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inflammation in fibroblasts of 
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Redox homeostasis is impaired in Friedreich’s Ataxia (FRDA), a neurodegenerative 
disease caused by the decreased expression of the mitochondrial protein frataxin. 
Nrf2, the master regulator of tissue redox balance, is defective in the disease, driving 
cells to ferroptosis. Neuro-inflammation is recently emerging as an additional 
pathological mechanism in FRDA and has to be understood in order to go deeper 
into the pathogenesis of the disease. As a functional cross talk between Nrf2 and 
NF-kB pathways has been previously reported, we wonder if inflammation may 
be activated in FRDA as a consequence of Nrf2 deficiency. Thus, we analyzed the 
expression of proteins involved in the antioxidant and inflammatory responses in 
fibroblasts of patients with FRDA. We found a significant activation of the TLR4/
NF-kB/IL-1β axis in patients, associated to a consistent increase of the redox 
enzymes thioredoxin 1 (TRX1) and glutaredoxin 1 (GLRX1), which are essential to 
activate NF-kB under oxidative stress conditions. Furthermore, we investigated 
the role of 4-HNE, a by-product of lipid peroxidation, as a potential mediator 
between ferroptosis and inflammation in FRDA.
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1 Introduction

Redox homeostasis is significantly altered in Friedreich’s Ataxia (FRDA; OMIM #229300), 
an inherited neurodegenerative disease caused by GAA repeat expansion within the first 
intron of the FXN gene coding for the mitochondrial protein frataxin (Fxn) (Keita et al., 2022; 
Krasilnikova et al., 2023).

FRDA is a chronic autosomal recessive cerebellar neurodegenerative condition with a 
prevalence of about 1:50.000 in Caucasians and a carrier frequency in the general population 
estimated at 1:100. Fxn is a highly conserved 210 amino acid mitochondrial protein ubiquitous 
across species. It plays a role in the mitochondrial biogenesis of Iron–Sulfur (Fe-S) clusters 
that contribute to various cellular functions, including redox catalysis, β-oxidation of lipids, 
regulation of gene expression, DNA repair/replication, and the proper functioning of oxidative 
phosphorylation (Monfort et al., 2022). Clinically, FRDA is characterized by slowly progressive 
ataxia, hypo−/areflexia, dysarthria, and peripheral neuropathy with loss of proprioceptive 
sensation. Symptoms usually manifest during childhood or adolescence, with loss of 
coordination, weakness, and fatigue, gradually leading patients to motor incapacity around 
15–20 years after disease onset (Keita et al., 2022). The Fxn deficiency, primarily affecting 
dorsal root ganglia, cerebellum, and spinal cord neurons, perturbs iron homeostasis, causing 
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mitochondrial impairment, overload of reactive oxygen species (ROS) 
and lipid peroxidation, ultimately triggering ferroptosis (Du et al., 
2020; La Rosa et al., 2020a; Turchi et al., 2020).

Ferroptosis is an iron-dependent cell death caused by impaired 
glutathione metabolism, lipid peroxidation and mitochondrial failure. 
Emerging evidences report a role for ferroptosis in FRDA (Cotticelli 
et al., 2019; La Rosa et al., 2020b), with Nrf2 as main regulator of 
several genes directly or indirectly involved in modulating it (La Rosa 
et al., 2020b; Paupe et al., 2009; D’Oria et al., 2013; Shan et al., 2013; 
Petrillo et  al., 2017, 2019, 2021; La Rosa et  al., 2019, 2020b) and, 
importantly, the Nrf2 deficiency has been shown to activate the 
pathway of NF-κB, leading to increased production of inflammatory 
factors (Wardyn et al., 2015; Gao et al., 2022). Notably, the antioxidant 
enzymes glutaredoxin (GLRX) and thioredoxin (TRX) are able to 
interact with NF-kB, contributing to regulate the inflammatory 
cellular response (Seco-Cervera et al., 2020; Knoke and Leichert, 2023).

In this study, to explore a potential cross-linking between 
oxidative stress and inflammation in FRDA, we  investigated the 
expression of GLRX1, TRX1, NF-kB, and IL-1β in fibroblasts of three 
patients with FRDA, in order to highlight whether the redox 
imbalance might activate some inflammatory response in patients. 
Furthermore, as the Toll-like receptor 4 (TLR4) is regulated by GLRX1 
(Chantzoura et  al., 2010; Moghimpour Bijani et  al., 2012) and 
we  recently found, by comparative transcriptomic analysis, a 
significant increase of TLR4 in one of two sisters both displaying fxn 
deficiency but only one of them symptomatic (Petrillo et al., 2024), 
we also measured the TLR4 content in FRDA fibroblasts, to investigate 
its possible involvement in the disease.

Finally, since TLR4 is modulated by ferroptosis and it is activated 
by the ferroptosis hallmark 4-hydroxynonenal (4-HNE) (Gargiulo 
et  al., 2015; Hsu et  al., 2022), and we  previously found increased 
plasma levels of 4-HNE in patients (La Rosa et al., 2020b), we further 
analyzed the 4-HNE content in FRDA fibroblasts, to look for a 
potential mediator between ferroptosis and inflammation in 
this disease.

2 Materials and methods

2.1 Fibroblasts cultures and treatments

Skin biopsies were taken from three clinically affected (and 
genetically proven) FRDA patients (Table 1) and three age-matched 
healthy subjects (Ctrls). Fibroblasts were grown in Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal bovine 
serum, 50 units/mL penicillin, 50 μg/mL streptomycin 0.4% (v/v), 
at 37°C (5% CO2). Fibroblasts, cultured to 70% confluence, were 
used at similar passage numbers (9–11). Ferroptosis was induced 
by incubating cells for 3 h with 250 nM RSL3 (Zhang et al., 2018). 
After washing, cells were lysed in Total RNA Purification Plus Kit 

(Norgen Biotek Corp., Torold, ON, Canada), according to the 
manufacturer’s protocol for RNA extraction and subjected to 
quantitative Real-Time PCR or lysed with RIPA buffer including 
DTT and protease inhibitors for Western blotting analysis. Cells 
were used at similar, 9–11, passage numbers and tested for 
mycoplasma contamination. All the participants signed an 
informed consent and the study was approved by the Ethics 
Committee of “Bambino Gesù” Children’s Hospital (code 
1166/2016; date of approval 08/06/2016).

2.2 Western blot analysis

Fibroblasts (1×106) were lysed on ice with RIPA buffer and 
protease inhibitors. An amount of 30 μg proteins was subjected to 
SDS PAGE on 4–12% denaturing gel and probed with the following 
antibodies: NF-kB p65 (1:1000, 14–6,731-81; Invitrogen, USA), IL-1 
beta (1:1000, P420B; Invitrogen, USA), Glutaredoxin-1/GLRX1 
(1:1000, NBP2-55346; Novus Biologicals, Bio-Techne, USA), 
Thioredoxin-1/TRX1 (1:1,000, MAB19701; Novus Biologicals, 
Bio-Techne, USA), Nrf2 (1:500, ab31163; Abcam, UK), and GAPDH 
(1:10,000, #G9545; Sigma Aldrich) as loading control. 
Immunoreactive bands were detected using the Lite Ablot Extend 
Long Lasting Chemiluminescent substrate (Euroclone, Milan, Italy). 
Signals derived from appropriate HRP-conjugated secondary 
antibodies (Bethyl Laboratories, Montgomery, TX, United States) 
were captured by Chemi DocTM XRS 2015 (Bio-Rad Laboratories, 
Hercules, CA, United  States) and densitometric analysis was 
performed using Image Lab software (Version 5.2.1, Bio- 
Rad Laboratories).

2.3 Quantitative real time PCR (qRT-PCR)

One μg of total RNA per sample was reverse transcribed with the 
SuperScript. First-Strand Synthesis system and random hexamers as 
primers (Life Technologies, Carlsbad, CA, United  States). The 
expression levels of NF-kB, IL-1β, TLR4, TRX1, and GLRX1 were 
measured by qRT-PCR in an ABI PRISM 7,500 Sequence Detection 
System (Life Technologies) using Power SYBR Green I dye chemistry 
(ThermoFisher Scientific, Walthman, MA, United States). Data were 
analyzed using the 2-ΔΔCt method with TBP (TATA box binding 
protein) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
as housekeeping genes. Data are shown as fold change relative to 
controls. Primers used for qRT-PCR are reported in Table 2. mRNA 
expression of the TLR4 gene was normalized to the TATA-box-
binding protein, TBP, using the TaqMan® Gene Expression Master 
Mix, with the following TaqMan® Gene Expression Assays primers 
and probes (Applied Biosystems): TLR4, Hs00152939_m1 and TBP, 
Hs00427620_m1.

TABLE 1 Clinical data of patients with FRDA.

Patient Age (yrs) Sex GAA repeats Cardiomyopathy Diabetes

#1 19 F 680/350 No No

#2 14 M 848/848 Yes No

#3 8 M 448/848 Yes No
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2.4 4-HNE assay

The quantitative measurement of 4-HNE on FRDA fibroblasts was 
performed by a competitive ELISA kit (Lipid Peroxidation 4-HNE 
Assay kit, Abcam, Cambridge, UK), which allows the quantitation of 
the 4-HNE adduct by comparing its absorbance with that of a known 
4-HNE-BSA standard curve. Cells were homogenized in RIPA lysis 
buffer, centrifuged at 12,000 × g for 10 min, and the supernatant was 
collected. Samples absorbance was detected on a microplate reader 
(Enspire, PerkinElmer, USA) at 450 nm. Protein concentration was 
detected by the BCA method (ThermoFisher, Walthman, MA, 
United  States) and 4-HNE levels were normalized to protein 
concentrations of each sample.

2.5 IL-1β detection by ELISA

Cultured FRDA and control fibroblasts were collected and 
re-suspended in cold RIPA buffer, then subjected to sonication till the 
suspension was clarified and centrifuged at 1,500 × g for 10 min at 4°C 
to remove cellular debris. IL-1β concentrations were measured using 
the enzyme-linked immunosorbent assay Human IL-1 beta ELISA Kit 
(RAB0273, Sigma-Aldrich) on a microplate reader (Enspire, 
PerkinElmer, USA) at 450 nm and quantified using a standard curve, 
according to the manufacturers’ instructions. Cytokine levels were 
normalized to protein concentrations of each sample.

2.6 Statistical analysis

Statistical analysis was performed using the GraphPad Prism 5.0 
Software (San Diego, CA, United  States). Statistically significant 
differences between two groups were analyzed using Student’s t-test and 
comparisons between multiple groups by one-way ANOVA. All data are 
shown as mean ± SEM. Statistical significance was defined as *p < 0.05, 
**p < 0.001, ***p < 0.001 and ****p < 0.0001 compared to healthy 
controls or to untreated samples to compare each treatment condition.

3 Results

3.1 NF-kB and IL-1β are increased in 
fibroblasts of patients with FRDA

Starting from the negative cross-talk between the two main 
regulators of oxidative stress and inflammation (Wardyn et al., 2015; 
Gao et al., 2022; van der Horst et al., 2022), we analyzed levels of NF-kB 
and IL-1β in fibroblasts of n.3 FRDA patients and n.3 healthy subjects, 

to understand if the frataxin-mediated Nrf2 decrease might be followed 
by an inflammatory response in FRDA. As shown in Figures 1A,C 
we found a significant increase of NF-kB expression in patients, along 
with a consistent rise of IL-1β (Figures 1B,C). The quantification by 
ELISA confirmed the increase of IL-1β in FRDA fibroblasts (Figure 1D).

3.2 GLRX1 and TRX1 are up-regulated in 
FRDA fibroblasts

NF-kB undergoes redox regulation in cells by the interaction with 
the antioxidant enzymes TRX1 and GLRX1 (Reynaert et al., 2006). In 
particular, NF-kB is negatively regulated by S-glutathionylation, and 
the action of GLRX1 overcomes this inhibition by catalyzing the 
de-glutathionylation of NF-kB and promoting its activation (Aesif 
et al., 2011). Also TRX1 contributes to keep NF-kB in an active state 
by reducing the disulfide bond of Cys62 in the p50 NF-kB subunit 
(Yoshioka et al., 2006). Thus, given the increase of NF-kB expression 
in FRDA fibroblasts, we asked if TRX1 and GLRX1 might be implicated 
in its up-regulation. As shown in Figure 2, significant increases of both 
enzymes have been observed in FRDA cells, when compared to healthy 
subjects, either as mRNA transcript levels (Figures  2A,B) and as 
protein amounts (Figures 2C–E), thus suggesting a dual role for TRX1 
and GLRX1 in FRDA, as modulators of redox homeostasis but also as 
possible contributors in the inflammatory response.

3.3 TLR4 is increased in FRDA fibroblasts

NF-kB is the effector of the signaling pathway activated by TLR4 
(Baichwal and Baeuerle, 1997; Asehnoune et al., 2004), and the TLR4 
function depends on the activity of GLRX1 (Chantzoura et al., 2010; 
Moghimpour Bijani et  al., 2012). Therefore, given the increased 
expression of both NF-kB and GLRX1 in FRDA fibroblasts and moving 
from our recent evidence of a different TLR4 modulation in two sisters 
with FRDA (Petrillo et  al., 2024), we  wonder if TLR4 could 
be up-regulated in FRDA fibroblasts. As shown in Figure 3, we found a 
consistent increase of TLR4 mRNA levels in FRDA cells, respect to 
controls. This confirms the result obtained by comparative transcriptomic 
analysis on a family with FRDA (Petrillo et al., 2024), and support a role 
for TLR4 in the redox-mediated inflammation in this disease.

3.4 Ferroptosis induced the inflammatory 
response in control cells

Neuro-inflammation and ferroptosis are emerging as co-regulated 
mechanisms in the Disorders of Central Nervous System, and 

TABLE 2 Primer sequences used for qRT-PCR.

Gene Forward Reverse

GLRX1 CGATATCACAGCCACCAACCAC GACTCGAGGCACCGTTCTTG

TRX1 GAAGGGACAAAAGGTGGGTGA ATGGCAACTGGGTTTATGTCTTCA

NF-kB p65 CGCTGCATCCACAGTTTCCAGA AGTCCCCACGCTGCTCTTCTAT

TBP CCGAAACGCCGAATATAAT AAATCAGTGCCGTGGTTCGT

GLRX1, Glutaredoxin-1; TRX1, Thioredoxin-1; NF-kB p65, Nuclear factor-κB p65 subunit; TBP, TATA box binding protein.
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ferroptosis underlies pathogenesis in FRDA (La Rosa et al., 2020a; 
Sanz-Alcázar et al., 2024; He et al., 2024). Thus, we asked whether 
inducing ferroptosis in control cells could modulate the expression of 
NF-kB, IL-1β and TLR4. Therefore, we treated fibroblasts of healthy 
subjects with RSL-3, a well-known ferroptosis inducer, and we found 
increased levels of TLR4 and NF-kB mRNA following the treatment 
(Figure  4A). Western blot analysis (Figure  4B) confirmed the 
up-regulation of NF-kB and further evidenced a 50% induction of 
IL-1β protein expression. Interestingly, the RSL-3 treatment was able 
to increase also TRX1 and GLRX1 (Figure 5), either as mRNA levels 
(Figure  5A) or protein amounts (Figure  5B). These findings 
demonstrate a mutual regulation between ferroptosis and 
inflammation and suggest a role for TRX1 and GLRX1 at the 
crossroads of these two processes.

3.5 4-HNE: a potential mediator between 
ferroptosis and inflammation?

4-HNE, the most representative hallmark of ferroptosis 
(Mortensen et al., 2023), has been previously reported to modulate the 
activity of TLR4 and NF-kB signaling pathways (Gargiulo et al., 2015; 

Wang et al., 2019; Sharma et al., 2022). Thus, to explore a potential role 
for this by-product of lipid peroxidation in mediating ferroptosis and 
inflammation in FRDA, we analyzed the content of 4-HNE either in 
RSL-3-treated control cells and in fibroblasts of patients with 
FRDA. As reported in Figure  6, we  found a progressive time-
dependent rise of the 4-HNE content in control cells after ferroptosis 
induction (Figure 6A) and, importantly, we highlight a 2-fold increase 
of 4-HNE levels in fibroblasts of patients (Figure 6B). These findings, 
besides confirming ferroptosis in the pathogenesis of FRDA, may 
provide the basis for investigating 4-HNE as a potential mediator in 
the ferroptosis-driven inflammatory response in the disease.

4 Discussion

Oxidative stress represents a major pathophysiological contributor 
to FRDA onset and progression, and a great effort has been dedicated 
to restore redox balance in this disease (Lynch et al., 2024; Pilotto 
et al., 2024; Wang et al., 2024). However, the antioxidant therapies in 
clinical trials only partly reflect the promising results obtained in 
preclinical studies, indicating that additional pathways, potentially 
correlated to the antioxidant response, may be involved.

FIGURE 1

Densitometry of NF-kB p65 (A) and IL-1β (B) protein levels in fibroblasts of n.3 patients with FRDA vs. n.3 control cells (CTRLs), as determined by 
Western blot analysis. (C) Representative Western blot images of NF-kB p65, IL-1β and GAPDH. (D) IL-1β content as measured by ELISA in FRDA cells. 
Values are expressed as mean ± SEM. Statistical significance was determined by Student’s t test and defined as *p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001 respect to controls.
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The down regulation of Nrf2 has been shown to modulate the 
pathway of NF-kB in Nrf2 deficient mice and in primary cultured 
astrocytes (Paupe et al., 2009; D’Oria et al., 2013; Shan et al., 2013; 
Wardyn et al., 2015; Petrillo et al., 2017, 2019, 2021; La Rosa et al., 
2019, 2020b; Gao et al., 2022). Notably, the Nrf2 gene has a binding 
site for NF-kB (Lee et al., 2009; Jiang et al., 2013) and Nrf2 deficiency 
induces the degradation of IkBα, increasing NF-κB levels and 
triggering inflammation (Cuadrado et  al., 2014). In particular, as 
reported by Gao et al. (2022), in the classical NF-kB pathway the 
activation of the IκK complex induced the phosphorylation of IκBα 

thus promoting its degradation and the NF-kB activation. 
Furthermore, using a dominant-negative mutant of IkBα, in which 
Ser32 and Ser36 had been changed to Ala, the IkB degradation was 
inhibited, demonstrating a new mechanism of RAC1 modulated 
inflammatory pathway through the IkBα-mediated cross-talk between 
NF-kB and NRF2.

Moving from those previous evidences showing a functional cross 
talk between Nrf2 and NF-kB pathways, in this study we analyzed the 
TLR4/NF-kB/IL-1β axis in fibroblasts of patients with FRDA, in order 
to understand if it could be modulated as a consequence of Nrf2 

FIGURE 2

mRNA (A,B) and protein (C,D) levels of TRX1 and GLRX1 in n.3 FRDA fibroblasts and n.3 control subjects, as determined by qRT-PCR and Western blot 
analysis, respectively. (E) Representative Western blot of TRX1, GLRX1, and GAPDH (as loading control). Data are expressed as mean ± SEM. Statistical 
significance was determined by Student’s t test and defined as *p < 0.05, **p < 0.01, ***p < 0.001 respect to controls.
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deficiency. The expression of NF-kB, together with its upstream 
signaling molecule TLR4 and the inflammatory cytokine IL-1β, were 
all significantly increased in fibroblasts of patients with FRDA, 

indicating a reactive inflammatory response in the disease. 
Furthermore, as NF-kB and TLR4 are negatively regulated by the 
oxidation, specifically via S-glutathionylation, and given that their 
inhibition is overcome by the action of the de-glutathionylating 
enzyme GLRX1 (Reynaert et al., 2006; Chantzoura et al., 2010; Aesif 
et al., 2011), we also analyzed the cellular content of the redox enzymes 
GLRX1 and TRX1 in FRDA fibroblasts, to understand if a correlation 
between redox homeostasis and NF-kB signaling pathway might 
occur in this disease. To note, NF-kB binding sites have been identified 
within the promoter of GLRX1 (Aesif et al., 2011), thus reinforcing 
the hypothesis of a coordinated GLRX1–mediated regulation 
of NF-kB.

The TRXs and GLRXs are a family of ubiquitous redox proteins, 
distributed among extracellular fluid, cytoplasm, mitochondria and 
nucleus, displaying antioxidant functions (Lu and Holmgren, 2012; 
Mahmood et al., 2013). Neuroprotective roles for these proteins are 
emerging in several neurodegenerative diseases (i.e., Alzheimer’s 
Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis) (Johnson 
et al., 2015; McBean et al., 2015; Álvarez-Zaldiernas et al., 2016; Jia 
et al., 2021), although few studies have analyzed their involvement in 
FRDA (Shan et al., 2013; Seco-Cervera et al., 2020). TRX1 and GLRX1 
were down-regulated in dorsal root ganglia, but up-regulated in nerve 
roots, of a FRDA mouse model (YG8R mice) (Shan et al., 2013) and 

FIGURE 3

qRT-PCR analysis of toll-like receptor 4 (TLR4) expression in n. 3 
FRDA fibroblasts and n. 3 controls (CTRLs). Values are expressed as 
mean ± SEM. Statistical significance was determined by Student’s t 
test and defined as ****p < 0.0001 respect to controls.

FIGURE 4

(A) TLR4 and NF-kB p65 mRNA expression upon RSL-3 treatment, as determined by qRT-PCR. (B) Western blot analysis of NF-kB p65 and IL-1β protein 
amounts, along with representative Western blot images of the respective proteins. Values are expressed as mean ± SEM. Statistical analyses were 
performed by ANOVA and significance was defined as *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 respect to controls.
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discordant results have been reported in human fibroblasts (Seco-
Cervera et  al., 2020). Our findings show a consistent increase of 
GLRX1 and TRX1 in FRDA fibroblasts, thus opening the way for a 

dual role of these enzymes in FRDA, both as modulators of redox 
homeostasis but also as potential activators of the 
inflammatory response.

FIGURE 5

mRNA (A) and protein levels (B) of TRX1 and GLRX1 in control fibroblasts after RSL-3 treatment. A representative Western blot of TRX1 and GLRX1 is 
also reported. Values are expressed as mean ± SEM. Statistical analyses were performed by ANOVA and significance was defined as *p < 0.05, 
**p < 0.01, ***p < 0.001 and ****p < 0.0001 respect to controls.

FIGURE 6

4-HNE levels, as measured by ELISA, in n.3 control fibroblasts incubated for 3 h and 5 h with 250 nM RSL3 (A) and in FRDA fibroblasts from n.3 patients 
(B). Cells were used at similar passage numbers (9–11) and the assays performed in triplicates. Values are expressed as mean ± SEM. Statistical 
significance was determined by Student’s t test and defined as *p < 0.05 and **p < 0.01.
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Specific pathways related to neuro-inflammation are altered in 
the microglia, astrocytes, and myelinating glial cells in FRDA (Lu 
et al., 2009; Apolloni et al., 2022; Imbault et al., 2022). In particular, 
using the brain positron emission tomography analysis, the authors 
revealed increased glial activation in the brain regions implicated 
in FRDA neuropathology, i.e., dentate nuclei, brainstem, superior 
cerebellar peduncles, and cerebellar cortex, compared to the control 
subjects. This was correlated with earlier disease onset, shorter 
disease duration, and the rise of some plasma inflammatory 
cytokines (i.e., IL-6), indicating chronic neuro-inflammation in the 
disease (Khan et  al., 2022). Moreover, astrocytes lacking fxn 
displayed abnormal secretion of molecules associated with 
immunity and inflammation, and macrophage inflammatory 
protein-1 alpha (MIP-1α) (Khodagholi et al., 2018). The activation 
of immune system was among the earliest pathways regulated in the 
Fxn knockdown model (Chandran et  al., 2017), and a strong 
activation of IL-6, IL-1β and TNF-α have been reported in human 
frataxin-deficient Schwann cell lines by microarray analysis (Lu 
et al., 2009). Altered patterns of proteins involved in the immune 
response have been reported in peripheral cells of patients and in 
mouse models by proteomic and transcriptomic analyses (Kulic and 
Unschuld, 2016; Imbault et al., 2022), and neuro-inflammation was 
also documented in DRGs, in the dentate nucleus, cerebellum and 
brainstem of FRDA patients (Koeppen et  al., 2012, 2016; Khan 
et al., 2022).

Overall, these previous evidences support the importance to 
investigate inflammation in FRDA, not only to provide new 
insights into the knowledge of the disease pathogenesis, but also 
aimed at developing novel therapeutic approaches in this 
neurodegenerative disease. Furthermore, it must be considered 
that inflammation and ferroptosis are closely inter-connected (He 
et  al., 2024) and, importantly, 4-HNE, the main ferroptosis 
hallmark, has been shown to play a critical role in the function of 
TLR4 (Kim et  al., 2009; Wang et  al., 2019). Therefore, the 
systemic increase of 4-HNE that we previously reported in blood 
of patients with FRDA (La Rosa et al. 2020b), together with the 
high 4-HNE levels in FRDA fibroblasts and its time-dependent 
increase following the ferroptosis induction, strongly support the 
hypothesis of 4-HNE as a potential mediator between ferroptosis 
and inflammation in FRDA.

In conclusion, although many questions remain open and 
more extensive analyses will be essential to confirm these data 
and translate them into therapeutic effective options, nevertheless 
our findings open the way to a new perspective in FRDA, with 
the Nrf2-mediated redox imbalance predisposing cells to the 
inflammation, thus contributing to exacerbate the disease 
activity. This study will provide new insights, particularly aimed 
at the development of synergic anti-inflammatory and antioxidant 
combined therapies.
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