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Introduction: Spinal cord injury (SCI) remains a debilitating condition with 
limited therapeutic options. Exploring hypoxia-related genes in SCI may reveal 
potential therapeutic targets and improve our understanding of its pathogenesis.

Methods: We developed a diagnostic model using LASSO regression and 
Random Forest algorithms to investigate hypoxia-related genes in SCI. The 
model identified critical biomarkers by analyzing differentially expressed genes 
(DEGs) and hypoxia-related DEGs (HRDEGs). Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis 
(GSEA), and Gene Set Variation Analysis (GSVA) were conducted to explore the 
biological roles of HRDEGs. The model’s accuracy was validated using receiver 
operating characteristic curves, calibration plots, decision curves, and qPCR 
experiments.

Results: The diagnostic model identified Casp6, Pkm, Cxcr4, and Hexa as 
critical biomarkers among 186 HRDEGs out of 9,732 altered genes in SCI. These 
biomarkers were significantly associated with SCI pathogenesis. GO and KEGG 
analyses highlighted their roles in hypoxia responses, particularly through the 
hypoxia-inducible factor 1 pathway. The model demonstrated high accuracy, 
with an area under the curve exceeding 0.9. GSEA and GSVA revealed distinct 
pathways in low- and high-risk SCI groups, suggesting potential clinical 
stratification strategies.

Discussion: This study constructed a diagnostic model that confirmed 
Casp6, Pkm, Cxcr4, and Hexa as important biomarkers for SCI. The findings 
provide valuable insights into SCI pathogenesis and pave the way for novel 
treatment strategies. The integration of multi-omics data and comprehensive 
bioinformatics analyses offers a robust framework for identifying therapeutic 
targets and improving patient outcomes.
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1 Introduction

Spinal cord injury (SCI) is a severely disabling neurological condition with far-reaching 
and complex impacts. Approximately 270,000 patients with SCI across North America, with 
over 12,000 new cases, are reported annually in the United States (Sterner and Sterner, 2022). 
SCI results in lifelong physical disability and a significant decrease in quality of life and 
imposes a substantial economic burden on society. Patients with SCI often require long-term 
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rehabilitation, which is accompanied by high medical expenses, 
continuous care needs, and significant financial burden due to loss of 
work capacity (Yari et al., 2024). Although current treatment methods, 
such as surgery, drug therapy, and rehabilitation training, play a 
fundamental role in SCI treatment, their effectiveness in promoting 
neurological recovery is still limited. Unresolved limitations include 
high treatment costs, unstable outcomes, and significant individual 
patient differences (Stanciu et  al., 2023). Therefore, an in-depth 
exploration of SCI pathogenesis and an active search for new 
treatment targets and biomarkers are paramount for improving 
patient prognosis and reducing the socioeconomic burden.

Hypoxia is a key factor in the pathophysiological process following 
SCI, significantly affecting nerve cell survival, inflammatory responses, 
and tissue repair (David et al., 2021). Previous studies have shown that 
transcription factors (e.g., HIF-1) can be activated under hypoxic 
conditions, which regulates downstream genes to promote 
angiogenesis and erythropoiesis, ultimately improving blood supply 
and tissue oxygenation (Huang et  al., 2022; Zhang et  al., 2023). 
However, despite its recognized importance, the precise mechanisms 
by which hypoxia influences SCI pathogenesis, interacts with hypoxia-
related differentially expressed genes (HRDEGs), and affects the onset 
and progression of SCI remain unclear. A deeper understanding of 
these hypoxic mechanisms may provide critical targets for developing 
novel therapeutic strategies for SCI.

Recently, studies have focused on gene expression changes in SCI 
through bioinformatics approaches; however, few have 
comprehensively integrated multi-omics data, constructed diagnostic 
models, or explored the relationships between gene regulatory 
networks and immune infiltration (Shang et al., 2024). This study 
addresses these gaps by systematically integrating two independent 
datasets to identify 186 HRDEGs and constructing an efficient 
diagnostic model for SCI. The model highlights the pivotal role of key 
genes such as Casp 6, Pkm, Cxcr 4, and Hexa in SCI, offering valuable 
insights into SCI pathogenesis and developing new 
therapeutic approaches.

2 Methods

2.1 Data source

The R package GEOquery (version 2.70.0) was used to retrieve 
SCI datasets GSE5296 and GSE47681 from the Gene Expression 
Omnibus (GEO) database.1 The samples in these datasets were derived 
from Mus musculus (Supplementary Table S1). Both datasets used 
GPL1261 as the chip platform. Dataset GSE5296 included six SCI and 
four control samples, whereas dataset GSE47681 included eight SCI 
and four control samples (Wu et al., 2013; Clough and Barrett, 2016). 
All available SCI and control samples from these datasets were 
included for analysis.

Hypoxia-related genes (HRGs) were obtained from the GeneCards 
database,2 which offers extensive information on human genes. The 
keyword “Hypoxia” was used for the search, and only HRGs classified 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.genecards.org/

as “Protein Coding” with a “Relevance Score” of above five were 
retained, yielding a total of 123 HRGs. A set of HRGs was obtained 
from PubMed3 using “Hypoxia” as the keyword, yielding 200 HRGs. 
After merging these datasets, removing duplicates, and converting 
them to mouse-derived genes, 285 HRGs were identified 
(Supplementary Table S2).

The R package sva (version 3.50.0) was used for batch processing 
on datasets GSE5296 and GSE47681 to obtain the integrated GEO 
datasets (Combined Datasets) containing 14 SCI and eight control 
samples. The Combined Datasets were processed using the R package 
limma (version 3.58.1) for standardization, probe annotation, and 
normalization. Principal Component Analysis (PCA) was used to 
reduce dimensionality by extracting and transforming feature vectors 
(components) from high-dimensional data into a low-dimensional 
format, visualized in 2D or 3D graphs. PCA was conducted on the 
expression matrix before and after removing batch effect correction 
(Ben Salem and Ben Abdelaziz, 2021) to validate the removal of 
batch effects.

2.2 SCI-associated HRDEGs

The samples from the Combined Datasets were divided into two 
groups: SCI and control. Differential gene expression analysis between 
the SCI and control groups was performed using the R package limma 
(version 3.58.1). A |logFC| > 0 and p < 0.05 threshold was applied to 
identify differentially expressed genes (DEGs). Genes with logFC > 0 
and p < 0.05 were classified as upregulated DEGs, whereas those with 
logFC < 0 and p < 0.05 were defined as downregulated DEGs. A 
volcano plot was generated to visualize the differential analysis results 
using the R package ggplot2 (version 3.4.4). The Benjamini-Hochberg 
(BH) method was used for all p-value corrections.

To identify HRDEGs associated with SCI, all DEGs with 
|logFC| > 0 and p < 0.05 were intersected with HRGs. A Venn diagram 
was used to identify the HRDEGs. A heat map of the top 20 HRDEGs 
was plotted using the R package pheatmap (version 1.0.12).

2.3 Gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes 
(KEGG) pathway enrichment analyses

GO analysis is a widely used technique for conducting large-scale 
functional enrichment studies, including Biological Process (BP), Cell 
Component (CC), and Molecular Function (MF) (Mi et al., 2019). 
KEGG is a well-established database containing extensive information 
on genomes, diseases, drugs, and biological pathways (Kanehisa and 
Goto, 2000). The R package clusterProfiler (version 4.10.0) was used 
for GO and KEGG pathway enrichment analyses of HRDEGs. The 
criteria for entry screening were p < 0.05 and a false discovery rate 
(FDR) value (q-value) of < 0.05.

3 https://pubmed.ncbi.nlm.nih.gov/
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2.4 Gene set enrichment analysis (GSEA) 
and gene set variation analysis (GSVA)

To determine the contribution of genes to the phenotype, GSEA 
(Subramanian et  al., 2005) was used to analyze their distribution 
trends within predefined gene sets based on their ranking by 
correlation with the phenotype. For this analysis, genes from the 
Combined Datasets were first sorted according to their logFC values 
between the SCI and control groups. The R package clusterProfiler 
(version 4.10.0) was then used to perform GSEA on all genes in the 
Combined Datasets. The following parameters were applied in GSEA: 
seed, 2020; minimum number of genes in each gene set, 10; maximum 
number of genes, 500. The gene set m2.all.v2023.2.Mm.symbols, 
obtained from the Molecular Signatures DatabSCIe Database, was 
used for the analysis. The screening criteria for GSEA were p < 0.05 
and FDR < 0.05.

GSVA (Hänzelmann et  al., 2013) is an unsupervised, 
non-parametric method to evaluate chip nuclear transcriptome 
performance. It converts gene expression data from different samples 
into an expression matrix of gene sets between samples, allowing 
evaluation of pathway enrichment across different samples. The 
m2.all.v2023.2.Mm.symbols.gmt gene set was obtained from the 
Molecular Signatures Database (Liberzon et al., 2011). The R package 
GSVA (version 1.50.0) was used to perform GSVA on all genes in the 
Combined Datasets. The functional enrichment difference between 
the SCI and control groups was calculated. The screening criterion for 
GSVA was p < 0.05.

2.5 Construction of a diagnosis model for 
SCI

Logistic regression analysis was performed on HRDEGs to 
construct a diagnostic model for SCI. The association between the 
independent variables (HRDEGs) and the dependent variables (SCI 
group vs. control group) was analyzed. HRDEGs with p < 0.05 were 
selected to build the logistic regression model. Next, Least Absolute 
Shrinkage and Selection Operator (LASSO) regression was performed 
on the HRDEGs included in the logistic regression model using the R 
package glmnet, with the following parameters: set.seed(500) and 
family = “binomial.” A penalty term (absolute value of slope × lambda) 
was added to the linear regression model to mitigate overfitting and 
enhance the model’s generalization ability. The LASSO regression 
analysis results were visualized through diagnostic model plots and 
variable trajectory diagrams. The HRDEGs included in this model are 
referred to as model genes. Finally, the LASSO risk score was 
calculated based on the risk coefficients from the LASSO regression 
analysis using the following formula:

 
( ) ( )= ∗∑ i i

i
RiskScore Coefficient gene mRNA Expression gene

Random Forest (RF) (Gregory et  al., 2022) is an ensemble 
learning method that integrates several decision trees via bagging 
(bootstrap aggregation). In this approach, multiple decision trees 
are created, and when making a prediction, the results from all trees 
are aggregated through majority voting to reach the final outcome. 
To build a model using RF, the random Forest package was 

employed based on the expression of HRDEGs included in the 
regression model within the expression matrix of the Combined 
Datasets. The seed was set to 234, and the number of decision trees 
was set to 200. Mean Decrease Gini (MeanDecreSCIeGini) was used 
to assess the average decrease in the Gini coefficient, which 
measures node impurity. A higher Gini coefficient indicates lower 
purity and greater impurities. Therefore, MeanDecreSCIeGini 
reflects the average reduction in impurity at variable separation 
nodes across all trees, with a larger value (v) indicating greater 
importance of the variable. Next, ten-fold cross-validation was 
performed five times and combined with the cross-validation curve 
to determine the number of variables. Cross-validation ensures the 
robustness of the model by using different training and validation 
sets, avoiding biased results and insufficient training data. The 
training set was used for cross-validation, retaining several variables 
with relatively low error rates. Important variables for subsequent 
analysis were selected based on their MeanDecreSCIeGini values. 
Genes identified from the intersection of HRDEGs screened by 
LASSO regression and RF analysis were chosen as key genes 
(mRNA) for further investigation.

2.6 Validation of a diagnostic model for SCI

The R package rms was used to develop a nomogram for the key 
genes. A nomogram employs a cluster of disjoint line segments to 
visually represent various independent variables within a rectangular 
coordinate system. Based on multivariate regression analysis, the 
nomogram translates the risk of each variable into a cumulative total 
risk score, which can then be used to predict the probability of an 
occurring event. A calibration curve was plotted to assess the 
predictive accuracy of the model. This curve evaluates the model’s 
performance by comparing the actual probabilities with those 
predicted by the model under different circumstances. It is primarily 
used to determine how well the logistic regression fits the actual data.

Decision curve analysis (DCA) offers a simple approach to assess 
molecular markers, diagnostic tests, and clinical prediction models. 
The R package ggDCA was used to generate a DCA plot, which 
evaluates the accuracy and resolution of the logistic regression model. 
In addition, the R package pROC was used to draw the receiver 
operating characteristic (ROC) curve for the Combined Datasets. The 
area under the ROC curve (AUC) was calculated to measure the 
diagnostic effectiveness of the logistic regression model. An AUC 
between 0.5 and 1 indicates diagnostic accuracy, with values closer to 
1 representing greater diagnostic performance.

2.7 Protein–protein interaction (PPI) 
network

PPI networks consist of proteins that interact with each other. This 
study used the STRING database (Szklarczyk et al., 2019) to search for 
interactions between predicted and known proteins. The biological 
species was set to human, with a confidence level of ≥ 0.150, to 
construct a PPI network for key genes. Cytoscape software was used 
to visualize the results. The GeneMANIA website (Franz et al., 2018) 
was used to predict functionally similar genes to the selected key genes 
and construct an interaction network.
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2.8 Construction of regulatory networks

Transcription Factors (TFs) regulate gene expression by 
interacting with HRDEGs at the post-transcriptional level. The 
regulatory effects of TFs on HRDEGs were analyzed using TFs 
retrieved from the ChIPBase database.4 The mRNA-TF regulatory 
network was visualized using Cytoscape (Shannon et al., 2003).

MicroRNAs (miRNAs) have a crucial regulatory function in 
biological development and evolution, with the ability to regulate 
multiple target genes. Conversely, a single target gene can also 
be mediated by various miRNAs. To analyze the relationships between 
HRDEGs and miRNA, related miRNAs were obtained from the 
TarBase database5 and the StarBase v3.0 database.6 The mRNA-
miRNA regulatory network was visualized using Cytoscape.

RNA-binding proteins (RBPs) regulate genes and BP, such as RNA 
modification, alternative splicing, transport, synthesis, and translation 
(Singh, 2021). The target RBPs of HRDEGs were predicted using the 
StarBase v3.0 database (see Footnote 6), and Cytoscape was used to 
visualize the mRNA-RBP regulatory network.

Finally, the Comparative Toxicogenomics Database7 was used to 
predict the indirect and direct drug targets of HRDEGs, investigate 
the interactions between HRDEGs and drugs, and visualize the 
mRNA-drug regulatory network using Cytoscape, completing the 
construction of the regulatory network.

2.9 Expression difference analysis of key 
genes

To identify the potential mechanisms of differential genes in SCI 
and their associated biological features and pathways, the Mann–
Whitney U test was employed to analyze the expression differences of 
key genes between the SCI and control groups in the Combined 
Datasets. The differential analysis results were visualized using the R 
package ggplot2. A group comparison chart was generated.

ROC curves can be utilized to identify the best model, eliminate 
suboptimal ones, or determine the optimal threshold within the same 
model (Mandrekar, 2010). They represent sensitivity and specificity as 
continuous variables, demonstrating their relationship through 
composition. The AUC typically ranges from 0.5 to 1, with values 
closer to 1 signifying better diagnostic accuracy. AUC values between 
0.5 and 0.7 indicate low accuracy, 0.7 and 0.9 indicate moderate 
accuracy, and above 0.9 indicate higher accuracy. Based on the results 
of differential expression analysis, ROC curves for these key genes 
were generated using the R package pROC. The AUC was calculated 
to assess the diagnostic effectiveness of HRDEGs in determining the 
survival of SCI patients.

4 http://rna.sysu.edu.cn/chipbase/

5 http://www.microrna.gr/tarbase

6 https://starbase.sysu.edu.cn/

7 https://ctdbase.org/

2.10 Construction of high- and low-risk 
groups for hypoxia

To quantify the relative abundance of each gene in the dataset 
sample, single-sample Gene-Set Enrichment Analysis (ssGSEA) was 
used. The R package GSVA (Version 1.50.08) was employed to calculate 
the hypoxia score (Hs) of all samples based on the expression matrix 
of key genes in the Combined Datasets using the ssGSEA algorithm. 
Based on the median expression value of the Hs, SCI samples were 
then categorized into high-risk and low-risk groups.

2.11 Immune infiltration analysis

ssGSEA was applied to quantify the relative abundance of each 
immune cell type (Xiao et al., 2020). First, infiltrating immune cell 
types were labeled, such as activated dendritic cells, natural killer cells, 
regulatory T cells, activated CD8 + T cells, and gamma-delta T cells. 
The enrichment score calculated by ssGSEA represented the relative 
abundance of each immune cell type in each sample, yielding an 
immune cell infiltration matrix for the Combined Datasets. 
Subsequently, the R package ggplot2 (version 3.4.4) was used to 
generate a group comparison chart to illustrate the expression 
differences of immune cells between the low-risk and high-risk 
groups. Immune cells with significant differences between the groups 
were selected for further analysis. The correlation between immune 
cells was assessed using the Spearman correlation coefficient and 
visualized in a heatmap generated by the R package pheatmap. The 
correlation between key genes and immune cells was also analyzed 
using the Spearman algorithm, and the R package ggplot2 (version 
3.4.4) was utilized to generate a correlation bubble chart displaying 
the results.

2.12 Experimental validation using qPCR

Total RNA was extracted from spinal cord tissue samples of 
C57BL/6 J mice (Vital River Laboratory Animal Technology Co., Ltd., 
Beijing, China) using TRIpure Total RNA Extraction Reagent (EP013, 
ELK Biotechnology, Wuhan, China). All experimental procedures 
received approval from the Animal Ethics Committee of the First 
Hospital of Jilin University. Mice were categorized into sham-operated 
(n = 3) and SCI groups (n = 3). In the SCI group, mice were 
anesthetized and underwent laminectomy at T9-T11 to expose the 
T10 spinal cord. A 10 g impactor inflicted a contusion injury (2.5 mm 
diameter, 2 mm depth) at the T10 segment. The establishment of the 
model was confirmed by immediate hindlimb spasticity and loss of 
muscle tone. The incision was closed under aseptic conditions, and the 
mice were returned to their cages post-recovery. Sham-operated mice 
received identical surgical exposure without spinal cord impact. Seven 
days post-injury, spinal cord tissues from the injury epicenter of SCI 
mice or the corresponding region of sham-operated mice were 
harvested and snap-frozen in liquid nitrogen for further analysis. 
cDNA synthesis was conducted using EntiLink™ 1st Strand cDNA 

8 https://github.com/rcastelo/GSVA
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Synthesis SuperMix (EQ031, ELK Biotechnology, Wuhan, China) 
according to the manufacturer’s protocol. Real-time PCR was 
performed on a QuantStudio 6 Flex System (Life Technologies, CA, 
USA) using EnTurbo™ SYBR Green PCR SuperMix (EQ001, ELK 
Biotechnology). Thermal cycling parameters included an initial 
denaturation at 95°C for 3 min, followed by 40 cycles at 95°C for 10 s, 
58°C for 30 s, and 72°C for 30 s. ACTIN served as the reference gene 
for normalization, and relative gene expression was quantified using 
the 2−ΔΔCT method (Supplementary Table S3).

2.13 Statistical analysis

R software (version 4.2.2) was utilized for data analysis and 
processing. The independent Student’s t-test compared normally 
distributed continuous variables between two groups unless 
otherwise specified. The Mann–Whitney U test was applied for 
variables not normally distributed. For comparisons across three 
or more groups, the Kruskal-Wallis test was employed. The 

correlation coefficient between different molecules was determined 
using Spearman correlation analysis. Unless otherwise indicated, 
all p-values were two-sided, with values under 0.05 considered 
statistically significant.

3 Results

3.1 Data assembly and correction

A technology roadmap illustrating the experimental design is 
depicted in Figure  1. Batch effects were eliminated from the SCI 
datasets GSE5296 and GSE47681, resulting in the Combined Datasets. 
The variations in expression values before and after the removal of 
batch effects are illustrated in distribution box plots (Figures 2A,B). 
Subsequently, the low-dimensional feature distribution of the datasets, 
both before and after batch effect removal, was compared using PCA 
diagrams (Figures 2C,D). These results indicate that the batch effects 
in the SCI datasets were effectively removed.

FIGURE 1

Technology roadmap. GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; DEGs, Differentially expressed genes; HRGs, Hypoxia-related genes; HRDEGs, Hypoxia-related differentially expressed genes; 
LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random Forest; ROC, receiver operating characteristic; PPI, protein–protein interaction; 
TF, Transcription factor; RBP, RNA-binding protein; Hs, Hypoxia Score.
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3.2 SCI-associated HRDEGs

The Combined Datasets were categorized into two groups: SCI 
and control. The differential analysis identified 9,732 DEGs that 
met the threshold criteria of |logFC| > 0 and p < 0.05. Among 
them, 3,834 genes were upregulated, while 5,898 were 
downregulated. The differential analysis results are illustrated in 
a volcano plot (Figure 3A).

To identify HRDEGs, the intersection of all DEGs and HRGs 
with a |logFC| value of > 0 and a p-value of < 0.05 was taken, and 
a Venn diagram was created (Figure 3B). A total of 186 HRDEGs 
were obtained, including Sap30, Plin2, Tlr4, Atf3, Jun, Kif5a, 
Pgm1, Xdh, Efna3, P4htm, Rhoa, Hk2, Slc2a3, Spp1, Atp7a, Bax, 
Pik3cg, Cxcr4, Hexa, Tpst2, Bnip3, Eno2, S100a4, Tnfaip3, CSCIp3, 
Cul2, Nedd4l, Ppargc1a, Myc, Mtor, CSCIp6, Nos1, Ccl12, Tpd52, 
Prkaa2, Pfkfb4, Klf6, Mapk8, Nfkb1, Pgm2, Tes, Rbpj, Myh9, Zfp36, 
Btg1, Slc6a6, Fos, Camk4, Anxa2, Hoxb9, Thbs1, Ddit3, Ldha, 
Gcnt2, Bgn, Siah2, Inha, Pygm, Ampd3, Cav1, Plaur, Galk1, Vegfa, 
Higd1a, Bhlhe40, Tgfbi, Lxn, Grhpr, Sdc4, Rest, Gaa, Kdelr3, Fosl2, 
Angptl4, Tgm2, Hmox1, Nagk, Egr1, Stbd1, Dcn, Col5a1, Kdm3a, 
Cp, Csrp2, Ugp2, Igf1, Pkm, Vldlr, Mmp2, Ets1, Pdgfb, Pdk3, Lox, 
Gapdh, Gpc4, F3, Ids, Pfkp, Stat3, Aldoa, Mdm2, Nfil3, Tpi1, 

Xpnpep1, Ext1, Car12, Serpine1, Nfe2l2, Tgfb1, Dpysl4, Hspa5, 
Rora, Ctnnb1, Hif1an, Scarb1, Sp1, Ackr3, Tiparp, Sdc3, Gpi1, 
Notch1, Pim1, Ak4, Egln1, Col1a1, Zfp292, Slc37a4, Hdlbp, Arnt2, 
Cxcl12, Plac8, Dtna, Rwdd3, Pdk1, Rragd, Bcan, Tmem45a, Maff, 
Ier3, Sult2b1, Hk1, Hipk2, Ptgs2, Ace, Trp53, Ndst1, Fgf2, Aldoc, 
Ncan, Kdr, Mif, Hsp90aa1, P4ha1, Dusp1, Ndst2, Cdkn1a, Selenbp1, 
Angpt2, Klf7, Chst2, Bcl2, Wsb1, Sdhb, Hilpda, Mapk1, Bdnf, Tnf, 
Gpc1, Gpc3, Sesn2, Higd2a, Nos3,Igfbp3, Pnrc1, Slc2a1, Egfr, Ddit4, 
Glrx, Eng, Nr3c1, Cited2, Th, Isg20, Sdc2, Ep300, and Arnt. Based 
on the intersection results, the expression differences of HRDEGs 
between various sample groups were analyzed. The top  20 
HRDEGs are shown in a heatmap (Figure 3C). The TOP20 genes 
were ranked based on their p-values, arranging from the smallest 
to the largest.

3.3 GO and KEGG pathway enrichment 
analyses

GO and KEGG pathway enrichment analyses were conducted 
to further investigate the biological roles of the 186 HRDEGs. The 
MF, CC, and BP associated with these genes were explored. As 

FIGURE 2

Batch effect removal of GSE5296 and GSE47681. (A) Box plot showing the distribution of expression values across the combined GEO datasets before 
batch processing. A significant difference is observed between the datasets GSE5296 (blue) and GSE47681 (pink), with GSE5296 generally exhibiting 
higher expression levels. This indicates that the two datasets are influenced by different degrees of technical variation due to distinct experimental 
conditions without batch effect removal. (B) Box plot showing the distribution of expression values in the integrated GEO dataset after batch 
processing. Following batch effect removal, the expression values of the two datasets become more consistent and nearly overlap, indicating 
successful batch effect removal. (C) PCA results of the pre-batch datasets. GSE5296 and GSE47681 are clearly separated in the low-dimensional 
feature space, suggesting significant differences and considerable variability between the datasets. (D) PCA plot of the integrated GEO dataset after 
batch effect removal. Post-batch processing, the samples in the principal component space show enhanced clustering and greater overlap, indicating 
increased similarity. GSE5296 (SCI dataset) is represented in blue, and GSE47681 (SCI dataset) is in pink. PCA, Principal Component Analysis; SCI, Spinal 
Cord Injury.
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shown in Supplementary Table S4, the 186 HRDEGs were primarily 
enriched in BPs, such as responses to decreased oxygen levels, 
hypoxia, muscle cell proliferation, carbohydrate catabolic process, 
and oxygen levels. Regarding CC, these genes were enriched in 
structures such as the collagen-containing extracellular matrix, 
RNA polymerase II transcription regulator complex, membrane 
microdomain, caveola, and membrane raft. The MF associated with 
these genes included RNA polymerase II-specific DNA-binding 
transcription factor binding, monosaccharide binding, carbohydrate 
binding, carbohydrate kinase activity, and growth factor binding. 
The KEGG pathway enrichment analysis revealed that these genes 
were also enriched in pathways such as the hypoxia-inducible 
factors (HIF-1) signaling pathway, fluid shear stress and 
atherosclerosis, proteoglycans in cancer, colorectal cancer, and the 
AGE-RAGE signaling pathway in diabetic complications. The GO 
and KEGG enrichment analysis results were visualized using 
histograms (Figure  4A). Additionally, network diagrams were 
created to visualize the BP, CC, MF, and KEGG pathways 
(Figures 4B–E).

3.4 Gene set enrichment (GSEA) and GSVA

GSEA was applied to the Combined Datasets to determine the 
impact of gene expression levels on the incidence of SCI. The analysis 
focused on the expression levels of genes in the SCI group compared 
with the controls, specifically examining logFC values between these 
groups. GSEA explored BP, CC, and MF affected by gene expression 
levels. A mountain diagram shows the GSEA of four biological 
functions (Figure  5A). Detailed results are shown in 
Supplementary Table S5. The analysis revealed significant enrichment 
of genes in several key pathways and functions, including the Biocarta 
Nfkb Pathway (Figure 5B), Yauch Hedgehog Signaling Paracrine Dn 
(Figure 5C), Biocarta Tgfb pathway (Figure 5D), and the Ongusaha 
Tp53 Targets (Figure 5E).

To explore the differences in the m2.all.v2023.2.Mm.symbols.gmt 
gene set between SCI patients and controls, GSVA was applied to all 
genes (Supplementary Table S6). Subsequently, the top 20 pathways 
with p < 0.05 were selected and ranked in descending order based on 
the absolute value of |logFC|. The differential expression of these 20 

FIGURE 3

Differential gene expression analysis. (A) Volcano plot of differentially expressed genes (DEGs) in the SCI and control groups from the GEO dataset. 
Upregulated genes are shown in pink, down-regulated genes in blue, and non-significantly different genes in gray. The x-axis shows the log2 fold 
change, and the y-axis represents the negative logarithm of the p-value (−Log10(p-value)). (B) Venn diagram of DEGs and hypoxia-related genes 
(HRGs) in the GEO dataset, showing 186 genes that overlap as both DEGs and HRGs. (C) Heatmap of HRDEGs in the GEO dataset, illustrating gene 
expression levels in the SCI group versus the control group. The expression patterns of each gene are clearly shown, with pink indicating high 
expression in the SCI group and blue indicating low expression in the control group. SCI, Spinal Cord Injury; DEGs, Differentially Expressed Genes; 
HRGs, Hypoxia-Related Genes; HRDEGs, Hypoxia-Related Differentially Expressed Genes.
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FIGURE 4

GO and KEGG pathway enrichment analyses for HRDEGs. (A) Bar graph showing the results of GO and KEGG pathway enrichment analysis of HRDEGs. 
The bars represent the significance of BP, CC, MF, and KEGG pathways. The height of each bar is the −Log10(p-value), where a higher value indicates 
greater statistical significance. Pink, blue, and yellow represent BP, CC, and MF, respectively, while purple represents KEGG pathways. (B–E) Network 
diagrams depicting the results of GO and KEGG pathway analyses for HRDEGs. Panel (B) represents BP, Panel (C) represents CC, Panel (D) represents 
MF, and Panel (E) shows KEGG pathways. In each diagram, pink nodes represent GO entries or KEGG pathways, blue nodes represent associated 
molecules, and lines indicate the relationships between entries and molecules. The GO and KEGG analyses were based on a p-value < 0.05 and FDR 
(q-value) < 0.05, with BH correction for p-values. HRDEGs, Hypoxia-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular Function.
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pathways between the SCI and control groups was analyzed and 
visualized in heatmaps (Figure 6A).

Subsequently, the differences between groups were verified using 
the Mann–Whitney U test. The results are shown in a group 
comparison chart (Figure 6B). The GSVA revealed several significant 
pathways in the SCI group compared to the controls (p < 0.05), 
including Tyrobp Causal Network in Microglia, Ruan Response to 
TNF Up, Ruan Response to TNF Troglitazone Up, Stearman Tumor 
Field Effect Up, Biocarta Rela Pathway, Biocarta Nfkb Pathway, 
Syndecan Interactions, Hess Targets of Hoxa9 and Meis1 Down, 
Regulation by c-Flip, Cscipscie Activation via Death Receptors in the 
Presence of Ligand, Macrophage Markers, Hevner Telencephalon 
Microglia, Reactome Laminin Interactions, and Hevner 
Telencephalon Vascular Endothelium and Meningeal Cells.

3.5 Construction of a diagnostic model for 
SCI

A univariate logistic regression analysis was conducted to 
assess the diagnostic value of the 186 HRDEGs for SCI. Ninety-
nine HRDEGs with statistical significance (p < 0.05) were 

identified (Supplementary Table S7). Subsequently, a LASSO 
regression analysis was performed using these 99 HRDEGs to 
develop a diagnostic model for SCI. The results were visualized 
through a LASSO regression model diagram (Figure 7A) and a 
LASSO variable trajectory plot (Figure  7B). The LASSO 
regression model highlighted seven HRDEGs as model genes, 
including Casp6, Slc37a4, Pkm, Vldlr, Tiparp, Cxcr4, and Hexa.

We used the RF algorithm to assess the diagnostic value of the 99 
HRDEGs for SCI. The results showed that the error stabilized when 
the number of decision trees was 11 (Figure 7C). To refine the model, 
ten-fold cross-validation was performed five times, and a cross-
validation error curve was plotted. The analysis revealed that the 
model error was minimized and stabilized when the number of genes 
was 11. The 11 HRDEGs that significantly impact the diagnosis of SCI 
are Nagk, Hexa, Casp6, Pkm, P4ha1, Pdk3, Cav1, Angptl4, Cxcr4, Sdc3, 
and Galk1.

To identify the key genes, we intersected the HRDEGs from 
the LASSO regression model with those identified by the RF 
algorithm. Four key genes (i.e., Casp6, Pkm, Cxcr4, and Hexa) 
were obtained and used for subsequent investigation. The 
intersection of these genes was visualized using a Venn diagram 
(Figure 7D).

FIGURE 5

Differential gene expression analysis and GSEA for the Combined Datasets. (A) Gene Set Enrichment Analysis (GSEA) results for the GEO dataset, 
presented as mountain plots showing the enrichment of different gene sets. (B–E) GSEA results indicating significant enrichment of several biological 
pathways, including (B) Biocarta NF-kB Pathway, (C) Yauch Hedgehog Signaling, (D) Biocarta TGFβ Pathway, and (E) Ongusaha TP53 Targets. The color 
gradient in the mountain plots indicates statistical significance, with pink indicating smaller p-values and stronger statistical significance, and blue 
indicating larger p-values. (B) The Biocarta NF-kB Pathway had an normalized enrichment score (NES) of 1.875, p-value < 0.001, and FDR < 0.001, 
demonstrating strong enrichment. (C) The Yauch Hedgehog Signaling Pathway had an NES of −1.580, p-value < 0.001, and FDR < 0.001. (D) The 
Biocarta TGFβ Pathway had an NES of 1.531, p-value = 0.043, and FDR = 0.04. (E) The Ongusaha TP53 Targets Pathway had an NES of 1.898, p-value < 
0.001, and FDR < 0.001. GSEA criteria were p-value < 0.05 and FDR (q-value) < 0.05, with BH correction applied.
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3.6 Validation of the SCI diagnostic model

A nomogram was constructed based on the key genes identified 
to further substantiate the diagnostic value of the SCI model 
(Figure 8A). This nomogram elucidates the relationship between these 

genes and their contributions to the diagnostic model. After 
accounting for the missing genes, the expression level of the model 
gene Hexa showed significantly enhanced efficacy in diagnosing SCI.

A calibration analysis was conducted to assess the resolution and 
accuracy of the SCI diagnostic model. The calibration curve compares 

FIGURE 6

GSVA. (A) Heatmap showing the gene set variation (GSVA) between the SCI and control groups in the integrated GEO dataset. (B) Group comparison 
plot showing the variation of gene sets between the SCI and control groups. The heatmap visualizes the higher enrichment of gene sets in the SCI 
group (pink) compared to the control group (blue), and the group comparison plot indicates significant differences with p-value < 0.001. The GSVA 
criteria were p-value < 0.05, with BH correction applied. SCI, Spinal Cord Injury; GSVA, Gene Set Variation Analysis.
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the actual probability of SCI with those predicted by the model under 
various conditions (Figure 8B). Although the dotted calibration line 
slightly deviated from the ideal diagonal, it remained closely aligned, 
indicating a well-calibrated model.

Furthermore, the clinical utility of the SCI diagnostic model was 
assessed using DCA based on the model genes from the Combined 
Datasets (Figure 8C). The model consistently provided higher benefits 
compared to the “All negative” and “All positive” strategies within a 
specified range, highlighting the robust predictive performance and 
clinical utility of the model.

ROC curves were subsequently generated to assess the diagnostic 
performance of the logistic regression model (Figure 8D). The results 

highlighted a strong diagnostic capability for the logistic 
regression model.

3.7 PPI network

PPI analysis for the four key genes (Casp6, Pkm, Cxcr4, and Hexa) 
was performed using the STRING database. A PPI network diagram 
is shown in Figure 9A. The GeneMANIA website was then used to 
predict genes similar to the key genes and create interaction networks. 
The shared protein domains and physical and gene interactions are 
shown in Figure 9B.

FIGURE 7

Construction of SCI diagnostic model. (A) LASSO regression diagnostic model diagram, constructed using HRDEGs from the integrated GEO dataset 
(Combined Datasets), illustrates the fit of the model. The red curve represents the optimal λ value (Log (λ)), which minimizes the corresponding 
binomial bias. (B) The variable trajectory diagram of the LASSO diagnostic model shows the changes in coefficients of different genes at various λ 
values. As λ increases, the coefficients of many genes progressively shrink and ultimately approach zero, indicating the model’s selectivity. (C) The 
cross-validation error curve demonstrates the change in model performance. The x-axis represents the number of genes, while the y-axis shows the 
cross-validation error. The red dot indicates the number of genes selected in the optimal model. The error decreases significantly as the number of 
genes increases and stabilizes once a certain threshold is reached. (D) The Venn diagram illustrating the intersection between the LASSO algorithm and 
the random forest algorithm (RF) shows the overlap of characteristic genes selected by both methods. The LASSO selects three unique genes, RF 
selects seven unique genes, and the intersection contains four genes.
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3.8 Construction of regulatory networks

TFs associated with HRDEGs were identified using the ChIPBase 
database. The mRNA-TF regulatory network was then visualized using 
Cytoscape (Figure 10A). This network included four HRDEGs and 59 
TFs (Supplementary Table S8). In addition, the miRNAs related to 
HRDEGs were identified through the TarBase and StarBase databases. 
The mRNA-miRNA regulatory network was constructed and 
visualized using Cytoscape (Figure 10B). This network included four 
HRDEGs and 46 miRNAs (Supplementary Table S9). Furthermore, 
RBPs related to HRDEGs were predicted using the StarBase database. 
These interactions were used to construct and visualize the 
mRNA-RBP regulatory network in Cytoscape (Figure 10C). There are 
three HRDEGs and 55 RBPs in this network (Supplementary Table S10). 
Furthermore, the Comparative Toxicogenomics Database was applied 

to identify potential molecular compounds or drugs related to 
HRDEGs. The mRNA-drug regulatory network was visualized in 
Cytoscape (Figure 10D). This network included one HRDEG and one 
drug or molecular compound (Supplementary Table S11).

3.9 Analysis of expression differences of 
key genes between different groups

The expression levels of four key genes (Casp6, Pkm, Cxcr4, 
Hexa) were significantly different in the SCI group versus 
controls (all p < 0.001; Figure  11A). Based on the complete 
expression matrix of the four key genes, correlation analysis was 
performed. Casp6, Cxcr4, and Hexa were all positively correlated, 
but Pkm was negatively correlated with other genes. (Figure 11B). 

FIGURE 8

Diagnostic and validation analysis of SCI diagnostic model. (A) Nomogram of the integrated GEO dataset (Combined Datasets) shows how the 
probability of SCI is calculated based on identified risk factors. (B) The calibration curve shows the relationship between the predicted probability of SCI 
and the actual occurrence. The curve indicates how close the predicted probabilities are to the actual probabilities, whereas the bias correction curve 
represents the model’s adjusted prediction results, demonstrating the model’s reliability in prediction. (C) The DCA graph shows the net benefits at 
different risk thresholds. The y-axis represents the net benefit, and the x-axis represents the probability threshold. Different curves demonstrate the 
model’s performance at various thresholds, helping evaluate its potential benefits in decision-making. (D) ROC analysis of the linear predictor in the 
logistic regression model for the GEO dataset (Combined Datasets) displays the sensitivity and specificity of the model. The AUC was 0.991, indicating 
high accuracy, with an AUC value above 0.9. This figure shows the true positive rate (sensitivity) at different false positive rates (1-specificity). DCA, 
Decision Curve Analysis; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve.
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Next, we converted the four key genes into their human orthologs 
and annotated their respective positions on human chromosomes 
to visualize them in a circle diagram (Figure 11C). The key gene 
Cxcr4 is located on chromosome 2, Casp6 on chromosome 4, and 
Hexa and Pkm on chromosome 15. The ROC curves of these 
genes are shown in Figures 11D–G. Their expression differences 
exhibit high accuracy, with all genes achieving an AUC greater 
than 0.9, indicating their strong potential as diagnostic markers.

3.10 Construction of high- and low-risk 
groups for hypoxia

The Hs of all samples was calculated using the ssGSEA 
algorithm based on the levels of the four key genes. The samples 
were then categorized into high-risk and low-risk groups based 
on the median Hs of SCI samples. A mountain diagram was 
plotted to display GSEA results (Figure 12A). The genes in the 
Combined Datasets were significantly enriched in the Wang Nfkb 
Targets pathway (Figure 12B), the Reactome Cd28 Dependent 
Pi3k Akt Signaling pathway (Figure  12C), the Biocarta Tgfb 
pathway (Figure  12D), and the Yauch Hedgehog Signaling 
Paracrine Dn pathway (Figure 12E).

To explore the differences between the high-risk and low-risk 
groups, we conducted GSVA on all genes from the Combined Datasets. 
The top 20 pathways with p < 0.05 were sorted in descending order of 
logFC absolute. The differential expression of these pathways was 
visualized using heatmaps (Figure 13A). The difference was validated 
using the Mann–Whitney U test and a comparison chart (Figure 13B). 
The following pathways were significantly different between the two 
groups (p < 0.05): Microglia pathogen phagocytosis pathway, Reactome 

GPVI mediated activation cascade, Reactome CS DS degradation, 
Reactome other semaphorin interactions, Reactome CD28 dependent 
VAV1 pathway, Reactome platelet adhesion to exposed collagen, 
Reactome A tetrasaccharide linker sequence is required for GAG 
synthesis, Biocarta Tgfb pathway, Reactome regulation of signaling by 
CBL, Biocarta NK cells pathway, Reactome signal regulatory protein 
family interactions, Reactome HS GAG degradation, Reactome keratan 
sulfate degradation, Hevner telencephalon microglia, Li AN neutrophil 
granule constituents, Reactome dermatan sulfate biosynthesis, Fujiwara 
PARK2 hepatocyte proliferation up.

3.11 Immune infiltration analysis

The expression matrix of the Combined Datasets was 
converted into a human matrix. The immune infiltration 
abundance of 28 types of immune cells in SCI samples was then 
calculated using the ssGSEA algorithm. As shown in the group 
comparison diagram, seven types of immune cells were 
significantly different between groups (p < 0.05), including Type 
1 T helper cells, T follicular helper cells, myeloid-derived 
suppressor cells, immature B cells, CD56dim natural killer cells, 
macrophages, and regulatory T cells (Figure 14A). The correlation 
results of immune cells infiltration abundance in SCI samples are 
shown in a correlation heatmap (Figures 14B,C). In the low-risk 
group, most immune cells exhibited strong correlations, with Type 
1 T helper cells and regulatory T cells showing the strongest 
positive correlation (r = 0.964, p < 0.05) (Figure 14B). In the high-
risk group, most immune cells exhibited strong positive 
correlation, with regulatory T cells and Type 1 T helper cells 
showing the strongest positive correlation (r = 0.964, p < 0.05) 

FIGURE 9

PPI network. (A) Protein–protein interaction (PPI) network of key genes shows interactions between genes such as Cxcr4, Pkm, Hexa, and Casp6. The 
size of the nodes correlates with the importance of each gene, whereas the connecting lines represent the interactions between genes. The number of 
lines reflects the strength of the interaction. (B) The interaction network of key genes predicting functionally similar genes reveals a broader range of 
gene interactions. Circular nodes represent genes, with their size reflecting their importance and influence within the network. The thickness of the 
connecting lines indicates the strength of the interactions.
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(Figure  14C). Finally, the correlation bubble chart shows the 
relationship between key genes and immune cell infiltration 
abundance (Figures 14D,E). In the low-risk group, most immune 
cells showed a strong positive correlation, with the gene Cxcr4 and 
regulatory T cells demonstrating the strongest positive correlation 
(r = 0.964, p < 0.05) (Figure 14D). In the high-risk group, the gene 
Pkm and macrophages had the strongest negative correlation 
(r = −0.964, p < 0.05) (Figure 14E).

3.12 Experimental validation of key genes

The mean expression level of Casp6 was significantly lower in 
the sham-operated group compared to the SCI group (0.94 ± 0.54 
vs. 2.18 ± 0.49, p < 0.05) (Figure 15A). Similarly, Pkm expression 
was markedly lower in the sham-operated group than in SCI mice 
(0.57 ± 0.39 vs. 2.47 ± 0.61, p < 0.05) (Figure  15B). Cxcr4 
exhibited notably lower levels in sham-operated mice compared 

FIGURE 10

Regulatory networks of HRDEGs. (A) mRNA-TF regulatory network of HRDEGs illustrates the relationships between genes and transcription factors. 
Yellow nodes represent mRNA, and purple nodes represent transcription factors. (B) The mRNA-miRNA regulatory network of HRDEGs shows the 
interaction between mRNA and miRNAs. Yellow nodes represent mRNA, while blue nodes represent miRNAs. (C) The mRNA-RBP regulatory network 
of HRDEGs demonstrates the relationships between mRNA and RNA-binding proteins. Pink nodes represent RNA-binding proteins. (D) The mRNA-
drug regulatory network of HRDEGs demonstrates the interactions with drugs. Green nodes represent drugs. HRDEGs, Hypoxia-Related Differentially 
Expressed Genes; TF, Transcription Factor; RBP, RNA-Binding Protein.
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to the SCI group (0.76 ± 0.34 vs. 3.00 ± 0.75, p < 0.01) 
(Figure  15C). Additionally, Hexa expression was significantly 
higher in SCI mice than in their sham-operated counterparts 
(2.26 ± 0.52 vs. 1.00 ± 0.13, p < 0.05) (Figure 15D). These results 
indicate that SCI significantly alters the expression of these genes 
compared to the sham-operated group.

4 Discussion

SCI is a significant public health concern affecting approximately 
250,000 to 500,000 individuals globally annually. It severely impairs 
physical functions, significantly impacts patients’ quality of life, and 
imposes a substantial socioeconomic burden (Liang et al., 2022; Hu 
et  al., 2023). Current treatments for SCI, including surgical 
intervention, medication, and rehabilitation, aim to mitigate 
secondary damage and promote recovery. While surgery can 
alleviate spinal compression, the regenerative capacity of damaged 
neurons remains limited, and the procedure itself carries risks such 
as infection or further injury. Medications primarily reduce 
inflammation and edema, but their effects on nerve regeneration and 
functional recovery remain limited. Furthermore, individual 

differences in drug efficacy and long-term use may lead to side 
effects. Although rehabilitation therapy can enhance patients’ daily 
living abilities, its impact on neural function recovery is limited, 
requiring a long-term and continuous treatment process. Therefore, 
in-depth studies on the pathogenesis of SCI and identifying novel 
therapeutic targets and biomarkers are crucial for improving the 
prognosis of patients with SCI. Recent studies have identified various 
genes and pathways involved in SCI, including those related to 
autophagy (Shang et  al., 2024) and ferroptosis (Qu et  al., 2023). 
However, a comprehensive analysis of HRDEGs and their regulatory 
networks in SCI remains largely unexplored (Ahuja et al., 2017). 
Furthermore, there is a notable lack of comprehensive analyses 
integrating multiple datasets to construct diagnostic models and 
explore protein interaction networks, particularly those focusing on 
the relationship between regulatory networks and immune 
infiltration in SCI.

SCI is a complex pathological condition influenced by numerous 
factors, including the type and location of the injury and subsequent 
inflammatory and immune responses (Hu et al., 2023). Although our 
sample size is limited, all samples in this study were obtained from 
Mus musculus. Additionally, to maintain consistency in injury models 
(contusion injury), we selected datasets GSE5296 and GSE47681. To 

FIGURE 11

Analysis of expression differences of key genes between different groups. (A) Group comparison chart between the control and SCI groups shows the 
expression differences of key genes Casp6, Pkm, Cxcr4, and Hexa. Statistical symbols indicate p < 0.001, showing that the expression differences of 
these genes between the two groups are extremely statistically significant. In the figure, the pink box plot represents the SCI group, and the blue box 
plot represents the control group. (B) The correlation analysis between key genes is displayed by heat mapping, showing that these genes are 
significantly correlated. Correlation values above 0.5 in the heatmap are represented by color shades, where p < 0.05 indicates a significant positive 
correlation between key genes. (C) The chromosomal mapping of key genes in the human body shows the distribution of Cxcr4, Hexa, Pkm, and 
Casp6 on different chromosomes. (D–G) ROC curve analysis of key genes (D) Casp6, (E) Cxcr4, (F) Hexa, and (G) Pkm was conducted to evaluate the 
diagnostic ability of these genes in spinal cord injury. The area under the curve (AUC) was 0.991 (Casp6, Cxcr4, and Hexa) and 0.982 (Pkm), indicating 
very high diagnostic accuracy for these genes. When the AUC value is close to 1, it indicates a better diagnostic effect; when the AUC value is above 
0.9, it is considered to have higher accuracy.
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further ensure uniformity in injury and tissue damage assessments, 
we conducted batch effect removal using the R package sva (version 
3.50.0). This method facilitates cross-dataset comparisons by 
eliminating technical variations.

In this study, we identified 3,834 upregulated genes and 5,898 
downregulated genes in the SCI group compared to the control group. 
Among them, 186 HRDEGs were identified. Activating transcription 
factor 3 (encoded by Atf3) is significantly upregulated under hypoxic 
conditions, where it protects nerve cells from damage by regulating 
apoptosis and autophagy, consistent with the findings by Liang et al. 
(2020). Toll-like receptor 4 (encoded by Tlr4) is implicated in 
inflammatory responses, and its upregulation may promote immune 
cell activation, facilitating debris clearance and tissue repair at injured 
sites, indirectly supporting nerve cell regeneration (Muendlein et al., 
2022). These results validate the reliability of our study. Heme 
oxygenase-1 (encoded by Hmox1), an enzyme that catalyzes heme 
degradation, exerts cytoprotective effects and enhances neuronal 
survival under hypoxic stress (Liu et al., 2022). SERPINE1 regulates 
proteolysis and extracellular matrix remodeling, which is crucial in 
tissue repair (Akbar et  al., 2023). Collagen Type I  alpha 1 chain 
(encoded by Col1a1) contributes to extracellular matrix formation and 
tissue scaffolding, offering structural support essential for neuronal 
regeneration (Dong et al., 2021). Insulin-like growth factor 1 (encoded 
by Igf1) promotes cell growth and differentiation, acting as a key factor 

in neuronal repair and regeneration (Bailes and Soloviev, 2021). 
C-X-C chemokine receptor Type 4 (encoded by Cxcr4) facilitates cell 
migration and homing, potentially recruiting reparative cells to the 
injury site (Khasawneh and Abu-El-Rub, 2022). Additionally, the 
upregulation of Tes, Thbs1, and Tgfbi suggests their involvement in cell 
signaling, angiogenesis, extracellular matrix remodeling, and 
metabolic processes, contributing to the regenerative responses (Wang 
et al., 2019; Isenberg and Roberts, 2020; Huang et al., 2024). Together, 
these genes form a coordinated network that promotes neuronal 
survival and regeneration, which aligns with our results.

This study identified a series of genes closely related to 
SCI. GO and KEGG enrichment analyses provided valuable 
insights into the underlying signaling pathways and BPs. Notably, 
the significant enrichment of the HIF-1 signaling pathway offers 
a new perspective for understanding the pathological process of 
SCI. HIF-1, a critical transcription factor, plays a central role in 
cellular adaptive responses to hypoxic environments. HIF-1 is a 
central hub of hypoxia signaling, coordinating cellular 
metabolism, angiogenesis, and survival adaptation through the 
transcriptional regulation of HRDEGs. It plays a key role in 
tumors, ischemic diseases, and chronic inflammation. Following 
SCI, the affected spinal cord region often experiences local 
hypoxia, leading to activation of the HIF-1 signaling pathway 
(Huang et al., 2022). HIF-1 promotes angiogenesis, erythropoiesis, 

FIGURE 12

Differential gene expression analysis and GSEA for the Combined Datasets. (A) GSEA of the integrated GEO dataset (Combined Datasets) demonstrates 
four important biological functions through mountain maps. In the mountain diagram, the depth of color represents the magnitude of the p-value. The 
pinker the color, the smaller the p-value, indicating greater statistical significance, while the bluer the color, the larger the p-value. (B–E) The results of 
GSEA revealed that the integrated GEO dataset was significantly enriched in the following biological pathways. (B) Wang Nfkb Targets with a NES of 
1.599, p-value of 0.017, and FDR of 0.049. (C) Reactome Cd28 Dependent Pi3k Akt Signaling with an NES of 1.885, p-value of 0.002, and FDR of 0.008. 
(D) Biocarta Tgfb pathway with an NES of 1.747, p-values of 0.007, and FDR of 0.026. (E) Yauch Hedgehog Signaling Paracrine Dn with an NES of 
−1.702, p-value < 0.001, and FDR < 0.001.

https://doi.org/10.3389/fnmol.2025.1565430
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Cheng et al. 10.3389/fnmol.2025.1565430

Frontiers in Molecular Neuroscience 17 frontiersin.org

and reprogramming of energy metabolism by regulating the 
expression of downstream target genes, such as vascular 
endothelial growth factor and erythropoietin, thereby facilitating 

blood supply restoration and oxygenation capacity enhancement 
in damaged tissues (Huang et al., 2022). These adaptive responses 
are critical for tissue repair and nerve regeneration after SCI.

FIGURE 13

GSVA. (A,B) In the integrated GEO datasets (Combined Datasets), GSVA showed significant differences between the high-risk and low-risk groups. 
(A) The heatmap visualizes the enrichment of different gene sets between the two groups. The pink regions in the high-risk groups represent higher 
GSVA scores in multiple specific biological pathways, whereas the blue regions in the low-risk groups indicate lower enrichment in these pathways. 
(B) The group comparison plot further quantifies the difference in gene set enrichment between the two groups, and the GSVA scores of each 
pathway are contrasted by bar graphs. ns represents a p-value ≥ 0.05, showing no statistical significance; represents a p-value < 0.05 indicating a 
significant difference; indicates a p-value < 0.01, showing high statistical significance; then indicates a p-value < 0.001, indicating great statistical 
significance. The screening criteria for GSVA were p-value < 0.05, and the p-value correction method used was Benjamini-Hochberg (BH).
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FIGURE 14

Risk group immune infiltration analysis by ssGSEA algorithm. (A) The figure shows the abundance changes of each immune cell type, with blue 
representing the low-risk group and pink representing the high-risk group. ns represents no statistical significance (p-value ≥ 0.05), indicates statistical 
significance (p-value < 0.05), and indicates higher significance levels (p-values < 0.01 and < 0.001, respectively). (B,C) The correlation analysis results of 
the (B) low-risk and (C) high-risk groups show the correlation of infiltration abundance between different immune cells. The bright red area in the 
heatmap indicates a positive correlation, while the blue area indicates a negative correlation. The depth of color reflects the strength of the correlation. 
The range of absolute values of correlation coefficients (r-values) illustrates the correlation of immune cells within each group. (D,E) In the (D) low-risk 
and (E) high-risk groups, the bubble chart further demonstrates the correlation between immune cell infiltration abundance and key genes. The bubble 
size is proportional to the intensity of the correlation, and the color change indicates the direction of the correlation. Pink indicates a positive 
correlation, and blue indicates a negative correlation. The absolute value of the correlation coefficient (r-value) is weak or uncorrelated below 0.3, 
weakly correlated between 0.3 and 0.5, moderately correlated between 0.5 and 0.8, and strongly correlated above 0.8. Blue indicates the low-risk 
group, and orange indicates the high-risk group.
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Therefore, further studies of the specific mechanisms of the HIF-1 
signaling pathway in SCI are warranted. In addition to HIF-1, 
we  found significant enrichment of cancer-related pathways, 
particularly proteoglycans in cancer, which is intriguing. While SCI 
and cancer are distinct diseases, they may share common molecular 
mechanisms. For instance, the HIF-1 signaling pathway, critical for 
hypoxic adaptation in cancer, is also activated in the hypoxic 
environment of SCI, as reported by Song et  al. (2023). Similarly, 
proteoglycans, key components of the extracellular matrix in cancer, 
play essential roles in regulating cell–cell interactions, signal 
transduction, and cell migration and are equally significant in tissue 
repair and remodeling following SCI (Yao et al., 2022). Oxidative 
stress, a process intimately linked to cancer development, is considered 
a critical mechanism driving pathological progression and apoptosis 
following SCI. Cells subjected to SCI undergo significant oxidative 
stress, resulting in cellular damage and the activation of pro-apoptotic 
signaling pathways. This response mirrors cellular stress mechanisms 
observed in cancer, where oxidative stress is a major contributor to 
tumor progression. Upon the occurrence of SCI, damaged nerve cells 
and surrounding tissues produce large quantities of reactive oxygen 
species, leading to an elevated oxidative state that impairs cell 
membranes, nucleic acids, and proteins. Oxidative stress causes direct 
cellular damage and triggers multiple signaling pathways, including 
the p53 and NF-κB pathways (Anjum et al., 2020). The p53 signaling 

pathway is pivotal in regulating apoptosis and maintaining genomic 
stability, whereas the NF-κB pathway is critical in mediating 
inflammatory responses (Anjum et  al., 2020). Activation of these 
pathways influences apoptosis, inflammation, and regeneration, 
ultimately altering the microenvironment of the injured area, thereby 
exacerbating damage and impeding recovery. These insights may offer 
new directions for interdisciplinary research.

The results from GSEA and GSVA revealed that gene expression 
in SCI samples was significantly enriched in several key biological 
pathways, such as the NF-κB and TGF-β signaling pathways. These 
pathways are closely implicated in inflammation, immune responses, 
and tissue repair, highlighting their potential regulatory roles in SCI 
(Jing et al., 2021; Nakazaki et al., 2021). This study employed LASSO 
regression and the RF algorithm to identify key genes for the SCI 
diagnostic model. LASSO regression effectively reduces model 
complexity by selecting the most significant variables, simplifying 
subsequent biological validation and clinical application. Conversely, 
the RF algorithm provides a more comprehensive perspective for 
model construction by evaluating the combined effects of multiple 
variables. The complementarity of the two methods ensures the 
scientific rigor and practical applicability of the key gene 
screening process.

Among the key HRDEGs identified in this study, Casp6, Pkm, 
Cxcr4, and Hexa play vital roles in SCI pathogenesis, providing novel 

FIGURE 15

The qPCR results for Casp6, Pkm, Cxcr4, and Hexa in SCI and control groups. (A) Casp6 (apoptosis-related protease) expression was significantly 
elevated in the SCI group (2.18 ± 0.49) compared to sham controls (0.94 ± 0.54; p < 0.05). (B) SCI mice exhibited increased expression of the 
metabolic regulator Pkm (2.47 ± 0.61), surpassing sham-operated levels (0.57 ± 0.39; p < 0.05). (C) Cxcr4 (inflammatory chemokine receptor) displayed 
the most pronounced intergroup difference (3.00 ± 0.75 vs. 0.76 ± 0.34; p < 0.01). (D) Lysosomal enzyme Hexa was markedly upregulated post-injury 
(2.26 ± 0.52 vs. 1.00 ± 0.13; p < 0.05). Data are presented as mean ± SD. p < 0.05 vs. sham-operated group. *p < 0.05, **p < 0.01. SCI, spinal cord injury.
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insights into potential therapeutic targets. Casp6, an effector caspase in 
the apoptosis pathway, is pivotal in neuronal cell death following SCI 
(Ramírez-Moreno et al., 2023). Its upregulation in SCI samples suggests 
a direct contribution to the neurodegeneration observed in SCI 
patients, consistent with a previous report linking Casp6 to neuronal 
apoptosis in neurological disorders (Ramírez-Moreno et al., 2023). 
These findings indicate that Casp6 may be a viable target for strategies 
to inhibit apoptosis in SCI treatment. Pkm, particularly the M2 
isoform, regulates glycolysis and energy metabolism in cells. 
Disruptions in energy metabolism are significant in SCI, affecting 
neural recovery (Ren et al., 2024). Our results demonstrate differential 
expression of Pkm, reflecting alterations in energy metabolism 
following SCI. This aligns with a previous report highlighting its role 
in regulating glycolysis during cellular stress (Ren et al., 2024). This 
consistency shows the importance of restoring energy homeostasis for 
SCI rehabilitation. Cxcr4, a chemokine receptor mediating immune 
cell migration and inflammatory responses, is critical for SCI repair 
and regeneration (Kammerer et  al., 2020). Its upregulation may 
indicate enhanced inflammatory responses and immune cell 
infiltration, which are essential for debris clearance and tissue 
remodeling post-injury. Although the role of Cxcr4 in SCI is complex, 
our findings support its established functions in coordinating immune 
responses, emphasizing its potential as a regulatory node in SCI healing 
(Kammerer et al., 2020). Hexa, encoding β-galactosidase A, is essential 
for lysosomal function and cellular metabolism. In lysosomal storage 
diseases, Hexa deficiency leads to neuronal degeneration (Cai et al., 
2020). In SCI, altered expression of Hexa could disrupt lysosomal 
homeostasis, contributing to neuronal damage. After validating the key 
genes through bioinformatics analysis, we observed that while most 
genes exhibited the expected high expression, Pkm was computationally 
predicted to have low expression but displayed high expression in 
animal experiments. This discrepancy might arise from differences in 
experimental conditions, biological variability, or compensatory 
mechanisms within the SCI microenvironment not fully captured by 
the bioinformatics datasets. Casp6, Pkm, Cxcr4, and Hexa were 
identified as potential biomarkers due to their differential expression 
in hypoxic SCI. However, their clinical relevance hinges on their 
detectability in accessible biological samples. These biomarkers could 
be  detected in cerebrospinal fluid or plasma in clinical settings, 
enabling non-invasive diagnosis and monitoring. For instance, Cxcr4 
is measurable in both cerebrospinal fluid and plasma (Sojane et al., 
2018), while Hexa activity can be assessed in plasma (Osher et al., 
2015). Although further validation is required to detect Casp6 and 
Pkm in these fluids, their roles in apoptosis and glycolysis suggest 
potential applications in assessing injury severity and predicting 
prognosis (Lee et  al., 2015). These biomarkers may support 
personalized therapeutic strategies for SCI patients by providing 
insights into disease progression and treatment responses.

To develop new diagnostic tools for SCI based on the identified 
four key genes (Casp6, Pkm, Cxcr4, Hexa), a nomogram was 
constructed to visually represent their contributions to SCI diagnosis, 
providing clinicians with a rapid diagnostic tool. The diagnostic 
performance of a logistic regression model based on these genes was 
evaluated using ROC curve analysis and AUC values to determine its 
clinical diagnostic efficacy. Furthermore, multivariate regression 
analysis was performed to clarify the independent roles of these genes 
in SCI diagnosis, thereby enhancing the reliability of the model. 
Future studies involving large-scale clinical samples are warranted to 

further validate the diagnostic utility of these genes and confirm their 
potential as reliable biomarkers for SCI.

GSEA and GSVA revealed that the high-risk group was 
significantly enriched in several key pathways, such as the Wang Nfkb 
Targets and Reactome Cd28 Dependent Pi3k Akt Signaling. The 
differences in pathway enrichment suggest potential molecular 
distinctions between the high-risk and low-risk groups and may reveal 
potential therapeutic targets. For example, the NF-κB signaling 
pathway, known for regulating inflammation and apoptosis, is often 
overactivated in secondary injury following SCI. Targeting this 
pathway may offer a new therapeutic approach for SCI (Liu et al., 
2021). Similarly, the PI3K/Akt signaling pathway, crucial for various 
physiological functions, has been implicated in numerous diseases and 
may become a target for therapeutic interventions (Xu et al., 2021).

The ssGSEA algorithm was employed in this study to calculate the 
Hs for all samples. This method significantly enhances scoring 
accuracy by assessing the expression of specific gene sets in each 
sample. Unlike traditional gene expression scoring methods, ssGSEA 
does not depend on predefined classification thresholds and offers 
continuous scoring based on the degree of gene set enrichment. This 
approach mitigates subjectivity associated with threshold selection 
and improves the objectivity and reliability of the results (Xiao et al., 
2020). In addition, single-sample Gene Set Enrichment Analysis 
(ssGSEA) effectively captures nonlinear variations in gene expression, 
providing valuable insights into complex BPs. Implementing the 
ssGSEA-based hypoxia scoring system in clinical practice involves 
several stages of validation and optimization. Initially, the system’s 
stability and accuracy should be verified using a larger, independent 
sample set to evaluate its effectiveness across different populations. 
Subsequent refinement of the scoring system should integrate clinical 
information to enhance its predictive capability. The refined system 
could then be  utilized to develop personalized treatment plans, 
enabling earlier interventions for high-risk patients to improve their 
prognosis. Additionally, it is a valuable tool for assessing treatment 
efficacy and facilitating necessary adjustments to treatment strategies.

This study systematically integrated and calibrated two independent 
datasets, identified 186 HRDEGs through comprehensive bioinformatics 
analyses, and developed a robust diagnostic model for predicting 
SCI. These findings provide valuable insights into the mechanisms 
underlying SCI and the development of novel therapeutic strategies.

4.1 Limitations of the study

This study has several limitations. First, although two independent 
datasets were integrated and calibrated, the sample size might still 
be  relatively small, potentially limiting the statistical power and 
generalizability of the results. Second, the diagnostic model developed 
for predicting SCI requires further validation in more extensive and 
diverse cohorts to ensure its accuracy and reliability. While our 
diagnostic model shows promising performance in identifying key 
biomarkers for SCI, its clinical applicability requires further 
investigation. Currently, the model is based on bioinformatics data 
from relatively small datasets and necessitates validation in larger and 
more diverse cohorts to confirm its robustness and reliability across 
different populations. Additionally, its effectiveness in real-world 
clinical scenarios may be influenced by factors such as inter-individual 
variability, comorbidities, and treatment interventions, which were 
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not accounted for in this study. Therefore, future research should 
incorporate comprehensive clinical information and longitudinal 
follow-up data to refine the model and enhance its predictive accuracy. 
Additionally, the comprehensive bioinformatics analyses identified 
186 HRDEGs, but the functional validation of these genes in the 
context of SCI is lacking. Future studies should address these 
limitations to provide more conclusive and widely applicable findings.
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