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Ghrelin, discovered in 1999 as an endogenous ligand of the growth hormone 
secretagogue receptor (now known as the ghrelin receptor), is a peptide hormone 
with diverse physiological activities, such as stimulation of growth hormone release, 
increased appetite, fat accumulation, thermoregulation, and cardioprotection. 
As a distinctive feature, ghrelin needs to undergo octanoylation, a specific acyl 
modification, to exert its biological activities. Although the ghrelin receptor specifically 
recognizes this modification, the underlying molecular mechanism had remained 
unclear for decades. Recent advancements in structural biology have facilitated 
the elucidation of this recognition mechanism 25 years after ghrelin’s discovery. 
This review highlights the structural basis of ghrelin octanoylation, particularly 
emphasizing the mechanism by which the ghrelin receptor recognizes this acyl-
modified hormone.

KEYWORDS

ghrelin, ghrelin receptor (GHS-R1a), GPCR, structural biochemistry, orexigenic 
hormone

Introduction

In 1980, a Met-enkephalin-like pentapeptide was found to exhibited growth hormone 
(GH)-releasing activity (Bowers et al., 1980). Although the GH-releasing effect was extremely 
weak and could only be observed in vitro, it specifically promoted GH release without affecting 
the secretion of other anterior pituitary hormones, including luteinizing hormone, follicle-
stimulating hormone, thyroid-stimulating hormone, and prolactin. This discovery was 
followed by the development of more potent peptide ligands, such as GH-releasing peptide-6, 
in the early 1980s to enhance GH-releasing activity in vivo (Bowers et al., 1984; Momany et al., 
1984). In 1993, the first small-molecule ligands, L-692,429 and its superior derivative, 
L-163,191 (MK-0677), were developed, further accelerating research in this field (Table 1) 
(Smith et al., 1993; Cheng et al., 1993; Patchett et al., 1995). Meanwhile, the GH-releasing 
hormone (GHRH), secreted from the hypothalamus, was known to stimulate GH secretion 
from the pituitary gland. GHRH activates the GHRH receptor (GHRH-R) by stimulating 
intracellular cAMP levels, resulting in GH secretion (Mayo, 1992). Although GHRH-R couples 
with the Gs protein, the addition of MK-0677 to rat primary cultured pituitary cells increased 
intracellular Ca2+ levels, suggesting the existence of a second G protein-coupled receptor 
(GPCR) that couples with the Gq protein, thereby promoting GH secretion through a pathway 
distinct from that of GHRH-R (Patchett et al., 1995). Hence, the above-discussed peptides and 
small-molecule agonists capable of enhancing GH secretion are referred to as GH 
secretagogues (GHSs). In 1996, the second receptor, the GHS receptor 1a (GHS-R1a), was 
identified using MK-0677 and Xenopus oocytes injected with polyadenylated [poly(A)+] RNA 
derived from the swine pituitary (Howard et al., 1996). Subsequently, DNA sequence analysis 
identified GHS-R1a as a GPCR, and in situ hybridization revealed that it is expressed in the 
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pituitary gland, as well as in the hypothalamus and hippocampus 
(Bennett et al., 1997; Guan et al., 1997). However, the endogenous 
ligand of GHS-R1a remains unknown, which has fueled intense 
interest in the deorphanization of this receptor.

In 1999, in a notable discovery, the endogenous ligand of the 
centrally localized GHS-R1a was identified in peripheral tissue 
(Kojima et al., 1999). The research group led by Kojima and Kangawa 
was inspired by the fact that motilin, the endogenous ligand for 
GPR38 (the motilin receptor), which shares high amino acid 
homology with GHS-R1a, is secreted from the gastrointestinal tract. 
This inspired their investigation into identifying the endogenous 
ligand of GHS-R1a in gastrointestinal tissues extracts (Feighner 
et  al., 1999). Ghrelin has been successfully isolated from the rat 
stomachs of rats as an endogenous ligand of GHS-R1a. Ghrelin 
exhibits a highly intriguing structural feature: octanoylation (C8:0) 
of the serine residue at position 3 (Ser3) from the N-terminus is 
essential for activation of GHS-R1a (hereafter referred to as the 
ghrelin receptor). Although 25 years have passed since the discovery 
of ghrelin, no other hormones requiring fatty acid modification for 
activation have been identified. In other words, the ghrelin receptor 
is the only GPCR that discriminates between the acyl modifications 
of peptide hormones. However, the molecular mechanism 
underlying this recognition is yet to be elucidated, a major question 
in ghrelin research. Recent advances in structural biology 
techniques, including X-ray crystallography and single-particle 
cryo-electron microscopy (Cryo-EM), have provided a clearer 
understanding of the ghrelin receptor (Shiimura et al., 2020; Wang 
et al., 2021; Liu et al., 2021; Qin et al., 2022; Shiimura et al., 2025), 
revealing that the ligand-binding pocket of the ghrelin receptor 
features a unique architecture referred to as a “bifurcated pocket,” 
comprising two distinct cavities. Furthermore, acyl-ghrelin was 
found to bind to the ghrelin receptor by effectively utilizing this 
“bifurcated pocket.”

In addition to promoting GH secretion (Kojima et al., 1999), the 
ghrelin-ghrelin receptor system participates in appetite stimulation, 
body temperature regulation, and cardioprotection (Nakazato et al., 
2001; Sato et al., 2021; Nagaya et al., 2001). Accordingly, this system 
could be developed for various clinical applications, including the 
treatment of familial short stature, cancer cachexia, eating disorders, 
and sarcopenia (Kojima and Kangawa, 2005). Structural information 
on the ghrelin receptor is expected to facilitate the discovery of drugs 
targeting these diseases.

Acyl-modified hormone: ghrelin

Ghrelin, a peptide hormone isolated and purified from the rat 
stomach in 1999, is a endogenous ligand of the GHS receptor (now 
referred to as the ghrelin receptor) (Kojima et al., 1999). The name 
“ghrelin” is derived from the words “growth hormone release” and the 
Proto-Indo-European root “ghre,” meaning “to grow,” reflecting its role 
in stimulating GH secretion. Ghrelin is primarily synthesized in the 
gastrointestinal tract, particularly in the stomach and the duodenum 
(Hosoda et al., 2000). Ghrelin is also produced in the central nervous 
system, including the hypothalamus and pituitary gland, although 
levels in these tissues are minimal. The stomach contains an 
abundance of ghrelin, predominantly secreted by X/A-like cells.

The human ghrelin gene is located on chromosome 3p25-26. After 
translation, human ghrelin becomes a 117-amino acid preprohormone, 
which undergoes cleavage by prohormone convertase 1/3 to produce 
a final 28-amino acid peptide (Zhu et al., 2006). This unmodified 
peptide, des-acyl ghrelin, cannot bind to the ghrelin receptor 
(Shiimura et al., 2020). Subsequently, in the endoplasmic reticulum 
membrane, ghrelin O-acyltransferase (GOAT; also known as 
MBOAT4), a member of the membrane-bound O-acyltransferase 
(MBOAT) family, utilizes octanoyl-CoA as a donor to attach octanoic 

TABLE 1 The history of the discovery of GHS and ghrelin.

Ligand Sequence or chemical structure Feature References

Met-enkephalin analog
Tyr-DTrp-Gly-Phe-Met-NH2

Tyr-DPhe-Gly-Phe-Met-NH2

First GHS Bowers et al. (1980)

GHRP-6 His-DTrp-Ala-Trp-DPhe-Lys-NH2

GH secretory activity 

in vivo

Bowers et al. (1984) and 

Momany et al. (1984)

L-692,429 First non-peptide GHS
Smith et al. (1993) and Cheng 

et al. (1993)

L-163,191

(MK-0677)
Orally active GHS Patchett et al. (1995)

Ghrelin (Rat) Endogenous ligand Kojima et al. (1999)
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acid to Ser3, converting it into active ghrelin, which is then secreted 
into the bloodstream (Figure 1) (Gutierrez et al., 2008; Yang et al., 
2008). Notably, GOAT is the only enzyme in the MBOAT family that 
catalyzes substrate modification using medium-chain fatty acids 
(Tuladhar and Lum, 2015). However, the molecular mechanisms 
underlying this unique process remain elusive. Further studies are 
required to clarify the structural and functional bases of this 
selective catalysis.

In rats, gastric concentrations of active and total ghrelin were 377 
and 1780 fmol/mg wet tissue, respectively (Hosoda et al., 2000). In 
human plasma, active ghrelin levels typically range from 10 to 20 
fmol/mL, whereas those of total ghrelin range from 150 to 250 fmol/
mL, with approximately 10% undergoing acylation, a modification 
crucial for its biological activity (Cummings et al., 2001; Tschöp et al., 
2001). In tissues, the fatty acid modification of ghrelin predominantly 
involves octanoic acid (C8:0), followed by decanoic acid (C10:0) and 
hexanoic acid (C6:0), and is limited to saturated medium-chain fatty 
acids (Hosoda et al., 2003). Intriguingly, when rats were fed a diet 
containing heptanoic acid (C7:0), a medium-chain fatty acid that is 
not biosynthesized in the body, ghrelin modified with heptanoic acid 
was detected in their blood (Nishi et al., 2005). These findings suggest 
that dietary saturated medium-chain fatty acids can be  directly 
utilized for ghrelin modification. Ghrelin has been extracted from 
various vertebrates, and its amino acid sequences have been identified 
(Kaiya et al., 2004; Kaiya et al., 2003; Kaiya et al., 2003; Kaiya et al., 
2003; Kaiya et al., 2001; Kaiya et al., 2002). Notably, the N-terminal 10 
amino acids are highly conserved among mammals, whereas the 
N-terminal 7 amino acids exhibit strong conservation across 
vertebrates, suggesting that this region serves as the functional core of 
ghrelin. Ser3, critical for acylation-mediated, receptor activation, is 
preserved in nearly all species except for bullfrogs, where it is replaced 
by threonine (Thr3) (Kaiya et al., 2001). Remarkably, Thr3 retains its 
ability to undergo acylation, highlighting the functional significance 
of this modification.

Shortening the fatty acid chain length of rat ghrelin was reported 
to gradually increase the EC50 (half maximal effective concentration) 

for receptor activation by 10-fold with hexanoyl (C6:0), 200-fold with 
butyryl (C4:0), and 500-fold with acetyl (C2:0) (Matsumoto et al., 
2001). Conversely, elongating the palmitoyl chain (C16:0) did not 
substantially alter EC50. These findings emphasize the importance of 
medium- or longer-chain fatty acids for ghrelin receptor activation 
in vitro while highlighting the remarkable tolerance of the receptor for 
long-chain fatty acids.

Distribution of the ghrelin receptor

In rat tissues, the ghrelin receptor is abundantly expressed in the 
hypothalamic arcuate nucleus, a key center for feeding regulation 
(Korbonits et al., 2004; Van Der Lely et al., 2004; Tannenbaum et al., 
1998; Georgi et al., 1999). It is also expressed in the suprachiasmatic 
nucleus, anteroventral tegmental, preoptic, paraventricular, and 
nucleus accumbens within the hypothalamus (Howard et al., 1996; 
Guan et al., 1997). In brain regions other than the hypothalamus, 
ghrelin receptor expression was detected in the CA2 and CA3 regions 
of the hippocampus, substantia nigra, ventral tegmental area, dorsal 
raphe nucleus, and median raphe nucleus, indicating its potential role 
in learning and memory (Guan et al., 1997; Muccioli et al., 1998; 
Katayama et al., 2000). Additionally, the ghrelin receptor is abundantly 
expressed in somatotrophs of the pituitary gland, supporting the role 
of ghrelin in regulating GH release.

Although the ghrelin receptor is predominantly expressed in the 
central nervous system, a broad expression pattern of the gene 
encoding the ghrelin receptor is observed in various peripheral 
tissues, including the thyroid, pancreas, spleen, myocardium, adrenal 
gland, testis, ovary, stomach, and intestinal neurons (Gnanapavan 
et al., 2002; Gaytan et al., 2004; Gaytan et al., 2003; Gaytan et al., 2005; 
Dass et  al., 2003; Kageyama et  al., 2005; Shuto et  al., 2001). This 
peripheral distribution of the ghrelin receptor supports the concept 
that ghrelin functions beyond the regulation of energy metabolism 
and GH secretion.

In human tissues, the ghrelin receptor mRNA has been detected 
in the normal anterior pituitary gland, pituitary adenoma, 
hypothalamus, and hippocampus. Additionally, its mRNA expression 
was observed in peripheral tissues such as the adrenal cortex, testis, 
pancreas, heart, and lung (Mckee et al., 1997; Yokote et al., 1998). 
Gene expression of the ghrelin receptor was identified in pituitary 
adenomas, neoplastic thyroid tissue, breast cancer, prostate cancer cell 
lines, and ovarian tumors (Gaytan et al., 2005; Korbonits et al., 2001; 
Barlier et al., 1999; Skinner et al., 1998; Korbonits et al., 1998; Adams 
et al., 1998; Kim et al., 2001; Volante et al., 2003; Cassoni et al., 2001; 
Cassoni et al., 2004; Jeffery et al., 2002). These findings suggest that 
ghrelin plays a role in regulating cancer cell growth in certain tumors 
(Jeffery et al., 2003).

The expression of ghrelin receptor mRNA is suppressed by GH 
but stimulated by GHRH (Bennett et al., 1997; Kamegai et al., 1998; 
Horikawa and Tachibana, 2000; Nass et  al., 2000; Kineman et  al., 
1999). In the hypothalamic arcuate nucleus, leptin, known for its 
antagonistic and anorexigenic effects on ghrelin, was found to reduce 
ghrelin receptor expression (Nogueiras et al., 2004). In the pituitary 
gland, levels of ghrelin receptor mRNA were suppressed by insulin-
like growth factor-I (Kamegai et al., 2005; Zhou et al., 1997; Peng et al., 
2001; Wallenius et  al., 2001). Moreover, thyroid hormones, 
glucocorticoids, and sex steroids reportedly regulate ghrelin receptor 

FIGURE 1

Biosynthesis of ghrelin: PC 1/3 and ER refer to prohormone 
convertase 1/3 and the endoplasmic reticulum, respectively.
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mRNA expression (Petersenn et al., 2001; Kaji et al., 2001; Kamegai 
et  al., 2001; Tamura et  al., 2000; Thomas et  al., 2000; Kamegai 
et al., 1999).

The ghrelin receptor also has a splice variant known as GHS-R1b, 
comprising only five transmembrane helices. Expression of GHS-R1b 
has been widely detected in tissues, including the skin, myocardium, 
pituitary, thyroid, pancreas, ileum, colon, somatic tachycardia tumors, 
liver, breast, spleen, duodenum, placenta, lung, adrenal gland, buccal 
mucosa, stomach, lymph nodes, atrial lymphocytes, and kidneys. 
However, GHS-R1b does not function as a receptor for ghrelin 
(Gnanapavan et al., 2002).

Overall structure and ligand-binding 
pocket of the ghrelin receptor

For over two decades, the mechanism through which the ghrelin 
receptor recognizes the octanoylation of ghrelin remained unresolved. 
However, recent advances in structural biology have provided detailed 
insights into the underlying molecular mechanisms. X-ray 
crystallography established the first three-dimensional structure of the 
ghrelin receptor in an inactive conformation using its high-affinity 
antagonist Compound 21 and a ghrelin receptor-specific antibody in 
2020 (Figure 2A) (Shiimura et al., 2020). Compound 21 is a modified 
derivative of YIL781, a commercially available ghrelin receptor 

antagonist. The Ki values of YIL781 and Compound 21 are 4.0 nM and 
0.01 nM, respectively, indicating that Compound 21 has 400 times 
higher binding affinity (Hanrahan et  al., 2012). The anti-ghrelin 
receptor antibody not only functions as a binder to facilitate the 
crystallization of the ghrelin receptor but also contributes to its 
stabilization. In general, membrane proteins such as GPCRs are 
known to be difficult to crystallize because they are mostly surrounded 
by detergent micelles upon solubilization. Soluble proteins like 
antibodies, which remain exposed beyond the detergent micelles, aid 
in crystal formation. Furthermore, the anti-ghrelin receptor antibody 
developed in this study improved the thermal stability of the ghrelin 
receptor from 57.5°C to approximately 62.0°C. These pieces of 
evidence suggest that these techniques played a crucial role in 
determining the first structure of the ghrelin receptor.

The ghrelin receptor adopts a typical GPCR architecture, featuring 
seven transmembrane helices (TM1–7) and a short amphipathic 
helix8 on the intracellular side. However, the ligand-binding pocket 
exhibited two unique structural features that were not observed in 
previously determined GPCRs.

First, the ligand-binding pocket is split into two distinct regions, 
forming a “bifurcated pocket.” Within this pocket, a salt bridge 
between Glu1243.33 and Arg2836.55 [superscripts denote the Ballesteros–
Weinstein numbering system (Ballesteros and Weinstein, 1995)] 
divides the ligand-binding pocket into two cavities: a relatively large 
Cavity I and a smaller Cavity II (Figure 2B). Compound 21 straddles 

FIGURE 2

(A) The overall structure of the antagonist-bound ghrelin receptor in complex with its antibody (PDB ID: 6KO5). The ghrelin receptor is shown in green, 
and the antagonist in yellow. The ghrelin receptor antibody, Fab L chain, and H chain are shown in orange and lavender, respectively. The dashed line 
between TM6 and TM7 indicates disordered region. TM and H indicate the transmembrane and helix, respectively, while ICL refers to the intracellular 
loop. (B) Cross-sectional view of the ligand-binding pocket of the ghrelin receptor. Cavities I and II are shown in magenta and cyan, respectively. The 
two cavities are separated by a salt bridge formed between Glu1243.33 and Arg2836.55.
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this salt bridge, occupying both cavities and stabilizing the 
bifurcated pocket.

The second distinctive feature is a gap-like structure called 
“crevasse,” observed between TM6 and TM7. Crevasse is characterized 
by a cluster of hydrophobic phenylalanine residues, including 
Phe2796.51, Phe2866.58, Phe2906.62, Phe3097.39, and Phe3127.42 (Figure 3). 
The hydrophobicity of the phenylalanine cluster in crevasse, along 
with the ability of fatty acids longer than octanoic acid (C8:0), such as 
lauric acid (C12:0) and palmitic acid (C16:0), to activate the ghrelin 
receptor, initially led to the hypothesis that the fatty acid chain of 
ghrelin extends through this crevasse into the cell membrane 
(Matsumoto et al., 2001). Comparisons with lipid-binding GPCRs, 
including S1P1 and CB1, further supported this idea (Hua et al., 2017; 

Hanson et al., 2012). However, this hypothesis was refuted following 
the determination of the structure of the ghrelin-bound ghrelin 
receptor, revealing an alternative binding mode. The structural 
insights obtained so far do not explain why the ghrelin receptor can 
accommodate long-chain acylated ghrelin. Further analysis is required 
to elucidate this mechanism.

Structural insights into ghrelin recognition 
by the ghrelin receptor

Following the publication of the inactive ghrelin receptor structure 
in 2020, a series of ghrelin receptor structures were determined using 
cryo-EM and subsequently reported (Wang et al., 2021; Liu et al., 2021; 
Qin et al., 2022; Shiimura et al., 2025). These structures represented the 
ghrelin receptor in complex with different G proteins (Table 2). To date, 
the binding modes of various ligand types, including the endogenous 
ligand ghrelin, the peptide agonist, the small-molecule agonist, the 
antagonist, and the inverse agonist, have been elucidated. These findings 
enrich our understanding of the structural biology of the ghrelin 
receptor, particularly its ligand recognition and activation mechanisms. 
For example, structural studies have shown that all ghrelin receptor 
agonists, regardless of ligand type, are accommodated within the 
“bifurcated pocket,” similar to Compound 21. Additionally, agonist 
binding is suggested to push Arg2836.55 downward, a residue critical for 
forming the “bifurcated pocket,” thereby shifting the receptor into its 
active conformation (Sakai et  al., 2024). A particularly significant 
finding is that the ghrelin-bound forms provide detailed insights into 
the recognition of acyl-modified ghrelin.

Although Gq, Gi, or Go protein complexes have been determined in 
these structures, the binding modes of ghrelin show minimal differences 
(Wang et al., 2021; Liu et al., 2021; Qin et al., 2022; Shiimura et al., 2025). 
The ghrelin receptor ingeniously utilizes its bifurcated pocket to bind 
ghrelin. Cavity I of the ghrelin receptor, which is relatively hydrophilic, 
contains four polar amino acids, including Asp992.60 and Arg1022.63, in 
addition to the salt bridge. This cavity accommodates the peptide 
portion of ghrelin, with Asp992.60 and Arg1022.63 interacting with Ser2 
of ghrelin. Conversely, Cavity II, apart from the salt bridge, is highly 
hydrophobic and devoid of polar amino acids. This cavity accommodates 
the octanoyl group of ghrelin. Although the electron density at the distal 
end of the octanoyl group was not visible in the three structures, it 
undoubtedly resides within Cavity II. Moreover, the crevasse observed 
in the inactive structure was absent in the active form, because TM7 
shifted toward TM6 after agonist binding (Figure 3).

FIGURE 3

The crevasse observed in the inactive ghrelin receptor. The inactive 
and active ghrelin receptors are shown in green and orange, 
respectively. The green dished line indicates the crevasse in the 
inactive ghrelin receptor. The asterisk marks TM7 of active ghrelin 
receptor. Upon ghrelin receptor activation, the crevasse disappears 
as TM7 shifts toward TM6. This TM7 shift is indicated by the red 
arrow.

TABLE 2 Reported ghrelin receptor structures.

PDB ID State Ligand Coupling Method References

6KO5 inactive Compound21 - X-ray Shiimura et al. (2020)

7F9Y active GHRP-6 Gq Cryo-EM
Wang et al. (2021)

7F9Z active Ghrelin Gq Cryo-EM

7NA7 active Ghrelin-27 Gi Cryo-EM
Liu et al. (2021)

7NA8 active MK-0677 Gi Cryo-EM

7W2Z active Ghrelin Go Cryo-EM
Qin et al. (2022)

8F83 inactive PF-05190457 - X-ray

8JSR active Anamorelin Gq Cryo-EM Shiimura et al. (2025)

https://doi.org/10.3389/fnmol.2025.1549366
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Shiimura et al. 10.3389/fnmol.2025.1549366

Frontiers in Molecular Neuroscience 06 frontiersin.org

Structural comparison with the motilin 
receptor

Motilin is a 22-amino acid peptide hormone secreted from the 
upper gastrointestinal tract (Brown et  al., 1971). It induces 
gastrointestinal motility by acting on motilin receptor, which are 
widely expressed in the gastric antrum, duodenum, colon, and rectum 
(Feighner et al., 1999; Miller et al., 2000). In recent years, the structure 
of the motilin-bound motilin receptor-Gq protein complex has been 
determined (You et al., 2023). Ghrelin and motilin receptors, along 
with the neuromedin U, neurotensin, and GPR38 receptors, form a 
cluster known as the ghrelin receptor family (Kojima and Kangawa, 
2005). The amino acid sequence homology between the ghrelin and 
motilin receptors is strikingly high, reaching 52% overall and 86% in 
their transmembrane regions. Despite 27% sequence similarity 
between the two peptides, their N-terminal 7 amino acids, which are 
critical for ghrelin receptor activity display almost no similarity 

(Figure  4A). In addition, motilin lacks fatty acid modifications, 
making it incapable of binding to the ghrelin receptor. However, the 
opposing polar amino acids that divide the ligand-binding pocket into 
two cavities in the ghrelin receptor are conserved in the motilin 
receptor as Glu1273.33 and Arg3376.55. These residues also form a salt 
bridge in the ligand-binding pocket of the motilin receptor, similar to 
their role in the ghrelin receptor. Interestingly, the cavity 
corresponding to Cavity II in the ghrelin receptor is closed in the 
motilin receptor, and this closure is primarily attributed to Phe1734.60 
and Leu2495.40 in the motilin receptor, corresponding to Ile1784.60 and 
Val2145.40 in the ghrelin receptor (Figures 4B,C). The bulkier Phe1734.60 
and the inward orientation of Leu2495.40 effectively occlude Cavity II 
of the motilin receptor and prevent ligand penetration. This structural 
difference largely explains the inability of ghrelin to bind to the motilin 
receptor. Another factor contributing to Cavity II closure is the 
positioning of Met5.39. In the ghrelin receptor-Gq complex, Met2135.39 
is oriented upward, allowing the accommodation of the octanoyl 

FIGURE 4

(A) Sequence comparison of ghrelin and motilin. The active center of ghrelin is highlighted in gray. Amino acids shared between the two peptides are 
enclosed in rectangles. (B) The ligand-binding pocket of the ghrelin-bound ghrelin receptor (PDB ID: 7F9Z). The ghrelin receptor, the peptide portion of 
ghrelin, and the octanoyl group of ghrelin are shown in pink, orange, and red, respectively. A dashed purple circle indicates the space accommodating the 
octanoyl group between Ile1784.60 and Val2145.40. (C) The ligand-binding pocket of the motilin-bound motilin receptor (PDB ID: 8IBV). The motilin receptor 
and motilin are shown in light blue and green, respectively.
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group (Wang et  al., 2021). Conversely, Met2485.39 in the motilin 
receptor-Gq complex is directed toward Phe1734.60, further occluding 
Cavity II. Notably, this upward shift in Met2135.39 is specific to the 
ghrelin receptor-Gq complex and is absent in the ghrelin receptor-Go 
and ghrelin receptor-Gi complexes (Liu et al., 2021; Qin et al., 2022). 
The electron density map supporting this Met2135.39 shift in the 
ghrelin receptor-Gq complex is incomplete and warrants cautious 
interpretation. Additionally, the phenylalanine-rich region named 
“crevasse” in the inactive structure of the ghrelin receptor is absent in 
the motilin receptor (Shiimura et  al., 2020; You et  al., 2023). In 
particular, Phe2866.58 and Phe2906.62, located at the entrance of the 
ligand-binding pocket, are thought to contribute to the accessibility of 
the acyl-modified peptide through their hydrophobic properties (You 
et al., 2023). However, this mechanism requires further investigation.

Discussion

Structural analyses of the ghrelin receptor, enabled by 
advancements in structural biology techniques such as X-ray 
crystallography and cryo-EM, have provided detailed insights into the 
molecular mechanisms underlying the recognition of active ghrelin 
by its receptor. Given the diverse physiological roles of ghrelin, the 
ghrelin-ghrelin receptor system is expected to become a promising 
therapeutic target for various diseases related to metabolic disorders. 
Currently, the only ghrelin receptor-targeting drug approved in Japan 
is anamorelin, an agonist used to treat cancer cachexia. Cancer 
cachexia is a progressive syndrome characterized by weight loss, 
skeletal muscle wasting, inflammation, anorexia, and metabolic 
abnormalities. It affects approximately 50 to 80% of cancer patients 
and is associated with about 20% of cancer-related deaths (Argilés 
et al., 2014). Anamorelin is the first therapeutic drug in this field and 
holds the potential to improve the mortality rate and quality of life of 
cancer patients. In addition, recent studies have shown that ghrelin 
administration increases the cardiac output in patients with left 
ventricular dysfunction without severe adverse effects, highlighting 
the expanded therapeutic potential of this system (Lund et al., 2023). 
Building on these recent studies, the growing availability of structural 
insights is expected to substantially advance drug discovery efforts 
targeting the ghrelin receptor.
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