected in previous male-only hippocampal (HPC) studies. 
(A) A scatterplot illustrates the positive correlation (n = 11,175 genes, R = 0.35, p < 2.2E-16) between the bHR/bLR effect sizes from our current F0 
dataset (bLR vs. bHR Log2FC for all genes) and the bLR vs. bHR effect sizes identified by our previous late generation RNA-Seq meta-analysis ((Birt 
et al., 2021): bLR vs. bHR estimated Cohen’s d for all genes). Genes with particularly large effects in both datasets are labeled in green (upregulated in 
bHRs) or red (upregulated in bLRs). (B) This positive correlation is also visible when using a non-parametric analysis of the results ranked by t-statistic, 
as illustrated with a two-sided Rank-Rank Hypergeometric Overlap (RRHO) plot. Warmer colors illustrate the strength of the overlap [−log10(p-value)], 
with the visible red diagonal indicating a positive correlation between the ranked results. (C–E) To identify the strongest bHR/bLR differentially 
expressed genes (DEGs) for use in downstream analyses, we referenced results from both the current F0 dataset and previous late generation RNA-Seq 
meta-analysis (Birt et al., 2021). Shown are three Venn diagrams illustrating the overlap of the DEG lists from the two studies, with DE defined either 
using a traditional threshold of FDR < 0.10 in either study (C) or using a nominal p-value threshold (p < 0.05) and a specified direction of effect [(D): 
upregulated in bLR vs. bHR, (E): upregulated in bHR vs. bLR]. In each case, the overlap exceeded what would be expected due to random chance 
(OR > 4.7, p < 2.2e-16). The 1,063 unique genes with either FDR < 0.10 in either study or nominal replication with a consistent direction of effect in both 
studies were considered to have the strongest evidence of bLR vs. bHR DE and highlighted in downstream analyses.
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downregulated in other bLR-like models [Figure 7C, enrichment 
OR: 2.07 (95%CI: 1.07–3.74), p = 0.0189]. Notably, Tmem144 had 
elevated hippocampal expression in three other bLR-like rat models 
(Figure 7D, Blaveri et al., 2010; Meckes et al., 2018; Wilhelm et al., 
2013). Five other genes were differentially expressed in two other 
rat models (Figure  7D, Bphl, Ist1, RGD1359508, Nqo2, Fcrl2). 
We expect less than one gene (0.39) in our dataset to show this 
degree of convergence due to random chance (Supplementary  
methods).

3.6 Behavioral temperament is associated 
with genes involved in growth and 
proliferation, mitochondrial function, 
oxidative stress, and microglia

To ascribe functional trends to the differential expression 
associated with behavioral temperament, we  performed Gene Set 
Enrichment Analysis using a combined score for each gene 
summarizing bLR-like vs. bHR-like expression across the bHR/bLR 
and F2 analyses. Sixty-three gene sets were upregulated (FDR < 0.05) 
with a bHR-like phenotype (i.e., in bHRs and with bHR-like F2 
behavior; Supplementary Table S7). Nineteen of these implicated 
hippocampal subregions or cell types, mostly neuronal (n = 10), 
emphasizing GABA-ergic cells (n = 3) and dendrites (n = 3). The 
dentate gyrus was implicated (n = 1), epithelial cells (n = 4, including 
gene C2cd3) and vasculature (n = 3, including Mfge8). Fourteen gene 
sets were derived from previous differential expression experiments 
(Baker et al., 2012; Lim et al., 2021), with most related to stress or fear 

conditioning (n = 12, upregulated: n = 9, including gene C2cd3). 
Other implicated functions included nervous system development, 
proliferation, and cell fate (n = 13, including genes Mfge8, Nqo2, Ucp2, 
and C2cd3) and transcription regulation (n = 9, including Ucp2).

Thirty-seven gene sets were upregulated (FDR < 0.05) with a 
bLR-like phenotype (i.e., in bLRs and with bLR-like F2 behavior). 
Eleven of these implicated hippocampal subregions or cell types, 
especially microglia (n = 8, including gene Tmem144). Other 
emphasized pathways included mitochondrial function, oxidative 
phosphorylation, and cellular respiration (n = 6, including genes 
Wdr93 and Idh1), metabolism (n = 5, including Pex11a, Lsr, Ist1, and 
Idh1), and immune response (n = 4). A non-directional analysis 
produced weaker results (12 gene sets with FDR < 0.10) highlighting 
similar functions (metabolism: n = 3, including Pex11a, Lsr, Ist1, 
Mcee, and Idh1; and microglia: n = 4, including Fcrl2 and Tmem144). 
Gene sets related to a bLR-like model, Flinders Sensitive Line, were 
also highlighted (n = 3).

3.7 Constructing a hippocampal cis-eQTL 
database to determine which differential 
expression is most likely driven directly by 
proximal genetic variation

To identify hippocampal gene expression that might be influenced 
by proximal genetic variation, we integrated our current F2 RNA-Seq 
data (n = 245) with previous genotyping results [n = 4,425,349 single 
nucleotide polymorphisms (SNPs) (Chitre et al., 2023)] to identify 5,351 
genes (eGenes) with hippocampal expression tightly correlated 

FIGURE 6

Hippocampal gene expression in bLR vs. bHR F0 rats predicts the pattern of gene expression associated with bLR-like vs. bHR-like behavior in F2 
intercross rats. (A) For example, there is a negative correlation between the Log2FC associated with locomotion in a novel environment (LocoScore) in 
the F2s and the Log2FC for bLR vs. bHR lineage in the F0s (n = 13,339 genes, R = −0.196, p < 2e-16), which matches the prediction that a bLR-like 
pattern of gene expression resembles the expression associated with lower exploratory activity. Following the plotting conventions from Figure 5B, this 
negative correlation is illustrated using a two-sided RRHO plot. Within the RRHO, the results are ranked by t-statistic. The visible blue diagonal indicates 
a negative correlation between the ranked results. The correlation between bLR vs. bHR differential expression and gene expression associated with 
the other F2 behaviors can be found in Supplementary Table S6. (B) A pink Venn Diagram illustrates the enrichment of bLR-upregulated differentially 
expressed genes for nominal (p < 0.05) associations with bLR-like behavior in the F2s (i.e., gene expression correlated with decreased locomotor 
activity, decreased distance traveled, increased immobility, decreased % time in the open arms of the EPM, or decreased PavCA Index) (enrichment: 
Fisher’s exact test: OR: 3.27, p < 2.2e-16). (C) A green Venn Diagram illustrates the enrichment of bHR-upregulated differentially expressed genes for 
nominal (p < 0.05) associations with bHR-like behavior in the F2s (i.e., gene expression correlated with increased locomotor activity, increased distance 
traveled, decreased immobility, increased % time in the open arms of the EPM, or increased PavCA Index) (enrichment: Fisher’s exact test: OR 2.72, 
p = 7.14e-13). We prioritized the 192 genes that satisfied both criteria (i.e., the intersection of the Venn Diagrams) in downstream analyses as differential 
expression that might mediate the effect of selective breeding on behavior (111 genes upregulated in both bLRs and with bLR-like behavior, 81 genes 
downregulated in both bHRs and with bHR-like behavior).
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(FDR < 0.05) with nearby genetic variation [cis-eQTLs: within ±1 MB 
of the transcription start site (TSS)]. Using stepwise regression, 
we identified additional conditionally-independent cis-eQTLs beyond 
the strongest cis-eQTL for each eGene (Supplementary Figure S6A), 
distinguishing a final total of 5,937 cis-eQTLs representing 5,836 unique 

eVariants. Like previous cis-eQTL analyses, these eVariants were 
predominantly located within ±400 kB of the TSS of their respective 
eGene (Supplementary Figure S6B). A comparison with existing rat cis-
eQTL databases [RatGTEx: Hong-Le et al. (2023), and other tissues in 
RatGTEx: https://dx.doi.org/10.17504/protocols.io.rm7vzyk92lx1/v1], 

FIGURE 7

Multiple genes have hippocampal differential expression (DE) consistently associated with hereditary behavioral temperament in other rat models as 
well as in our F0 and F2 studies. (A) To perform this analysis, we compared our current results to a database of 2,581 genes that had been previously 
identified as differentially expressed in the hippocampus of other bLR-like and bHR-like rat models targeting hereditary behavioral traits resembling 
extremes on the internalizing/externalizing spectrum (database compiled in Birt et al., 2021, results from: Andrus et al., 2012; Blaveri et al., 2010; Díaz-
Morán et al., 2013; Garafola and Henn, 2014; Meckes et al., 2018; Raghavan et al., 2017; Sabariego et al., 2013; Wilhelm et al., 2013; Zhang et al., 2005). 
The table lists the rat models characterized in the referenced publications, the number of genes up-regulated or down-regulated in association with 
the rat model exhibiting more internalizing-like behavior (in total, as well as the subset represented in our current datasets). (B) A pink Venn Diagram 
illustrates the enrichment of overlap between genes identified as upregulated in other rat models with internalizing-like behavior and the 111 genes 
that were both upregulated in bLR’s and nominally upregulated in F2s with bLR-like behavior in our study (16/111, enrichment OR: 2.50, Fisher’s exact 
test: p = 0.00242). (C) A green Venn Diagram illustrates the enrichment of overlap between genes identified as down-regulated in other rat models 
with internalizing-like behavior and the 81 genes that were both upregulated in bHRs and nominally upregulated in F2s with bHR-like behavior in our 
study (14/81, enrichment OR: 2.07, p = 0.0189). (D) A table overviewing the differential expression results for the six genes that were consistently 
differentially expressed in multiple rat models with internalizing-like behavior, as well as in bHR/bLR rats and in nominal association with F2 behavior. 
Within the table, genes with elevated hippocampal expression in bLRs and in association with bLR-like behavior in the F2s are highlighted pink, genes 
with elevated hippocampal expression in bHRs and in association with bHR-like behavior in the F2s are highlighted green. The table includes the 
Log2FC for bLR vs. bHR Lineage in the F0 dataset, the estimated effect size (d) from the late generation bLR vs. bHR RNA-Seq meta-analysis (from Birt 
et al., 2021), and the Log2FC for LocoScore, EPM Time Immobile, EPM Distance traveled, EPM % Time in Open Arms, and PavCA index in the F2 dataset 
(Bold = FDR < 0.1; black = p < 0.05). Note that the F2 differential expression analysis includes behavior as a continuous predictor variable, therefore the 
Log2FC units are defined per unit of LocoScore and not directly comparable to the Log2FC units for bred line (bLR vs. bHR). The final column provides 
references for similar hippocampal differential expression in other bLR-like (red) or bHR-like (green) rat models following the numbering in the table in 
panel A. Full gene names (when applicable): Tmem144: Transmembrane Protein 144; Fcrl2: Fc Receptor-like 2; Nqo2: 
N-ribosyldihydronicotinamide:quinone dehydrogenase 2; Bphl: biphenyl hydrolase like; Ist1: Factor Associated With ESCRT-III.
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Supplementary Figure S6C, indicated that most hippocampal eGenes 
were also significant eGenes within at least four other tissues (out of 11 
tissues characterized, Supplementary Figure S6D), and confirmed that 
previously-identified brain ciseQTLs showed a similar direction of effect 
on gene expression within the hippocampus (R = 0.67–0.75, rho = 
0.65–0.77, Supplementary Figure S8, S9) when there was at least a 
nominal (p < 0.05) relationship in our dataset, although many cis-
eQTLs remained region specific. As our hippocampal cis-eQTL 
database represents a valuable resource for the interpretation of rat 
genomic results, we have shared it on RatGTEx.3

3.8 bHR/bLR differential expression can 
be predicted using the hippocampal 
cis-eQTL database

We used our cis-eQTL database to predict the effect of genetic 
variation that segregates the bHR/bLR lines on gene expression. Many 
eVariants (2,452) showed at least partial bHR/bLR segregation in the 
F0 rats (n = 10 bHR/n = 10 bLR sequenced in Chitre et al., 2023), such 
that if all subjects from one phenotype (e.g., bHRs) had 2 reference 
alleles (0/0), all subjects from the other phenotype had at least 1 
alternate allele (0/1); population segregation statistic Gst’ > 0.27 
(Hedrick, 2005). To predict the effect of these bHR/bLR segregated 
eVariants on gene expression, we calculated the allelic Log2FC (aFC) 
for each eVariant and assigned the direction of effect based on the 
allele frequency within the bLR vs. bHR F0 rats (Figure 8A). These 
predictions correlated strongly with the F0 differential expression 
results (Figures 8B,C, 2,500 eGene/eVariant combinations: R = 0.77, 
rho = 0.63, p < 2e-16) and our previous bHR/bLR late generation 
meta-analysis effect sizes (2,114 eGene/eVariant combinations: 
R = 0.52, rho = 0.61, p < 2e-16, Supplementary Figure S10). These 
results validated our hippocampal cis-eQTL database and confirmed 
that bHR/bLR differential expression of eGenes is likely driven by 
bHR/bLR genetic segregation.

3.9 cis-eQTLs that strongly co-localize 
with QTLs for behavior are predominantly 
located on chromosome 1

To identify cis-eQTLs that might mediate the influence of genetic 
variation on behavior, we determined which hippocampal cis-eQTLs 
co-localized with regions of the genome associated with bHR/bLR-like 
behavior (QTLs) within the larger F2 sample [adults: n = 323 adults, 
juveniles: n = 216 (Chitre et al., 2023)] using Summary Data-based 
Mendelian Randomization (SMR; Zhu et al., 2016). We focused on 
QTLs for behaviors measured in F2 adults that were included in our 
differential expression analysis (LocoScore, EPM time immobile, EPM 
distance traveled, EPM % time in open arms, PavCA Index), and for 
analogous behaviors measured in an independent sample of F2 
juveniles (open field (OF) time immobile, OF distance traveled, OF % 
time in center). This analysis identified 79 cis-eQTLs that were 
co-localized with QTLs for LocoScore (FDR < 0.10), including 1 

3 https://ratgtex.org/download/study-data/#HPC_F2

cis-eQTL that was also co-localized with a QTL for EPM distance 
traveled (FDR < 0.10), and 13 of the 14 cis-eQTLs that were 
co-localized with QTLs for OF distance traveled (FDR < 0.10). Most 
cis-eQTLs that strongly co-localized with behavioral QTLs were on 
chromosome 1, as expected due to the strength of the QTLs on this 
chromosome (Figures 9A,B).

To narrow down our pool of top candidate genes for mediating 
the effect of genetic variation on behavioral temperament, we used 
converging information from our different samples and analyses. First, 
we  narrowed our scope to cis-eQTLs that we  had confirmed are 
segregated in bHR/bLRs with differential expression matching 
predictions based on the distribution of alleles in the two lines 
(Figure 8C; 492 cis-eQTLs representing 456 eGenes). Within this 
subset of cis-eQTLs, the strongest co-localization with QTLs tended 
to predict F2 differential expression with behavior, especially when 
considering the predicted direction of effect based on the relationship 
between genotype and behavior within the larger F2 sample (adults: 
n = 323 adults) and genotype and expression within the cis-eQTL 
analysis (n = 245) (Figure  10A). This was particularly true for 
LocoScore (Figure 10B, R = 0.56, p < 2.2e-16), but also other F2 adult 
behaviors (Supplementary Figure S11, R = 0.33–0.57, all p < 3.07e-14). 
It was also true when comparing F2 differential expression to SMR 
co-localization results with QTLs for two analogous juvenile behaviors 
(Figure  10C, Supplementary Figure S12, OF distance traveled: 
R = 0.35, p = 1.48e-15, OF time immobile: R = 0.26, p = 4.44e-09).

The most compelling candidates for mediating the effect of genetic 
variation on behavioral temperament should have expression strongly 
related to genetic variation (cis-eQTLs) that is segregated in bHR/bLR, 
correctly predicts bHR/bLR differential expression, and co-localizes 
with a QTL for behavior that correctly predicts F2 differential 
expression associated with that behavior (Figure 2). Among the SMR 
results, 16 of the 80 genes surviving FDR correction (FDR < 0.10) 
met  all these criteria (Figure  11, examples: Supplementary  
Figures S13–S16). By conservative estimate (Supplementary methods), 
one gene or less in our dataset is expected to show this degree of 
convergence due to random chance. These 16 genes were clustered 
within seven genomic regions on chromosomes 1, 7, and 19, 
suggesting that there still remained some false discovery due to 
linkage disequilibrium (Figures  9A,B). That said, when cross-
referencing with functional annotation, eight of these candidate 
genes—representing five of the identified regions—were clearly related 
to mitochondrial function and bioenergetics (Figures 11, 12), hinting 
at the relevant genes in each region.

4 Discussion

Using selectively-bred rats with extreme, stable differences in 
behavior (bHRs, bLRs) and a large cohort of their intercross 
progeny (F2s), we identified genes and functional pathways that are 
likely to contribute to behavioral temperament. This was achieved 
by triangulating behavioral, functional genomics, and genetic data. 
Behaviors that diverged in the bHR/bLR lines, including anxiety-
like and reward-related behavior (Birt et al., 2021; Flagel et al., 2010; 
Turner et  al., 2017), remained correlated with exploratory 
locomotion in our heterogeneous F2 sample, allowing us to 
investigate their shared etiology. The extreme behavioral phenotypes 
produced by our selective breeding paradigm were accompanied by 
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robust differential expression in the hippocampus of both sexes, 
bolstering results from our previous male-only analyses (Birt et al., 
2021). Moreover, hippocampal gene expression related to bHR/bLR 
lineage predicted gene expression related to behavior, including 
exploratory locomotion and anxiety, in our larger cohort (n = 250) 
of F2 intercross rats. Six genes showed consistent differential 
expression with behavioral phenotype in bHR/bLR and F2 intercross 
rats, as well as in multiple other rat models targeting similar  
behavior.

Selective breeding should produce an enrichment of genetic 
alleles influencing the phenotype under selection. To determine 
which differential expression might directly mediate the effect of 
selective breeding on behavioral temperament, we  identified 
hippocampal expression that was strongly correlated with genetic 
variation in the F2s (cis-eQTLs). This cis-eQTL database allowed us to 
accurately predict differential expression related to bHR/bLR genetic 
segregation. We also identified gene expression associated with F2 
behavior that matched what would be  expected due to the 

FIGURE 8

bHR/bLR differential expression (DE) related to segregated genetic variation can be successfully predicted using our hippocampal cis-eQTL database. 
Green vs. red coloring is used to indicate either bHR vs. bLR phenotype or the allele overrepresented in each respective phenotype. Gold is used to 
indicate heterozygotes (0/1). (A) To create the cis-eQTL database, we integrated our current F2 transcriptional profiling data (n = 245) with our previous 
whole genome sequencing results (n = 4,425,349 single nucleotide polymorphisms (SNPs), Chitre et al., 2023) to identify genes with hippocampal 
expression tightly correlated with nearby genetic variation (cis-eQTLs, FDR < 0.05). As an example, a boxplot illustrates a cis-eQTL for Ucp2 
(Uncoupling Protein 2). Within this cis-eQTL, the alternate allele for the top eVariant (Chr1:166,392,350) is associated with decreased expression of 
Ucp2. In the boxplot, genotype (x-axis) is indicated by alternate allele count, with 0/0 (two reference alleles), 0/1 (heterozygote), and 1/1 (two alternate 
alleles). Gene expression (y-axis: Log2 CPM) is plotted as residual expression after quality control and controlling for technical co-variates included in 
our differential expression model (n = 245). We used the cis-eQTL database to predict the effect of genetic variation that segregates the bHR/bLR lines 
[2,452 eVariants with partial segregation (Gst’ > 0.27) in the F0 rats: n = 20 (Chitre et al., 2023)] on gene expression, with the direction of effect for the 
allelic Log2 fold change (aFC) for each eVariant assigned to reflect bLR vs. bHR allele frequency [n = 20 (Chitre et al., 2023)]. To illustrate this, a table 
shows the bHR/bLR segregation for the top eVariant (Chr1: 166,392,350) for Ucp2. The alternate allele (1/1) for the top eVariant is more prevalent in 
bLRs (red), whereas bHRs are more likely to carry the reference allele (0/0, green) (Chitre et al., 2023). Since the alternate allele was associated with 
decreased hippocampal Ucp2 expression in our cis-eQTL analysis, we predict that bHRs would have greater Ucp2 expression than bLRs. This 
prediction is correct when we examine our previous differential expression results from the male bHR vs. bLR rats [example boxplot from our previous 
F0 sample (Birt et al., 2021): n = 18, y-axis: Log2 FPM]. This prediction is also correct when we examine the differential expression results from our 
current F0 sample of male (M) and female (F) bHR and bLR rats (n = 24, boxplot y-axis: Log2 CPM), although the effect appears larger in males. 
(B) When considering the full sample of bHR/bLR segregated cis-eQTLs, there is a strong positive correlation between predicted bLR vs. bHR 
differential expression (scatterplot x-axis: bLR vs. bHR aFC) and our F0 differential expression results (y-axis: bLR vs. bHR Log2FC) (n = 2,452 cis-eQTLs, 
R = 0.77, p < 2e-16). A similar positive correlation with bLR vs. bHR meta-analysis results is shown in Supplementary Figure S10. Within the scatterplot, 
color indicates the subset of cis-eQTLs that were associated with differentially expressed genes upregulated in the bLRs (red) or bHRs (green) within 
the F0 differential expression study or bHR/bLR meta-analysis (Figures 4F–H) that had differential expression reflecting bHR/bLR segregation at their 
eVariant (n = 492 cis-eQTLs representing 456 eGenes). This subset is also indicated with (C) A Venn diagram illustrating overlap between the bHR/bLR 
differentially expressed genes (DEGs) (1,045 of which were present in the F2 dataset) with the significant eGenes identified in our hippocampal cis-
eQTL database that had eVariants segregated in the bHR/bLR rats (2,395 eGenes). Out of the 480 genes satisfying both criteria, 456 (95%) showed a 
direction of effect in the differential expression results congruent with what would be predicted based on bHR/bLR genotype segregation.
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co-localization of cis-eQTLs with genetic loci associated with behavior 
(QTLs) in the larger F2 cohort (adults and juveniles) (Chitre et al., 
2023). This converging evidence highlighted 16 genes within 7 
genomic regions on chromosomes 1, 7, and 19 as strong candidates 
for mediating the effect of selective breeding on behavioral  
temperament.

4.1 Functional patterns: bioenergetic 
regulation of hippocampal function

Among these 16 top candidate genes, eight are directly involved 
in bioenergetics (Figure 12). The differential expression results overall 
similarly showed upregulation in gene sets related to mitochondria, 
oxidative phosphorylation, and metabolism in bLR-like vs. bHR-like 
animals. These findings complement previous evidence that adult 

bLRs have elevated oxidative phosphorylation in the hippocampus, as 
indicated by increased mitochondrial oxygen consumption and 
elevated electron transport chain activity (McCoy et al., 2019). Since 
the expression of our top candidate genes was strongly correlated with 
genetic variation tied to behavioral phenotype in both bHR/bLR and 
F2 samples, our results imply that variation in energy production may 
mediate the effect of heredity on temperament and provide insight 
into the responsible mechanisms.

In particular, our results suggest that bLR-like animals have 
enhanced fatty acid oxidation, which is a pathway that is particularly 
important during times of high energy usage (Nsiah-Sefaa and 
McKenzie, 2016) because it can release twice as much energy as 
glucose metabolism (Schönfeld and Reiser, 2013). bLR-like animals 
had upregulation of multiple fatty acid oxidation gatekeepers [Lsr, Ist1, 
and Pex11a (Chang et al., 2019; Mattiazzi Ušaj et al., 2015; Mindthoff 
et al., 2016; Renne and Ernst, 2023)]. Downstream, there was also 

FIGURE 9

The top candidate genes for mediating the influence of genetic variation on behavioral temperament are located on chromosome 1. (A) A Manhattan 
plot shows the co-localization of hippocampal cis-eQTLs with LocoScore QTLs identified in the full sample of F2 adults (n = 323). The x-axis indicates 
the chromosomal location for all identified hippocampal cis-eQTLs (n = 5,937). Chromosomes are indicated with alternating black and grey coloring. 
The y-axis indicates the statistical significance [−log10(p-value)] for the co-localization as identified by the SMR analysis. The red line indicates 
FDR = 0.05 and the blue line indicates FDR = 0.10. Colored dots denote cis-eQTLs with FDR < 0.10 that meet all additional desired criteria for being the 
most compelling candidates for mediating the effect of selective breeding on behavior. Red is used to indicate cis-eQTLs associated with genes 
upregulated with bLR-like behavior (decreased LocoScore), green is used to indicate cis-eQTLs associated with genes upregulated with bHR-like 
behavior (increased LocoScore). For labeling the cis-eQTLs with their respective gene symbols, a side panel that zooms in on chromosome 1 is used 
for clarity. (B) A Manhattan plot shows the co-localization of cis-eQTLs with QTLs for open field distance traveled identified in an independent sample 
of F2 juveniles (n = 216). Notably, a similar panel of cis-eQTLs on chromosome 1 are identified as meeting all desired criteria for being the most 
compelling candidates for mediating the effect of selective breeding on behavior.
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upregulation that could facilitate the tricarboxylic acid (TCA) cycle 
(Idh1) (Gherardi et al., 2020) and electron transport chain (Wdr93) 
(GeneCards, n.d.; InterPro, n.d.; Meyer et al., 2009) to increase energy 
production. These findings have widespread functional implications, 
as the brain consumes disproportionate energy to maintain 
neurotransmission and synaptic repolarization (van Rensburg et al., 
2022), especially during times of heightened activity, such as stress 
(Zalachoras et al., 2020).

In contrast, energy production in bHR-like animals may be kept 
under tight regulation by upregulation of Spg7, Afg3l1, Ucp2, and 
Lipt2. Ucp2 encodes a mitochondrial transporter and anion carrier 
that promotes homeostasis by serving as a metabolic switch, 
decreasing TCA cycle function (Vozza et al., 2014) and mitochondrial 
proton gradient (Ardalan et al., 2022; Berardi and Chou, 2014; Hass 
and Barnstable, 2021; Keita et al., 2007). Lipt2 plays a similar feedback 
role, coupling TCA cycle enzyme activity to its input via the 

FIGURE 10

Our cis-eQTL database can also be used to predict the effect of genetic variation that correlates with behavior (QTLs) on gene expression. 
(A) Following the plotting conventions of Figure 8, the boxplot illustrating the cis-eQTL for Ucp2 is shown again as an example (top eVariant: Chr1: 
166,392,350), along with two boxplots illustrating the association between the alternate allele (1/1) for the top eVariant and decreased open field 
distance traveled in F2 juveniles (n = 216; Chitre et al., 2023) and decreased LocoScore in the full sample of F2 adults (n = 323; Chitre et al., 2023). Since 
the alternate allele was associated with decreased Ucp2 expression, we predict that decreased Ucp2 expression might also be associated with 
decreased distance traveled and LocoScore (i.e., positive correlation). This prediction is correct when we examine the differential expression (DE) 
results from the F2 rats (n = 245). The scatterplot shows that Ucp2 was more highly expressed in hippocampus of F2 rats with a higher LocoScore. 
Similar to the eQTL plot, gene expression (Log2 CPM) is plotted as residual expression. (B,C) Overall, some F2 differential expression related to behavior 
can be predicted by the co-localization of cis-eQTLs with QTLs for the behavior identified within the larger F2 sample (adults: n = 323, juveniles: 
n = 216, Chitre et al., 2023). This was particularly true when considering the subset of cis-eQTLs we confirmed had differential expression in bHR/bLRs 
matching what would be expected based on the segregated distribution of alleles in the two lines (see Figure 8C: n = 492 cis-eQTLs representing 456 
eGenes), but also weakly true within the full sample of cis-eQTLs (Supplementary Figures S10, S11). The strength of the co-localization of hippocampal 
cis-eQTLs with regions of the genome associated with bHR/bLR-like behavior (QTLs) was determined using Summary Data-based Mendelian 
Randomization (SMR), and the direction of effect for the relationship between gene expression and behavior was predicted as described above. (B) An 
example scatterplot shows the positive correlation between the strength of the co-localization of cis-eQTLs with the QTLs for LocoScore identified in 
the larger F2 sample (n = 323 adults, x-axis: SMR T-statistic), with negative values indicating a predicted negative relationship between gene expression 
and LocoScore and positive values indicating a positive relationship between gene expression and LocoScore and the differential expression for 
LocoScore (y-axis: Log2FC) (n = 492; R = 0.56, p < 2.2e-16). Color is used to indicate the subset of genes that had nominal differential expression in 
the F2s for LocoScore (p < 0.05) that matched the prediction based on the co-localization between their cis-eQTL and the QTL for LocoScore in the 
larger F2 sample (p < 0.05), with green indicating bHR-like upregulation with increased LocoScore and red indicating bLR-like upregulation with 
decreased LocoScore. (C) An example scatterplot shows the positive correlation between the strength of the co-localization of cis-eQTLs with the 
QTLs for open field distance traveled identified in an independent sample of F2 rats (n = 216 juveniles, x-axis: SMR T-statistic), with predicted direction 
of effect assigned as discussed above, and the differential expression for EPM distance traveled in the F2 adults (y-axis: Log2FC) (n = 492; R = 0.35, 
p < 1.48e-15). Coloring follows the conventions in panel (B). Supplementary Figures S11, S12 contain scatterplots for other F2 adult and juvenile 
behaviors.
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mitochondrial fatty acid synthesis pathway (Habarou et  al., 2017; 
Nowinski et al., 2020; Solmonson and DeBerardinis, 2018). Spg7 and 
Afg3l1 encode subunits of the m-AAA complex, which tailor 
mitochondrial protein levels to cellular need (Opalińska and Jańska, 
2018). Moreover, Ucp2, Spg7 and Afg3l all regulate mitochondrial 
calcium intake (König et al., 2016; Koshenov et al., 2020; Patron et al., 
2018), which couples energy production to synaptic activity by 
stimulating TCA cycle enzymes (Gherardi et al., 2020; Stoler et al., 
2022). As discussed below, this tight regulation may limit oxidative 
phosphorylation under some conditions, but also reduce reactive 
oxygen species production and allow for greater biosynthesis.

4.2 Bioenergetics and behavior

Our results bolster growing evidence that bioenergetic genes and 
pathways regulate behaviors like exploratory activity, anxiety, and 
reward learning. The mitochondrial m-AAA complex, fatty acid 
oxidation pathway, and fatty acid synthesis feedback pathway are all 
critical for movement and motor activity in animals and humans 
(Bernardinelli et al., 2017; Martinelli et al., 2009; Murru et al., 2019; 
Nsiah-Sefaa and McKenzie, 2016; Patron et al., 2018), with severe, 
pathogenic mutations in Spg7, Afg3l1, and Ist1 producing hereditary 
paraplegia and ataxia (Lallemant-Dudek and Durr, 2021; Nsiah-Sefaa 
and McKenzie, 2016; Schüle and Schöls, 2011), sometimes with 

altered cognition, executive function, and social/emotional function 
(Hedera et al., 2002; Lupo et al., 2020; Ringman et al., 2020; Schüle and 
Schöls, 2011; Zhang et al., 2017). Logically, more subtle changes within 
these pathways could alter exploratory activity.

Energy production is also theorized to critically modulate the 
energy-demanding circuitry necessary for behavioral inhibition 
(Killeen et al., 2013; Russell et al., 2006), and some of our candidate 
bioenergetic genes are broadly implicated in behavioral temperament. 
Ucp2 knock-out animals consistently demonstrate bLR-like behaviors, 
including decreased exploration, and anxiety- and depressive-like 
behaviors, especially following stress (Andrews et al., 2006; Du et al., 
2016; Gimsa et al., 2011; Hermes et al., 2016; Sun et al., 2011; Wang 
et al., 2014; Yasumoto et al., 2021). Human GWAS also link UCP2, 
SPG7, and WDR93 to the stress response, psychiatric disorders, 
externalizing behavior, and substance use disorders (Karlsson Linnér 
et al., 2021; Li et al., 2022; Orhan et al., 2012; Pehlivan et al., 2020; 
Rimpelä et al., 2019; Russell et al., 2020; Saunders et al., 2022; Yasuno 
et al., 2007).

Metabolic differences have been observed in humans and animal 
models with anxiety and internalizing-like behavior (Ait Tayeb et al., 
2023; Filiou et al., 2011, 2014; Filiou and Sandi, 2019; Liu et al., 2022) 
and hyperactivity and externalizing-like behavior (Chang et al., 2018; 
Dimatelis et al., 2015; Dupuy et al., 2021; Zametkin et al., 1990). Our 
findings suggest that genetic vulnerability may contribute to these 
metabolic differences, bolstering support for metabolic interventions 

FIGURE 11

A table summarizing the converging evidence from genetic association and differential expression studies implicating 16 genes in behavioral 
temperament. To narrow down our pool of top candidate genes for mediating the effect of genetic variation on behavior, we used converging 
information from our different samples and analyses (Figure 2). We required that our top candidate genes have expression strongly related to genetic 
variation (cis-eQTLs) that was segregated in the bHR/bLR lines that correctly predicted bHR/bLR differential expression and co-localized with a QTL for 
behavior (SMR FDR < 0.10) that correctly predicted at least nominal F2 differential expression associated with that behavior. The summary table follows 
the conventions of Figure 7D, but also includes the top eVariant associated with the expression of the gene within our cis-eQTL analysis, along with its 
reference and alternate alleles, its separation in our bred lines [Gst’: ranges from 0 (no segregation) to 1 (fully segregated)], its co-localization with 
behavioral QTLs from the full adult and juvenile F2 samples (maximum −log10(p-value) from the SMR analysis, bold = FDR < 0.05, black = FDR < 0.10), 
and the differential expression that is predicted due to bLR vs. bHR segregation at the eVariant (allelic Log2 fold change or Log2aFC, 
bold = FDR < 0.05). Genes with functions related to bioenergetics are indicated with an * and illustrated in Figure 12. Full gene names (when 
applicable): Lsr: Lipolysis Stimulated Lipoprotein Receptor; Fanci: FA Complementation Group I; Unc45a: Unc-45 Myosin Chaperone A; Pex11a: 
Peroxisomal Biogenesis Factor 11 Alpha; Wdr93: WD Repeat Domain 93; Mfge8: Milk Fat Globule EGF And Factor V/VIII Domain Containing; Lipt2: 
Lipoyl(Octanoyl) Transferase 2; C2cd3: C2 Domain Containing 3 Centriole Elongation Regulator; Plekhb1: Pleckstrin Homology Domain Containing B1; 
Ucp2: Uncoupling Protein 2; Fzd6: Frizzled Class Receptor 6; Ist1: IST1 Factor Associated With ESCRT-III; Spg7: SPG7 Matrix AAA Peptidase Subunit, 
Paraplegin; Vps9d1:VPS9 domain containing 1; Afg3l1: AFG3-like AAA ATPase 1.
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FIGURE 12

The differentially expressed genes implicated as top candidates for mediating the effect of selective breeding on behavior are often regulators of 
bioenergetic function. Red/pink indicates that a function is likely to be increased in bLR-like animals, green indicates increased function in bHR-like 
animals. 1. In the brain, energy is primarily released from glucose within a series of biochemical reactions starting with glycolysis (Sobieski et al., 2017), 
but it can also be released from other energy sources, such as fatty acid oxidation (Nsiah-Sefaa and McKenzie, 2016). 2. Metabolites from these 
processes are fed into the tricarboxylic acid (TCA) cycle within the mitochondrial matrix, which generates electron donors (NADH, FADH2). 3. Electron 
donors feed into the electron transport chain, which moves protons across the inner mitochondrial membrane to produce a gradient capable of 
driving energy output (adenosine triphosphate: ATP). This process produces reactive oxygen species (ROS) as a byproduct (Zeng et al., 2020). (A) bLR-
like animals have a pattern of upregulated expression suggesting elevated oxidative phosphorylation, but potentially also reduced sensitivity to cellular 
need in a manner leading to excessive ROS production and neuroimmune activation under conditions of elevated activity such as stress. This 
conclusion is supported by: (I) previous evidence of elevated oxidative phosphorylation, including elevated activity within the electron transport chain 
(McCoy et al., 2019), (II) Upregulation of multiple gatekeepers of fatty acid oxidation, which is a form of energy production that can release twice as 
much energy as glucose metabolism (Schönfeld and Reiser, 2013). These gatekeepers include lipolysis stimulated lipoprotein receptor (Lsr), which 
uptakes lipoproteins into the cell, IST1 factor associated with ESCRT-III (Ist1), which facilitates fatty acid trafficking into peroxisomes to begin fatty acid 
oxidation (Chang et al., 2019), and peroxisomal biogenesis factor 11 alpha (Pex11a), which encodes a fatty acid oxidation rate-limiting channel that 
allows lipids and fatty acid metabolites to pass from peroxisomes into mitochondria (Mattiazzi Ušaj et al., 2015; Mindthoff et al., 2016; Renne and Ernst, 
2023). (III) Upregulation of Idh1, encoding the isocitrate dehydrogenase 1 enzyme in the TCA cycle, which is the most important producer of the 
electron donor NADH in the brain (Gherardi et al., 2020; Molenaar et al., 2014), (IV) Upregulation of WD repeat domain 93 (Wdr93), which is theorized 
to be an accessory subunit to Complex 1 in the mitochondrial electron transport chain, increasing ATP production (GeneCards, n.d.; InterPro, n.d.; 
Meyer et al., 2009). (V) Down-regulated expression of subunits of the m-AAA (ATPases Associated with a variety of cellular Activities) complex [Spastic 
paraplegia type 7 (Spg7), AFG3-like protein 1 (Afg3l1)]. Decreased m-AAA complex function causes constitutive activity of the mitochondrial calcium 
uniporter (MCU) (König et al., 2016; Patron et al., 2018). Elevated mitochondrial calcium influx activates enzymes within the TCA cycle (PDH, IDH, and 
OGDH) (Gherardi et al., 2020), and, if it becomes excessive, triggers ROS production and apoptosis (Patron et al., 2018). (B) bHR-like animals have a 
pattern of upregulated expression suggesting that energy production is kept under tight regulation, potentially limiting oxidative phosphorylation but 
allowing for greater biosynthesis. These findings include (I) Upregulated Uncoupling Protein 2 (Ucp2), encoding a mitochondrial transporter which 
promotes homeostasis and decreased ROS production by decreasing the mitochondrial proton gradient, exporting the rate-limiting substrate for the 
TCA cycle (oxaloacetate), and regulating calcium influx (Ardalan et al., 2022; Berardi and Chou, 2014; Hass and Barnstable, 2021; Keita et al., 2007; 
Koshenov et al., 2020; Vozza et al., 2014); (II) Upregulated expression related to m-AAA complex function (Spg7, Afg3l1), which ensures that 
mitochondrial protein availability, including an essential regulator (EMRE) of the MCU, does not exceed cellular need. (III) Upregulated lipoyl(octanoyl) 
transferase 2 (Lipt2), which senses the input to the TCA cycle (Acetyl-CoA) and stimulates TCA cycle enzyme activity accordingly via the mitochondrial 
fatty acid synthesis pathway (Habarou et al., 2017; Nowinski et al., 2020; Solmonson and DeBerardinis, 2018).
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in psychiatry (e.g., Chang et al., 2018; Danan et al., 2022; Filiou and 
Sandi, 2019; Liu et al., 2022). That said, the evidence linking energy 
production to internalizing-like vs. externalizing-like behavior is 
inconsistent across measurements and models, suggesting that the 
critical vulnerability may lie downstream in bioenergetically 
regulated functions like apoptosis, oxidative stress, and biogenesis 
(Filiou and Sandi, 2019). We  have evidence supporting each of 
these possibilities.

4.3 Bioenergetics: role in reactive oxygen 
species production

During fatty acid oxidation and oxidative phosphorylation, 
reactive oxygen species are produced as a byproduct (Schönfeld and 
Reiser, 2021; van Rensburg et al., 2022). Both energy production and 
reactive oxygen species increase with elevated synaptic activity and 
environmental stress (Salim, 2017; van Rensburg et  al., 2022; 
Zalachoras et al., 2020). Thus, many metabolic genes are regulators of 
oxidative stress, with upregulation in bLR-like animals linked to 
greater oxidative stress and upregulation in bHR-like animals 
sometimes appearing protective [e.g., Ucp2, Spg7/Afg3l1, Pex11a 
(Arsenijevic et al., 2000; Atorino et al., 2003; Du et al., 2016; Gimsa 
et  al., 2011; Hass and Barnstable, 2021; Rodríguez-Serrano et  al., 
2016)]. bHR-like animals also had upregulation of protective Mfge8 
(Liu et  al., 2014) and upregulation of Nqo2, which can enhance 
reactive oxygen species production or reduce oxidative stress (Janda 
et  al., 2015; Rashid et  al., 2021; Vella et  al., 2005) in a manner 
important for encoding novelty in hippocampal interneurons (Gould 
et  al., 2020) and potentially stress-related disorders (Bainomugisa 
et al., 2021).

These results bolster evidence that natural and genetically-selected 
variation in anxiety is consistently associated with markers of oxidative 
damage in animals and humans (Filiou and Sandi, 2019). Reactive 
oxygen species are also implicated in the development of anxiety and 
depressive-like behavior following chronic stress (Schiavone and 
Trabace, 2016; van Rensburg et  al., 2022). The hippocampus is 
particularly vulnerable to oxidative stress (Salim, 2017) and 
accumulating evidence implicates oxidative stress in psychiatric 
disorders, including internalizing disorders and comorbid substance 
abuse (Bouayed et al., 2009; Cecerska-Heryć et al., 2022; Hovatta et al., 
2010; Schiavone and Trabace, 2016; Tobore, 2019; van Rensburg et al., 
2022; Zalachoras et al., 2020).

4.4 Bioenergetics: role in neuroimmune 
activation

Gene sets related to immune activation and microglia were 
upregulated in bLR-like animals. This upregulation may be driven by 
bLR/bHR bioenergetic differences: both the ATP and reactive oxygen 
species produced by fatty acid oxidation and oxidative phosphorylation 
can cause microglial activation (Illes et al., 2020; Rojo et al., 2014) and 
promote microglial release of pro-inflammatory factors (Guevara 
et  al., 2020; Guo et  al., 2022). Notably, two of the top candidates 
upregulated in bHR-like animals, Ucp2 and Mfge8, are also master 
regulators of microglial activation, promoting an anti-inflammatory 
and pro-repair state (De Simone et al., 2015; Fang and Zhang, 2021; 

Gao et  al., 2021). Both Mfge8 and Ucp2 encourage microglial 
engulfment of damaged cells and unwanted synapses. Disrupting this 
process causes hippocampal dysfunction, inflammation, anxiety-like 
behavior, insomnia, and depressive-like behavior (Choudhury et al., 
2022; Fuller and Van Eldik, 2008; Yasumoto et al., 2021; Yi, 2016), 
mirroring a bLR-like behavioral phenotype. Fcrl2 was also upregulated 
in bHR-like animals and is likely abundant in microglia, dampening 
immune responses (Hammond et al., 2019; Matos et al., 2020). In 
contrast, Tmem144 was upregulated in bLR-like animals in our study 
and three others (Blaveri et al., 2010; Meckes et al., 2018; Wilhelm 
et al., 2013) and is highly expressed in microglia during development 
(Cao et al., 2020; La Manno et al., 2016), but with unknown function.

These findings complement previous findings that bLR microglia 
exhibit an “intermediate activation” hyper-ramified morphology 
(Maras et al., 2022) resembling that observed following chronic stress 
(McEwen and Akil, 2020), when reactive oxygen species and 
microglial activation are critical for the development of anxiety-like 
behavior (Guevara et  al., 2020; Lehmann et  al., 2019). Moreover, 
inhibiting microglial activity reduced bLR-like behavior (Maras et al., 
2022). Microglial activation has also been implicated in affective and 
substance use-related behaviors (Choudhury et al., 2022; Northcutt 
et al., 2015).

Neuroimmune activation could also be caused by mitochondrial 
regulation of apoptosis and cell death. Excessive mitochondrial 
calcium intake, decreased m-AAA complex function, decreased Spg7, 
and decreased Lipt2 can all trigger the mitochondrial membrane 
potential collapse that drives apoptosis (Bernardinelli et al., 2017; 
Patron et al., 2018; Shanmughapriya et al., 2015). m-AAA complex 
deficiencies can also cause dysfunctional mitochondrial protein 
synthesis, respiration, transport, and fragmentation (Patron et al., 
2018) and are linked to neurodegeneration (König et al., 2016; Patron 
et al., 2018) whereas Ucp2 is considered neuroprotective (Hass and 
Barnstable, 2016; Kumar et al., 2022). Therefore, down-regulation of 
Spg7, Afg3l1, Lipt2, and Ucp2 in bLR-like animals might increase risk 
for cell loss and neuroimmune activation, especially after periods of 
intense neuronal activity, such as occurs during stress (Zalachoras 
et al., 2020).

4.5 Bioenergetics: role in growth

bHR/bLR bioenergetic differences may also contribute to the 
upregulation of gene sets related to nervous system development and 
proliferation in bHR-like animals. Both energy availability and use 
exert control over proliferation, cell differentiation, and growth-
related processes, and biosynthesis using glucose-derived products 
directly competes with oxidative phosphorylation for essential 
substrates (Beckervordersandforth, 2017). Therefore, many of the 
candidate metabolic genes also influence proliferation and growth 
(e.g., Ucp2, Lsr, Lipt2: Esteves et  al., 2014; Pecqueur et  al., 2008; 
Takahashi et al., 2021; Wang et al., 2023; Zhang and Ma, 2021). Other 
top candidates regulate growth-related processes, including Mfge8 and 
Fzd6 (Wang et al., 2012; Yli-Karjanmaa et al., 2019; Zhou et al., 2018). 
Fzd6 has also been linked to anxiety and depressive-like behavior 
(Sani et al., 2012; Voleti et al., 2012). These results are noteworthy due 
to known bHR/bLR differences in neurogenesis, proliferation, and 
growth factor response (Birt et al., 2021; Perez et al., 2009; Turner 
et al., 2019), and extensive literature implicating both hippocampal 
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atrophy in internalizing disorders and growth-related processes in 
antidepressant function (Duman and Monteggia, 2006).

4.6 Sex differences

A vast literature exists documenting sex differences in anxiety and 
reward-related behaviors and circuitry (Bangasser and Cuarenta, 
2021; Becker and Koob, 2016). Our study was not specifically designed 
to study these differences, but sex differences were observed for 
several behaviors, some of which have appeared consistently over 
many generations of bHR/bLR rats (anxiety-like behavior: Hebda-
Bauer et al., 2017) or in previous studies. For example, more females 
than males demonstrated sign-tracking vs. goal-tracking PavCA 
behavior (Hughson et al., 2019; Pitchers et al., 2015), reflecting sex 
differences in reward processing (Davis et al., 2008; Flagel et al., 2011). 
Other sex differences may represent batch effects (e.g., LocoScore), as 
males and females were by necessity tested separately.

Our hippocampal differential expression analyses could shed light 
on these sex differences. Beyond the x- and y-chromosomes, the effect 
sizes for sex differences in hippocampal expression tended to be small, 
making them difficult to measure in the F0 sample, but in the larger F2 
sample 1,679 genes had sex differences that survived false discovery 
rate correction (FDR < 0.10). We  did not find evidence that sex 
modulated the relationship between gene expression and bHR/bLR 
phenotype or F2 behavior, but there was a notable overlap (10%) of the 
genes with sex differences in expression in either the F0 or F2 datasets 
with genes with bHR/bLR differential expression (Supplementary  
Table S4). In future studies, these genes may be excellent candidates 
for mediating sex differences in behavior.

4.7 Region specificity

We focused on a single brain region because of the need to 
generate a large sample size (n = 250) from a heterogeneous F2 
population, however, each of the measured behaviors depends on the 
activity of broader brain circuitry. Can our hippocampal results 
provide insight into the functioning of other brain regions? To address 
this question, we ran an exploratory analysis comparing bHR/bLR 
hippocampal differential expression to the pattern of differential 
expression in other brain regions in previous transcriptional profiling 
datasets from bHR/bLR adults, including the amygdala (Cohen et al., 
2015, 2017; McCoy et al., 2017), dorsal raphe (Cohen et al., 2017), and 
unpublished data from the cortex and hypothalamus. These 
comparisons suggest that at least some of the bHR/bLR differential 
expression that we identified in the hippocampus may also be present 
in other brain regions, whereas other differential expression may 
be  hippocampal specific. Our ongoing studies using spatial 
transcriptomics and fluorescent in situ hybridization (FISH) should 
provide further insight into bHR/bLR differential expression in other 
brain regions, as well as illuminate the specificity of our findings to 
particular hippocampal cell types and subregions. We  also have 
ongoing work characterizing bHR/bLR gene expression and 
chromatin accessibility in the nucleus accumbens, another region 
noted for its role in sensation-seeking, reward processing, 
and addiction.

The behaviors quantified in our F2 rats did not encompass all 
hippocampal-dependent behaviors that differ in the two lines. 
Notably, bHR and bLR rats show differences in contextual fear 
conditioning (Prater et  al., 2017; Widman et al., 2019) that could 
be  influenced by many of the pathways implicated in our results, 
including mitochondrial function, oxidative stress, microglial 
function, and neurogenesis (Gao et  al., 2018; Olsen et  al., 2013; 
Villasana et al., 2016; Yu et al., 2022). Future work following up on 
these findings could provide insight into the heritable contributions 
underlying internalizing disorders like post-traumatic stress disorder 
(Banerjee et al., 2017).

4.8 Alternative genetic mechanisms

One limitation of our approach is that loci which influence 
behavior may still be part of haplotypes that include multiple eQTLs, 
despite the added resolution provided by a F0-F1-F2 cross. We have 
addressed this limitation by integrating individual genes into higher 
order biological concepts. This approach improves the translatability 
of our results and should be robust to the presence of some false 
positives. That said, we may be missing genetic variation contributing 
to our phenotype by only focusing on single nucleotide variants that 
could mediate effects on behavior via basal hippocampal gene 
expression levels. For example, one of the most compelling 
candidates that we identified was AABR07071904.1, with a cis-eQTL 
near the strongest LocoScore QTL peak (Chitre et  al., 2023). 
According to genome assembly Rnor6 (Ensembl v103), 
AABR07071904.1 generates long non-coding RNA, but in 
mRatBN7.2 (Ensembl v106) the gene was retired, potentially 
mapping to Zfp939-201. In either form, it could play some important 
regulatory role, but it is noteworthy that the implicated cis-eQTL is 
in linkage disequilibrium with a missense coding variant for Plekhf1 
(Supplementary Figure S13, Chitre et al., 2023). Plekhf1 was not 
differentially expressed in our study, but has been linked to stress 
and mood (Chitre et  al., 2023). Future work will explore other 
mechanisms that may contribute to our phenotype, including coding 
variants, structural variants, epigenetic modifications, epistatic 
interactions, and context-dependent activity.

5 Conclusion: the power of integrative 
genomics methods for studying 
behavior

In conclusion, our study illustrates the power and utility of 
selective breeding in behavioral neuroscience: by maximizing genetic 
segregation relevant to our behavioral phenotype, we  produced 
highly divergent behavior and minimized within-group variability, 
making it possible to detect robust, reproducible differential 
expression in a sample size (n = 24) akin to what is feasible for other 
neuroscience methods, including neurophysiology, cell-level labeling 
and imaging methods, single cell RNA-Seq, and spatial 
transcriptomics. In contrast, we discovered that our large F2 sample 
(n = 250) was still underpowered to reliably detect the smaller, 
polygenic effects on gene expression driving complex behavior in a 
heterogeneous population, even though the overall gene expression 
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patterns associated with F2 behavior echoed the differential 
expression identified in our bred lines, supporting their relevance for 
the phenotype. However, by integrating our F2 functional genomics 
data with genotyping data from our previous genetic study (Chitre 
et al., 2023), we could detect hippocampal gene expression closely 
tied to proximal genetic variation (cis-eQTLs), allowing us to identify 
bHR/bLR segregated eVariants that were both predictive of bHR/bLR 
differential expression and co-localized with loci implicated in 
behavioral phenotype (QTLs). These integrative methods converged 
upon a set of bioenergetic-related genes that are strong candidates for 
mediating the influence of selective breeding on temperament and 
related behavior, including exploratory locomotion, anxiety, and 
reward learning. These bioenergetic genes are important for 
regulating many of the pathways implicated in our differential 
expression results, including oxidative stress, microglial activation, 
and growth-related processes in the hippocampus, each of which may 
be  important contributors to behavioral temperament, thereby 
modulating vulnerability to psychiatric and addictive disorders. 
Therefore, altogether, our study highlights the power of integrating 
genetic and gene expression data to strengthen discovery-based 
approaches for revealing novel mechanisms underlying the 
neurobiology of behavior.
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