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Receptor-Interacting Protein Kinase 2 (RIPK2) is a critical component of the signaling 
pathways downstream of Nucleotide-binding oligomerization domain-like receptor 
(NOD-like receptor), playing a vital role in the immune response, particularly in 
the context of cellular transport, adaptive immunity, and tumorigenesis. Recent 
advances have further clarified the complex roles of RIPK2, offering insights into its 
structural and functional characteristics. In this review, we provide a comprehensive 
overview of RIPK2’s involvement in signaling, examine the development of RIPK2 
inhibitors, and discuss novel strategies for targeting RIPK2 in therapeutic applications. 
Additionally, we highlight the dynamic interactions between RIPK2 and NOD-like 
receptors and explore future directions for improving RIPK2-targeted therapies.
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1 Introduction to RIPK2

The Receptor-Interacting Protein Kinase (RIPK) family belongs to the Tyrosine Kinase-
Like (TKL) superfamily of serine/threonine kinases, consisting of seven members (RIPK1-
RIPK7). These kinases share homology within their kinase domains, while sequence variations 
in non-kinase regions confer their distinct functions. Among them, RIPK2 is 
particularly significant.

RIPK2’s kinase domain was identified between 1998 and 2000 through sequence 
alignments and was initially categorized as a serine/threonine kinase. It was known by various 
names—RICK, RIP2, CARDIAK, and CCK (Thome et al., 1998; McCarthy et al., 1998; Inohara 
et al., 1998; Nachbur et al., 2015; Medzhitov and Janeway, 2000), but today is referred to as 
RIPK2. The human RIPK2 protein has 540 amino acids and is primarily localized in the 
cytoplasm. Due to its tyrosine autophosphorylation capacity, RIPK2 was later reclassified as a 
dual-specificity kinase (Tigno-Aranjuez et al., 2010). Early studies showed that RIPK2 interacts 
with CD95 to mediate apoptosis (Inohara et al., 1998) and plays a critical role in caspase 
activation (Thome et  al., 1998). Further research confirmed RIPK2’s critical role as a 
downstream signaling molecule of NOD-like receptors (Chen et al., 2009; Strober and Fuss, 
2011; Philpott et al., 2014; Hall et al., 2008; Park et al., 2007). Emerging evidence also suggests 
RIPK2 has functions independent of NOD-like receptors signaling.

In the early characterization of RIPK2, researchers created three kinase-inactive mutants: 
K38M (Inohara et al., 1998), K47A (McCarthy et al., 1998), and D146N (Thome et al., 1998). 
Interestingly, one study reported a truncated version of RIPK2 lacking nine amino acids 
(NGEAICSAL) in the K38M mutant. Upon further analysis, K38M and K47A were found to 
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involve mutations at the same lysine residue, which is crucial for ATP 
binding by forming a salt bridge with the αC helix (Kornev and 
Taylor, 2010).

2 Structure of RIPK2

2.1 Basic structure of RIPK2

2.1.1 RIPK2 consists of three main domains
The kinase domain (KD), the intermediate domain, and the 

caspase activation and recruitment domain (CARD) (Chen et  al., 
2009; Strober and Fuss, 2011; Philpott et al., 2014; Hall et al., 2008; 
Park et  al., 2007) (Figure  1). The interaction between RIPK2 and 
NOD-like receptors occurs through CARD-CARD interactions (Park 
et al., 2007; Girardin et al., 2001). Specifically, the CARD domains of 
NOD1 and NOD2 bind with the CARD of RIPK2, forming CARD-
CARD complexes (Chen et al., 2009; Strober and Fuss, 2011; Philpott 
et al., 2014; Strober et al., 2006). NOD2’s CARD has two basic residues 
(R38, R86) that interact with acidic residues on RIPK2 (D461, E472, 
D473, E475, D492). On the other hand, NOD1’s interaction with 
RIPK2 involves three acidic residues on NOD1 and three basic 
residues on RIPK2 (R444, R483, R488) (Manon et  al., 2007). 
Additionally, two more residues on RIPK2 (K443, Y474) have been 
found to be essential for its interaction with NOD1 (Mayle et al., 
2014). Notably, the NOD2-RIPK2 interaction has primarily been 
observed in recombinant protein systems or overexpression models.

2.2 Three-dimensional structure of RIPK2

Since 2015, the three-dimensional structures of both the kinase 
domain and CARD of RIPK2 have been progressively elucidated (Lin 
et al., 2015; Goncharuk et al., 2018; Canning et al., 2015; He et al., 
2017; Hrdinka et  al., 2018; Suebsuwong et  al., 2018). The kinase 
domain of RIPK2 adopts a canonical kinase fold, with its catalytic core 
residing between the N-terminal lobe and C-terminal lobe, making it 
a primary target for therapeutic intervention. The C-terminal CARD 
of RIPK2 exhibits typical characteristics of the death domain 

superfamily, albeit with a distinctive additional sixth helix not 
observed in other CARDs or death domains. The intermediate domain 
of RIPK2, characterized by its high flexibility, remains poorly 
understood in terms of its potential influence on the overall function 
of the protein.

Within the structural architecture of RIPK2, two critical binding 
interfaces warrant particular attention. The first is the ATP-binding 
pocket within the kinase domain, which serves as the focal point for 
the design of numerous inhibitors (Figures 2A–C). The second is the 
α-helix (αJ) comprising residues E299-K310, which is pivotal for the 
dimerization or oligomerization of RIPK2 (Figures 2D–F).

2.3 RIPK2 oligomerization

This passage suggests that RIPK2 mainly operates in the form of 
dimers or oligomers. In its active state, RIPK2 forms a stable dimer, 
while in its inactive state, it exists in an equilibrium between 
monomers and dimers. Recent crystal structures show that 
dimerization is important for activating the kinase function of RIPK2 
(Nachbur et al., 2015; Tigno-Aranjuez et al., 2010; Canning et al., 
2015; Tigno-Aranjuez et al., 2014; Charnley et al., 2015; Haile et al., 
2016). The formation of RIPK2 dimers is dependent on their 
respective αJ helices (Figure 2), which are stabilized by hydrophobic 
interactions between the side chains of Lys310 and Glu299 and the 
side chains of His159 and Glu157, as well as a symmetric hydrogen 
bond network.

In contrast to RIPK2 dimers, the formation of RIPK2 oligomers 
may rely more heavily on its CARD domain. During certain bacterial 
infections, RIPK2 oligomerizes in the cytoplasm, forming a helical 
structure composed of 12 RIPK2-CARD monomers, which is referred 
to as the “RIPosome” (Gong et  al., 2018; Pellegrini et  al., 2018; 
Kornelia et al., 2019). The formation of the RIPosome is dependent on 
the CARD domain of NOD1/2, which is responsible for recruiting 
RIPK2. The filamentous structure formed by RIPK2 aggregation is 
thought to act as a signaling platform downstream of NOD-like 
receptor. Following invasive bacterial infection, the RIPosome appears 
in the cytoplasm and can increase over time. Although the precise 
function of the RIPosome remains unclear, existing data suggest that 
it may serve as a platform for downregulating RIPK2 signaling 
(Kornelia et al., 2019). Additionally, the phosphorylation of RIPK2 at 
the Y474 site is essential for RIPosome formation, while the absence 
of phosphorylation at the S176 site promotes its formation (Kornelia 
et al., 2019). Interestingly, RIPK1 and RIPK3 can also form higher-
order molecular complexes, known as the “RIPoptosome,” which 
distinguish between necroptosis and apoptosis (Kornelia et al., 2019; 
Feoktistova et al., 2011). However, Ellwanger et al. demonstrated in a 
HeLa cell model that the RIPosome is not directly associated with 
apoptosis (Kornelia et al., 2019).

Based on the above information, primarily referring to the fact 
that RIPK2 typically exists as a dimer in its active state and forms a 
dodecamer through CARD-CARD interactions in vitro, we propose 
the following model: after bacterial invasion, the CARD domain of 
NOD1/2 recruits RIPK2, leading to the aggregation of RIPK2 into a 
dodecamer composed of dimers as subunits. This process is transient, 
and the oligomer acts as a signaling platform by recruiting ubiquitin 
ligases and downstream kinases to promote cytokine transcription. 
Subsequently, the oligomer undergoes degradation via K48-mediated 

FIGURE 1

Key functional domains and regulatory sites of RIPK2. RIPK2 contains 
a kinase domain (aa22-287) and a CARD domain (aa437-520). 
Residues K47/D146 are critical for kinase activity; their mutation 
(K47A/D146N) abolishes function. S176 phosphorylation activates 
NLR signaling, while K209 ubiquitination drives NF-κB activation 
(blocked in K209R mutants). Dual mutation K410/538R suppresses 
NLR signaling. In the CARD domain, Y474 phosphorylation enables 
RIPosome assembly, whereas K503 ubiquitination (ZNRF4-mediated, 
K48-linked) promotes proteasomal degradation to regulate NOD2 
tolerance. This figure summarizes essential modifications controlling 
NLR signaling and RIPK2 stability.
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ubiquitin-proteasome pathways or loses activity through caspase-1-
mediated cleavage of the kinase domain, resulting in intracellular 
RIPK2 protein depletion and tolerance in the NOD-like receptor 
signaling pathway (Figure 3).

3 The function of RIPK2

3.1 RIPK2 as a key downstream signaling 
molecule of NOD-like receptors signaling 
pathway

RIPK2 is a key signaling molecule downstream of NOD-like 
receptor. It interacts with NOD1 and NOD2 through CARD-CARD 
interactions (Chen et al., 2009; Philpott et al., 2014; Strober et al., 2006; 
Strober et  al., 2014; Strober and Watanabe, 2011). Upon NOD 
activation, RIPK2 undergoes various types of ubiquitination at 
multiple sites, which is crucial for the activation of the NF-κB and 
mitogen-activated protein kinase (MAPK) pathways. Overexpression 
of RIPK2  in models such as macrophages and Mycobacterium 
tuberculosis infection revealed that NOD2 signaling involves 
K63-linked polyubiquitination of RIPK2 (Yang et al., 2007), critical 
for NOD2 pathway activation (Hasegawa et al., 2008).

3.1.1 Ubiquitination as a key function of RIPK2 in 
the NOD-like receptor signaling pathway

Ubiquitination of RIPK2 plays a critical role in the activation of 
downstream signaling proteins within the NOD1/2 pathway. RIPK2 
recruits TAK1 through the LUBAC complex (Kanayama et al., 2004), 
which subsequently brings in TAK1-binding proteins TAB2 and 
TAB3, initiating the MAPK signaling cascade. TAK1 also triggers IKK 
activation, leading to the degradation of p-IκBα and activation of 

NF-κB (Hasegawa et al., 2008; Inohara et al., 2000; Yang et al., 2007) 
(Figure 3).

During NOD-like receptor signaling, RIPK2 ubiquitination 
involves various types, including K63, M1, K48, and K27 (Damgaard 
et  al., 2012; Panda and Gekara, 2018). The Cellular Inhibitor of 
Apoptosis (IAP) family comprising cIAP1, cIAP2 and XIAP, regulates 
NOD-like receptor signaling by mediating the ubiquitination of 
RIPK2 (Bertrand et al., 2009; Krieg et al., 2009). cIAP1, cIAP2, and 
XIAP contain a ubiquitin-associated domain (UBA) capable of 
binding ubiquitin chains, and a RING domain with E3 ubiquitin ligase 
activity (Silke and Vucic, 2014) (Figure 4).

The involvement of cIAPs in NOD-like receptor signaling was 
first discovered in 1998, when overexpressed cIAPs were 
co-immunoprecipitated with RIPK2 in HEK 293 T cells (Thome et al., 
1998). Subsequent studies confirmed that cIAP1 and cIAP2-deficient 
mice had significantly reduced cytokine responses to MDP injection. 
These proteins can also ubiquitinate RIPK2 independent of its CARD 
domain (Bertrand et al., 2009). However, the exact role of cIAPs in 
NOD signaling remains debated. Some studies have reported that 
knocking out cIAP1/2 does not significantly affect NOD2 receptor 
signaling (Damgaard et  al., 2012; Stafford et  al., 2018). Although 
cIAP1/2-deficient mice show an impaired response to MDP, signaling 
transduction in vitro remains intact (Stafford et al., 2018). Recent 
evidence suggests that while cIAP1/2 may not play a critical role in 
this pathway, XIAP is essential for RIPK2 ubiquitination and 
signaling, particularly through K63 and M1-linked ubiquitin chains 
(Damgaard et al., 2012; Krieg et al., 2009). In cells and mice lacking 
XIAP, RIPK2 ubiquitination is significantly reduced, impairing NOD 
signaling. SPR experiments have shown a direct interaction between 
XIAP’s BIR2 domain and RIPK2’s kinase domain (Goncharov et al., 
2018). Targeting the XIAP BIR2 domain with antagonists disrupts 
this interaction, reducing RIPK2 ubiquitination and impairing 

FIGURE 2

ATP-binding pocket and dimerization interface of the RIPK2 protein. (A) Key amino acid residues forming the ATP-binding pocket of RIPK2. (B) Surface 
representation highlighting the residues within the ATP-binding pocket. (C) Overall view of RIPK2 with surface rendering showing the location of the 
ATP-binding pocket. (D) Interface of the RIPK2 dimerization site. (E) Detailed view of the dimerization interface, illustrating key residues and hydrogen 
bonds. (F) Enlarged view of panel (E) showing the interaction details.
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FIGURE 3

NOD2 receptor signaling pathway. The receptor NOD2, which detect bacterial components, play a critical role in inflammatory signaling by driving the 
ubiquitination of RIPK2. Upon ligand engagement, RIPK2 is recruited through CARD-CARD domain interactions, leading to its ubiquitination facilitated 
by E3 ubiquitin ligases. These ligases generate K63-, K27- and M1-linked ubiquitin chains. The chains are then recognized by kinase complexes that are 
dependent on ubiquitin, specifically the TAK1-TAB complex and the IKKα/β-NEMO complex. Activation of TAK1 triggers MAP kinase signaling cascades, 
while IKK phosphorylates the NF-κB inhibitor IκB, marking it for ubiquitination (via K48-Ub chains) and subsequent degradation by the proteasome. 
This process culminates in the nuclear translocation of the transcription factor NF-κB, which, together with AP-1, drives the expression of genes that 
orchestrate inflammatory and immune responses, including those encoding pro-inflammatory cytokines and chemokines.
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FIGURE 4

The ubiquitination of RIPK2 is essential for regulating NF-κB and MAPK activation downstream of NOD1 and NOD2. Upon ligand binding, RIPK2 is 
rapidly ubiquitinated with K63-, K27- and M1-linked polyubiquitin chains. The E3 ligase XIAP are critical for triggering downstream signaling. Other E3 
ligases, such as c-IAP1, c-IAP2, pellino3 and ITCH also contribute to the ubiquitination of RIPK2. Conversely, negative regulation of NODs signaling is 
mediated by both deubiquitinases and ubiquitin ligases that promote RIPK2 degradation. Deubiquitinases like A20, OTULIN, CYLD, and MYSM1 remove 
ubiquitin chains from RIPK2, while ZNRF4 negatively regulates NOD signaling by promoting RIPK2 degradation through K48-linked ubiquitination.
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MAPK and NF-κB signaling (Hrdinka et  al., 2018; Goncharov 
et al., 2018).

K63-linked ubiquitination of RIPK2 is crucial for LUBAC 
recruitment (Damgaard et  al., 2012). LUBAC is the only known 
protein complex capable of adding linear ubiquitin chains to substrates 
(Fiil et al., 2013; Tokunaga, 2013). It is currently hypothesized that 
linear ubiquitin chains are added as branches onto K63-linked 
ubiquitin chains (Panda and Gekara, 2018). Additionally, XIAP can 
prevent the formation of RIPosomes, as XIAP knockdown leads to the 
spontaneous formation of RIPosomes (Kornelia et  al., 2019; 
Goncharov et  al., 2018; Lesage et  al., 2002). Interestingly, 
ubiquitination also plays a role in the activation of RIPK1 and RIPK3, 
with XIAP deficiency leading to the spontaneous formation of the 
RIPoptosome (Tenev et al., 2011; Yabal et al., 2014). Other E3 ligases 
that have been reported to mediate RIPK2 ubiquitination and promote 
NOD-like receptor signaling include TNF receptor-associated factor 
6 (TRAF6), TNF receptor-associated factor 2 (TRAF2), and TNF 
receptor-associated factor 5 (TRAF5). These proteins contain RING 
domains and are associated with the NOD-like receptor signaling 
pathway (Xie, 2013). Unfortunately, there is currently no evidence to 
suggest that TRAF2 and TRAF5 directly ubiquitinate RIPK2 in the 
NOD-like receptor signaling, and the conclusion that TRAF6 
promotes K63-linked ubiquitination of RIPK2 has been challenged in 
subsequent studies (Yang et al., 2007; Damgaard et al., 2012; Bertrand 
et  al., 2009; Tao et  al., 2009). Although siRNA knockdown of 
TRAF6 in HEK 293 T cells reduced RIPK2 ubiquitination and NF-κB 
activation after NOD2 stimulation (Yang et  al., 2007), TRAF6-
deficient mouse embryonic fibroblasts still activate NF-κB and MAPK 
in response to NOD1 agonists (Hasegawa et al., 2008).

The E3 ubiquitin-protein ligase Pellino homolog 3 (Pellino3) 
facilitates K63-linked polyubiquitination of RIPK2. Bone marrow-
derived macrophages (BMDMs) from Pellino3-deficient mice showed 
reduced NF-κB and MAPK activation and lower cytokine production 
after MDP stimulation (Yang et al., 2013). Notably, Pellino3 expression 
was reduced in the colons of Crohn’s disease patients, supporting its 
role as an important mediator of NOD2 receptor signaling in the 
intestine. In vitro experiments also identified the E3 ubiquitin-protein 
ligase Itchy homolog (ITCH) as another direct ligase for RIPK2 (Tao 
et al., 2009). BMDMs from ITCH knockout mice failed to ubiquitinate 
RIPK2, leading to reduced NF-κB and MAPK activation and 
decreased NF-κB target gene expression after MDP stimulation.

While ubiquitination plays a critical role in the activation of 
NOD-like receptor signaling, it is equally important in regulating the 
downregulation of RIPK2 activity. This balance between activation 
and inhibition ensures proper immune responses and prevents 
excessive inflammation.

3.1.2 Negative regulation of NOD-like receptor 
signaling pathway via RIPK2 ubiquitination

The regulation of NOD-like receptor signaling via RIPK2 
ubiquitination has been a key research focus. Two main mechanisms 
are involved: K48-linked polyubiquitination leading to RIPK2 
degradation, and deubiquitination by specific enzymes. A genome-
wide RNAi screen in HEK 293 T cells identified zinc/RING finger 
protein 4 (ZNRF4) as a negative regulator of NOD2-dependent NF-κB 
activation. ZNRF4 promotes RIPK2 degradation via K48-linked 
ubiquitination. Macrophages with ZNRF4 knockdown produce higher 
levels of pro-inflammatory cytokines in response to MDP and show 

reduced tolerance to secondary exposure to MDP and Listeria 
monocytogenes (Bist et al., 2017). These findings suggest ZNRF4 may 
be  part of a negative feedback loop that limits prolonged NOD2 
receptor signaling. RIPK2 degradation could be  one of the 
mechanisms maintaining NOD2 receptor signaling tolerance 
(Figure 4).

Deubiquitinating enzymes (DUBs) regulate NOD2 signaling by 
removing ubiquitin chains from RIPK2. Zinc finger protein A20 was 
the first DUB identified to negatively regulate NOD2 signaling by 
removing non-K48-linked ubiquitin chains from RIPK2 
(Hitotsumatsu et al., 2008). Ubiquitin thiolesterase OTULIN removes 
M1-linked ubiquitination from RIPK2, counteracting LUBAC and 
limiting NOD2-induced NF-κB and MAPK signaling (Fiil et  al., 
2013). Ubiquitin carboxyl-terminal hydrolase CYLD targets M1- and 
K63-linked ubiquitin chains, thereby restricting NOD2 signaling 
(Hrdinka et al., 2016). Deubiquitinase MYSM1 specifically removes 
K27-, K63-, and M1-linked ubiquitin chains, reducing NOD2 
signaling. In MYSM1-deficient mice, increased neutrophil recruitment 
after MDP injection suggests MYSM1 as a negative regulator of NOD 
signaling (Panda and Gekara, 2018). Thus, the fine-tuning of RIPK2 
ubiquitination, both in promoting degradation and removing 
activating ubiquitin chains, ensures that NOD signaling does not 
persist unchecked, maintaining immune tolerance and preventing 
pathological inflammation (Figure 4).

During the investigation of RIPK2 ubiquitination, several key 
lysine residues were identified. Ubiquitination at K209 is crucial for 
NOD2 receptor signaling, as the RIPK2 K209R mutant failed to 
activate NF-κB (Hasegawa et al., 2008). In addition to K209, XIAP-
dependent ubiquitination sites were identified at K410 and K538. 
Mutation of these sites (K410/538R) led to reduced NF-κB activation 
and cytokine production. Furthermore, ZNRF4 promotes K48-linked 
polyubiquitination at K503, facilitating RIPK2 degradation and 
contributing to NOD2 pathway tolerance (Bist et al., 2017).

Beyond the regulation of RIPK2 by ubiquitination, its intrinsic 
kinase activity has also been the subject of much debate, as researchers 
aim to understand whether it plays a direct role in NOD-like 
receptor signaling.

3.1.3 The role of RIPK2 kinase activity in NOD-like 
receptor signaling pathway

The role of RIPK2 kinase activity in NOD-like receptor signaling 
has been debated for over 26 years. Only recently has a consensus 
begun to form. To clarify, four key questions must be addressed:

 1) Does a kinase-dead RIPK2 mutant affect NOD-like receptor 
signaling? In 2018, Goncharov et al. addressed this question 
(Goncharov et al., 2018). They introduced either WT RIPK2 or 
D146N RIPK2 (a kinase-dead mutant) into HEK-Blue-hNOD2 
RIPK2−/− cells and found no difference in NOD2 signaling 
activation, demonstrating that RIPK2 kinase activity is not 
required for NOD2 signaling. However, BMDMs from kinase-
dead (K47A) knock-in mice exhibited defects in NOD-like 
receptor signaling (Goncharov et al., 2018), likely due to low 
expression of the mutant. This suggests that RIPK2 kinase 
activity may be important for protein stability rather than for 
NOD-like receptor signaling itself. Additionally, the K47A 
mutant disrupts RIPK2 dimerization (Pellegrini et al., 2017), 
likely impairing the overall signaling structure.
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 2) Does kinase-inactive RIPK2 affect its ubiquitination? 
Goncharov et  al. demonstrated that the D146N RIPK2 
mutation did not affect polyubiquitination of RIPK2 during 
NOD2 signaling, further supporting the idea that the kinase 
domain of RIPK2 functions merely as a scaffold in NOD-like 
receptor signaling (Goncharov et  al., 2018). These findings 
further support the notion that RIPK2’s kinase domain serves 
a scaffolding function, facilitating its ubiquitination without 
directly driving signaling.

 3) How do RIPK2 kinase inhibitors impact NOD-like receptor 
signaling and ubiquitination? Some RIPK2 kinase inhibitors 
block NOD-like receptor signaling and RIPK2 polyubiquitination 
(Nachbur et al., 2015; Goncharov et al., 2018). However, studies 
by Goncharov et al. and Hrdinka et al. suggest this inhibition 
occurs by disrupting RIPK2’s interaction with the XIAP BIR2 
domain, rather than directly inhibiting its kinase activity. The 
observed inhibition is likely due to disruption of RIPK2-XIAP 
interactions, rather than direct kinase inhibition.

 4) Does RIPK2 autophosphorylation affect its ubiquitination and 
NOD-like receptor signaling? Upon CARD-CARD interaction-
based activation, RIPK2 undergoes phosphorylation at S176 in 
its kinase domain and Y474 within its CARD domain (Tigno-
Aranjuez et al., 2010; Goncharov et al., 2018). Mutations at these 
sites impair RIPK2’s ability to trigger downstream signaling, 
particularly in overexpression systems. In HeLa cells, both wild-
type RIPK2 and the S176A mutant induced comparable 
cytokine levels following infection by Shigella flexneri, whereas 
the S176E mutant exhibited reduced cytokine levels. The Y474F 
mutation led to the complete inhibition of cytokine production 
(Kornelia et al., 2019). Although Nembrini et al. proposed that 
phosphorylation at these sites affects signaling (Pellegrini et al., 
2017), studies using the D146N kinase-dead mutant found no 
impact on NOD2 signaling, suggesting these phosphorylation 
sites do not influence signal transduction (Goncharov et al., 
2018). Cryo-EM studies provided further insights, 
demonstrating the critical importance of Y474  in RIPK2 
signaling. Y474 resides at a vital interface within the CARD 
domain, facilitating interactions required for oligomerization 
and NF-κB activation. Substituting Y474 with phenylalanine 
disrupts RIPK2 activity, highlighting its role in signaling (Gong 
et al., 2018; Pellegrini et al., 2018).

In summary, while RIPK2 kinase activity appears to contribute to 
protein stability and oligomerization, its role in directly driving 
NOD-like receptor signaling remains limited, with its primary function 
being scaffolding for ubiquitination and downstream activation.

3.2 RIPK2 and innate immunity

Members of the RIPK family play a broad role in activating innate 
immune responses, particularly in the activation of the transcription 
factor NF-κB. RIPK2 was first identified as a positive regulator of 
NF-κB (Thome et  al., 1998). Several studies have demonstrated 
increased RIPK2 mRNA expression following bacterial infections, 
including Legionella pneumophila (Frutuoso et  al., 2010), 
Mycobacterium tuberculosis (Divangahi et  al., 2008), Listeria 
monocytogenes (Kobayashi et al., 2002), Salmonella enterica (Geddes 

et al., 2010), and Chlamydia pneumoniae (Shimada et al., 2009; Shehat 
et al., 2019). In RIPK2-deficient mice, NF-κB activation is impaired, 
leading to decreased IL-6 and TNF-α expression, reduced neutrophil 
infiltration, and a diminished ability to resist intracellular pathogens 
(Kobayashi et al., 2002; Chin et al., 2002).

3.3 RIPK2 and adaptive immunity

RIPK2 plays a critical role in adaptive immune responses (Lupfer 
et al., 2013; Meylan and Tschopp, 2005; Van Gorp and Lamkanfi, 
2019). Studies show that RIPK2-deficient mice exhibit increased IL-18 
secretion and heightened inflammatory responses following influenza 
A virus infection, and secondary bacterial infections trigger RIPK2 
expression, potentially driving uncontrolled immune responses (Chin 
et al., 2002; Lupfer et al., 2013).

The role of RIPK2 in adaptive immunity remains debated. Early 
studies indicated RIPK2 may promote Th1 differentiation and regulate 
Th1 and NK cell responses to IL-12 and IL-18, enhancing IFN-γ 
production (Kornelia et al., 2019; Chin et al., 2002). Subsequent studies, 
however, indicated that this effect might be  indirect, mediated by 
RIPK2’s influence on the NOD-like receptor signaling pathway, rather 
than a direct action on Th1 cell differentiation or graft rejection 
(Fairhead et al., 2008). Recent research highlights RIPK2’s regulatory 
role in Th17 differentiation, suggesting that T cell-intrinsic RIPK2 is key 
for maintaining Th17 homeostasis and preventing over-differentiation 
(Shimada et al., 2018). While promising, further research is needed to 
fully understand RIPK2’s complex role in adaptive immune regulation.

In addition to its regulatory functions in both innate and adaptive 
immunity, RIPK2 also plays a key role in determining cell fate, 
influencing processes such as autophagy, cell death, and proliferation.

3.4 The role of RIPK2 in cell fate

RIPK2 is pivotal in controlling processes like autophagy, cell 
death, and proliferation. Evidence from overexpression systems 
suggests that during bacterial infections, the autophagy-related 
protein ATG16L1 might interact with RIPK2 (Cooney et al., 2010; 
Travassos et  al., 2010), although this interaction has not been 
confirmed in studies of IAV infections (Lupfer et al., 2013). Mutations 
in ATG16L1, linked to Crohn’s disease, interfere with the interaction 
between NOD2 and RIPK2, resulting in the suppression of RIPK2 
signaling and heightened inflammatory responses (Sorbara et  al., 
2013). Further research is essential to understand RIPK2’s precise 
mechanisms in autophagy regulation.

RIPK2 is also capable of interacting with proteins in the death 
receptor family, such as FADD-like IL-1β-converting enzyme 
inhibitory protein c-FLIP, cIAP1, cIAP2, and members of the TNFR-
associated factor family, which suggests RIPK2’s involvement in 
regulating cell death (Thome et  al., 1998). Although early studies 
linked the NOD-like receptor signaling pathway with caspase 
activation and apoptosis, more recent studies using advanced 
experimental models suggest that RIPK2 may regulate cell death 
independently of NOD-like receptor signaling. SILAC-based 
quantitative mass spectrometry analysis in HeLa S3 cells identified 
multiple specific phosphorylation sites on RIPK2 (e.g., S168, S176, 
S178, S345, S348, S363, Y474, T482, Y520, S527, S529, S531, and 
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S539), which regulate the S and M phases of mitosis (Daub et al., 
2008). Other studies have observed phosphorylation of the S531 site 
during the G1 and M phases of HeLa cells (Dephoure et al., 2008), and 
further research has identified additional phosphorylation sites related 
to the cell cycle (Olsen et al., 2010; Sharma et al., 2014). Overall, the 
role of RIPK2 in cell fate, from death to proliferation, requires further 
investigation to fully understand its mechanisms.

In conclusion, RIPK2 plays a pivotal role in immune signaling, 
particularly in mediating responses through NOD-like receptor 
pathways and regulating NF-κB activation. Its involvement in processes 
such as ubiquitination, kinase activity, and interactions with other 
CARD domain proteins highlights its multifaceted function in immune 
regulation and cellular homeostasis. These insights provide a solid 
foundation for exploring RIPK2’s broader implications, particularly in 
the context of human diseases. As we move forward, understanding 
how dysregulation of RIPK2 contributes to pathological conditions will 
be key to unlocking its potential in therapeutic applications.

4 The association of RIPK2 with 
diseases

4.1 RIPK2 and Crohn’s disease

RIPK2 plays a pivotal role in NOD activation signaling. Among 
the diseases linked to NOD2 receptor signaling, inflammatory bowel 
disease, particularly Crohn’s disease, is the most common (Philpott 
et  al., 2014; Caruso et  al., 2014). NOD2 and RIPK2, two critical 
components of the NOD2 signaling pathway, are abundantly expressed 
in intestinal epithelial and immune cells in the gut. NOD2 is essential 
for maintaining intestinal homeostasis, as it directly influences the 
growth and survival of colonic epithelial cells. However, NOD2-
deficient mice do not develop spontaneous intestinal inflammation, 
and the myeloid and lymphoid cells in their gut remain unaffected 
under normal conditions (Kobayashi et  al., 2005). These mice, 
however, show impaired bacterial clearance after oral or intragastric 
administration (Kim et al., 2011). Negroni et al. highlighted increased 
RIPK2 activation in pediatric Crohn’s disease (Negroni et al., 2009). 
Interestingly, RIPK2 may also contribute to NOD2-independent 
intestinal inflammation. Studies by Watanabe et  al., using TNBS-
induced colitis and DSS colitis models, showed that intestinal RIPK2 
downregulation via siRNA protected against experimental colitis 
(Watanabe et al., 2019). Intrarectal injection of RIPK2-siRNA reduced 
the production of pro-inflammatory cytokines in the colon. Notably, 
TNBS or DSS-induced colitis was not affected by the loss of NOD1/2. 
Furthermore, patients with Crohn’s disease or ulcerative colitis 
exhibited elevated RIPK2 expression, while NOD2 expression 
remained unchanged in these conditions. NOD1 expression showed 
only a marginal increase in ulcerative colitis. These findings suggest 
that RIPK2 is a critical signaling molecule in chronic inflammatory 
bowel diseases in humans and experimental colitis in mice.

4.2 RIPK2 and neurological diseases

Recently, as the NOD1/2-RIPK2 signaling pathway’s neural role 
is revealed, RIPK2’s key part in neurological diseases enhances its 
translational value.

4.2.1 Multiple sclerosis (MS)
Peptidoglycan (PGN), a well-established activator of NOD1/2 

signaling, has been detected in systemic circulation of healthy 
individuals and within demyelinating lesions of multiple sclerosis 
(MS) patients, as well as in phagocytes of MS animal models (Schrijver 
et al., 2001; Visser et al., 2006; Branton et al., 2016). Evidence suggests 
that macrophages, dendritic cells, and neutrophils mediate PGN 
translocation from mucosal interfaces to the CNS (Laman et al., 2020), 
potentially underpinning the NOD1/2-RIPK2 signaling pathway’s 
neuroimmune regulatory role. cDNA microarray analysis of MS 
patient PBMCs showed increased RIPK2 expression (Satoh et  al., 
2005). In EAE models, PGN activated CNS dendritic cells through 
NOD1/2-RIPK2 signaling, promoting Th17 differentiation and 
aggravating demyelination/neuroinflammation, while RIPK2 inhibitor 
WEHI-345 suppressed disease progression (Nachbur et al., 2015).

4.2.2 Parkinson’s disease (PD)
Pathological α-Syn activates RIPK2 via NOD2 binding, driving 

microglial TNF-α/IL-1β release and A1 astrocyte activation, which 
collectively exacerbate dopaminergic neuron degeneration. NOD2/
RIPK2 knockout reduces neuroinflammation and neuronal loss, 
confirming RIPK2’s central role in PD pathogenesis (Seo et al., 2024). 
LRRK2 (a PD-associated gene) deficiency suppresses RIPK2 
phosphorylation, thereby inhibiting macrophage inflammatory 
responses, suggesting this interaction may represent a key mechanism 
through which LRRK2 exerts its pathogenic effects in PD (Yan and 
Liu, 2016).

4.2.3 Intracerebral hemorrhage (ICH)
Inflammation following intracerebral hemorrhage (ICH) 

frequently contributes to secondary brain injury. In a collagenase-
induced ICH mouse model, knockout of Nod1 or Ripk2 markedly 
suppresses microglial-driven neuroinflammation. The NOD1/RIPK2 
signaling axis amplifies IL-1β/TNF-α production via a self-reinforcing 
feedback loop, ultimately driving neuronal death and cerebral edema 
progression (Wang et al., 2020; Larochelle et al., 2023).

In future, RIPK2 emerges as a promising therapeutic target for 
neuroinflammatory disorders. In multiple sclerosis models, combined 
NOD2/TLR7 activation boosts type I interferon signaling to dampen 
inflammation (Dubik et al., 2024). Stroke-induced RIPK2 upregulation 
and its potential brain-gut axis interactions suggest that RIPK2 
inhibition may alleviate acute neural injury by modulating microglial 
responses (Larochelle et  al., 2023). While its roles in cerebral 
ischemia–reperfusion and traumatic brain injury remain unclear, 
further research is needed.

4.3 RIPK2 and cancer

RIPK2 also plays a significant role in various cancers and could 
act as a prognostic marker. In inflammatory breast cancer (IBC), 
RIPK2 hyperactivation has been documented, with elevated RIPK2 
and NF-κB levels observed in IBC patients even before chemotherapy. 
Surprisingly, chemotherapy increased RIPK2 activity, further 
exacerbating the molecular inflammatory response. The exact 
mechanism behind this hyperactivation remains unclear, but some 
studies suggest that HER2 and active RIPK2 in IBC are positively 
correlated due to the downregulation of Erbin, removing its inhibitory 
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effect on NOD2/RIPK2 signaling. NF-κB activation has been linked 
to HER2 status in breast cancer. Moreover, HER2 mRNA expression 
in IBC patients has been found to correlate positively with RIPK2 
activity (Kalkoff et al., 2004). Erbin, which interacts with Erbb2, is 
downregulated in HER2-overexpressing breast cancer cells (Liu et al., 
2013) and it can form a complex with NOD2 to inhibit RIPK2 activity 
(Kufer et al., 2006). Another hypothesis involves the tumor suppressor 
RASSF1A, which, when hypermethylated, results in reduced 
expression, weakening the inhibition of NOD2/RIPK2 signaling in 
IBC. The loss of RASSF1A is considered a potential risk factor for IBC, 
with active RIPK2 possibly playing a role in the cellular response and 
promoting tumor progression (Volodko et  al., 2016). The loss of 
RASSF1A is seen as a potential risk factor in IBC, with RIPK2 playing 
a regulatory role in tumor progression, Further studies show RIPK2’s 
involvement in metastasis and tumor growth, suggesting it could be a 
valuable prognostic marker and therapeutic target in IBC (Zare 
et al., 2018).

RIPK2 gene polymorphisms have also been linked to gastric 
cancer susceptibility (Ota et  al., 2018), and increased RIPK2 
expression has been associated with poor prognosis in diffuse large 
B-cell lymphoma (Wang et  al., 2018), RIPK2 also enhances the 
survival of triple-negative breast cancer cells, the most aggressive 
subtype of breast cancer (Jaafar et  al., 2018). Elevated RIPK2 
expression in breast tumors correlates with poor prognosis and a 
higher risk of recurrence, while RIPK2 knockdown inhibits NF-κB 
signaling, reduces anti-apoptotic proteins, and increases drug 
sensitivity. Additionally, RIPK2 promotes the migration and invasion 
of triple-negative breast cancer cells via NF-κB and c-Jun N-terminal 
kinase pathways (Singel et al., 2014).

In prostate cancer, RIPK2 is highly expressed in metastatic cases 
and has been linked to disease progression and poor prognosis. RIPK2 
knockout reduces prostate cancer invasion and metastasis significantly. 
RIPK2 promotes metastasis by activating MKK7 and stabilizing 
c-Myc, making its inhibition a potential therapeutic strategy for 
cancer prevention (Yan et al., 2022). Recent studies identified RIPK2 
as a key driver in immune evasion in pancreatic cancer, mediating 
NBR1-driven MHC-I degradation, which limits antigen presentation 
and T cell function. Overexpressed RIPK2  in pancreatic ductal 
adenocarcinoma (PDAC) is associated with poor prognosis and an 
immunosuppressive microenvironment. Inhibiting RIPK2 enhances 
anti-PD-1 therapy efficacy, suggesting a combination therapy 
approach targeting RIPK2 and PD-1 for improved outcomes (Sang 
et al., 2024).

4.4 RIPK2 and other diseases

Beyond its role in inflammatory bowel disease and cancer, RIPK2 
has also been implicated in a range of other pathological conditions. 
RIPK2 polymorphisms have been linked to systemic lupus 
erythematosus in Chinese patients and to asthma severity in the 
Japanese population, although the functional relevance remains to 
be clarified (Li et al., 2011; Nakashima et al., 2006).

Additionally, studies have shown that RIPK2-deficient mice 
exhibit better survival rates, improved cardiac function, and reduced 
cardiac hypertrophy following pressure overload. Further research 
indicated that RIPK2 can interact with MAVS in cardiomyocytes via 
CARD-CARD domain interactions, promoting NF-κB signaling, 

which leads to inflammation and myocardial hypertrophy (Lin et al., 
2020). This suggests that RIPK2 may play an important role in 
cardiovascular diseases.

Collectively, these findings suggest that RIPK2 is a versatile 
regulator of multiple signaling pathways, influencing diverse 
pathological processes from immune responses to cancer progression 
and cardiovascular diseases. This highlights its potential as a 
therapeutic target in a variety of diseases.

5 Structural analysis of RIPK2 and 
targeted drug development

Given RIPK2’s involvement in various diseases, particularly those 
driven by dysregulated NOD-like receptor signaling, it presents a 
promising therapeutic target. As a result, numerous research efforts 
have focused on developing drugs that specifically target RIPK2.

5.1 Type I kinase inhibitors and their 
derivatives

Early studies indicated that RIPK2’s kinase activity is essential for 
NOD-like receptor signaling, prompting efforts to develop kinase 
inhibitors. Type I  kinase inhibitors and their derivatives bind 
competitively to the ATP pocket, blocking RIPK2 activity. The 
similarity between the ATP binding sites of P38 and RIPK2 led to the 
use of the P38 inhibitor SB203580 (Figure 5A), which inhibited RIPK2 
in vitro and showed efficacy in a Crohn’s disease mouse model (Argast 
et  al., 2005; Hollenbach et  al., 2005). Gefitinib and erlotinib 
(Figures 5B,C) also inhibited RIPK2 and reduced disease in Crohn’s-
like ileitis models (Tigno-Aranjuez et al., 2010; Tigno-Aranjuez et al., 
2014) though their in vitro effects on NOD2 signaling were suboptimal 
(Goncharov et  al., 2018). Macrocyclic derivatives such as 
pyrazolo[1,5-a]pyrimidine (OD36) and imidazo[1,2-b]pyridazine 
(OD38) (Figures  5D,E) were effective at inhibiting RIPK2 
autophosphorylation and downstream NF-κB/MAPK signaling 
(Tigno-Aranjuez et al., 2014). Furthermore, screening a compound 
patent library containing 120 kinase inhibitors led to the identification 
of WEHI-345 (Nachbur et al., 2015) (Figure 5F). Although WEHI-345 
only delayed NF-κB activation and had limited inhibitory effects on 
NOD2 signaling in cellular models (Goncharov et al., 2018), it was 
beneficial in preventing nearly 50% of multiple sclerosis (MS) in a 
mouse model when targeting RIPK2 (Nachbur et al., 2015).

Due to the conserved ATP binding pocket, type I kinase inhibitors 
often lack specificity. To improve selectivity, while retaining the 
ATP-competitive characteristic, researchers have developed 
compounds that bind to structures adjacent to the ATP pocket of 
RIPK2 to increase selectivity. By utilizing the large hydrophobic 
pocket near the ATP site, GSK583 (Figure 5G) was discovered through 
structure–activity relationship-based modifications (Haile et  al., 
2016). At the cellular level, GSK583 inhibited TNF-α and IL-8 
secretion and the activation of the NOD-like receptor signaling 
pathway. In addition, GSK583 dose-dependently inhibited TNF-α and 
IL-6 production in intestinal mucosal tissue samples from patients 
with Crohn’s disease and ulcerative colitis, with an inhibitory effect 
comparable to that of the steroid prednisolone. Unfortunately, the 
off-target activity on the hERG ion channel and poor pharmacokinetic/
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pharmacodynamic (PK/PD) properties limited its further 
development (Haile et  al., 2016). After multiple optimizations of 
GSK583, GSK2983559 (Figure  5H) was designed and validated 
through in  vitro and in  vivo experiments. Despite suboptimal 

solubility, it exhibited more favorable cross-species pharmacokinetics 
and demonstrated good efficacy in a mouse IBD model and UC/CD 
explants. It later became the first RIPK2 inhibitor to enter clinical 
trials, but the trial was terminated due to nonclinical toxicology results 

FIGURE 5

Structure of representative RIPK2 inhibitors. IC50: Half maximal inhibitory concentration. N/A: Data not available from experimental results.
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and reduced safety thresholds (Haile et al., 2020; Haile et al., 2019) 
(ClinicalTrials.gov identifier: NCT03358407).

Various ALK2 inhibitors have also been found to inhibit RIPK2 
activity (Mohedas et  al., 2013; Mohedas et  al., 2014). Based on a 
3,5-diphenyl-2-aminopyridine scaffold, CSLP37 (Figure  5I) was 
developed to inhibit RIPK2 kinase activity and effectively block NOD2 
signaling, while showing over 20-fold selectivity for ALK2 
(Suebsuwong et  al., 2020). Using a pyrido[2,3-d]pyrimidin-7-one 
scaffold, researchers developed UH15-15 (Figure 5J) by optimizing 
interactions with the Ser25 residue and the αC helix region, leading to 
strong efficacy and selectivity in inhibiting RIPK2 kinase activity and 
blocking NOD2 signaling, with favorable in vivo pharmacokinetics 
(Nikhar et al., 2021).

BI 706039 (Figure 5K) is a RIPK2-specific inhibitor that blocks 
MDP-induced TNF-α production in human and murine cells, with 
good selectivity and pharmacokinetics. In the TRUC mouse IBD 
model, BI 706039 significantly reduced colonic inflammation and 
disease-associated lipocalin levels in a dose-dependent manner 
(Ermann et al., 2021).

5.2 Type II kinase inhibitors and their 
derivatives

Type II kinase inhibitors target the inactive DFG-out conformation 
of kinases, offering better specificity than type I inhibitors. Using a 
fluorescence-based thermal shift assay, several type II RIPK2 inhibitors 
were identified: ponatinib (Figure 5K), regorafenib (Figure 5L), and 
sorafenib (Figure 5M). Cellular experiments confirmed their ability to 
inhibit RIPK2 autophosphorylation, ubiquitination, and NOD2 
signaling activation (Canning et al., 2015). These findings were later 
validated in Goncharov’s study (Goncharov et al., 2018). The crystal 
structure of the RIPK2-ponatinib complex revealed a large allosteric 
pocket, due to Ala73 on the RIPK2 αC helix, occupied by ponatinib’s 
trifluoromethyl group. This pocket offers space for the design of larger 
chemical groups, increasing the selectivity and potency of inhibitors. 
Targeting this unique pocket could enhance specificity for RIPK2 
while avoiding off-target effects on kinases like RIPK1 and RIPK3, 
providing a foundation for developing more selective RIPK2 inhibitors 
(Canning et al., 2015).

Subsequent virtual screening and molecular docking identified 
RIPK2 inhibitor 1 (Figure 5N), which displayed a binding mode similar 
to ponatinib, blocking RIPK2 autophosphorylation and NF-κB signaling, 
and reducing lung and intestinal inflammation (Salla et al., 2018).

To further improve specificity, researchers modified regorafenib 
by introducing a carboxylic acid fragment targeting the non-conserved 
RIPK2 activation loop, producing CSR35 (Figure 5O). This strategy 
provided proof of concept for targeting the RIPK2 activation loop 
(Suebsuwong et al., 2018).

While initial studies emphasized RIPK2 kinase activity in NOD-like 
receptor signaling, recent research suggests that the kinase domain may 
function primarily as a scaffold (Hrdinka et al., 2018; Goncharov et al., 
2018), challenging the theoretical basis of some current inhibitors. 
Focusing solely on kinase inhibition might overlook other potential drug 
targets. With advances in technology, exploring the structural changes 
of RIPK2 during NOD-like receptor signaling activation using various 
sequencing techniques may uncover new druggable targets, potentially 
opening new avenues for the development of RIPK2-targeted therapies.

6 Conclusion

RIPK2 is a key mediator in immune signaling, especially 
downstream of NOD-like receptor pathways. Its roles extend across 
immune responses, inflammation, cancer progression, and 
cardiovascular diseases. This review highlights RIPK2’s structural and 
functional significance, along with advancements in RIPK2 
inhibitor development.

While initial focus has been on RIPK2’s kinase activity, 
recent evidence suggests its primary function may be  as a 
scaffold for ubiquitination and signaling. This shift highlights 
the potential for targeting non-kinase domains, such as 
the CARD domain or allosteric sites, to develop more 
selective therapies.

Our proposed model emphasizes RIPK2’s dynamic interaction 
with NOD-like receptors, particularly its transient oligomerization 
during bacterial infection. This may help explain some of the current 
phenomena. Current kinase inhibitors, while promising, face 
challenges in selectivity due to the conserved ATP binding pocket. The 
discovery of RIPK2-specific allosteric pockets opens avenues for more 
selective drug design, but further research is needed to optimize these 
inhibitors. Moreover, RIPK2’s non-canonical roles, including its 
involvement in autophagy and immune evasion, suggest untapped 
therapeutic potential.

7 Future outlook

7.1 Identification of direct substrates

As a dual-specificity kinase, the discovery of RIPK2’s direct 
substrates remains incomplete. Uncovering these substrates will 
be crucial to fully understand its signaling mechanisms.

7.2 Transient interactions

Future studies should aim to clarify the transient and dynamic 
interactions between RIPK2 and NOD-like receptors under 
physiological conditions. This will uncover new regulatory 
mechanisms that are currently not well understood.

7.3 Non-kinase functions

Since RIPK2’s role extends beyond its kinase activity, it is essential 
to explore its non-canonical functions in adaptive immunity, 
tumorigenesis, and other cellular contexts, expanding the scope of 
potential therapeutic targets.

7.4 Selective drug design

More selective RIPK2 inhibitors are needed, especially 
targeting the ATP binding site or allosteric sites. This will 
improve specificity while minimizing off-target effects, providing 
new strategies for treating inflammatory diseases, cancer, 
and beyond.
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