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Editorial on the Research Topic

Mechanisms of cholinergic transmission in motivation and cognition

Acetylcholine was one of the first fast neurotransmitters to be discovered and

measured in synaptic recordings (Loewi and Navratil, 1926; Dale, 1914, 1934; For a

historical overview see Tansey, 2006). Since then, researchers have found a central role

for acetylcholine in numerous functions including attention, memory, motivation, and

mood (Tobin, 2024; Cox andWitten, 2019; Picciotto et al., 2012). Disruption of cholinergic

transmission has been found in various neuropathology, from Alzheimer’s Disease to

Addiction disorders (Zhang et al., 2024; Tobin, 2024; Williams and Adinoff, 2008).

For this Research Topic, we have selected 6 original research and review articles

exploring the molecular mechanisms of cholinergic transmission in motivation, reward,

and reinforcement learning. Including, novel studies on the role of distinct receptor

populations and circuitry relevant for attention, reward and motivation (Fritz et al.;

Braunscheidel et al.; Kim et al.; Berezovskaia et al.), as well as two reviews of the most

relevant studies on cholinergic circuits and striatal cholinergic interneurons (Ratna and

Francis; Runyon et al.).

All main cholinergic brain systems have been linked to reward related computations

(Ruan et al., 2022). Cholinergic input to the motivation-associated mesolimbic dopamine

system arises from distinct neural populations, including projections from two brainstem

nuclei, the laterodorsal tegmental nucleus and the pedunculopontine nucleus (PPN), as

well as a small population of interneurons in the striatum, comprising 1%−2% of all striatal

neurons (Dautan et al., 2014; Oakman et al., 1995). Acetylcholine exerts its actions through

two receptor families, which originate from distinct genes and are functionally classified by

their pharmacological ligand selectivity: Nicotinic and muscarinic acetylcholine receptors.

Nicotinic acetylcholine receptors are fast-acting ligand-gated ion channels that

facilitate cation influx upon acetylcholine binding, while Muscarinic receptors are slow-

acting G-protein coupled receptors, mediating modulatory effects on target neurons

(Tobin, 2024; Mihailescu and Drucker-Colin, 2000). In the mammalian central nervous

system (CNS), restrictive or selective expression of these receptors in different brain regions

dictate their function (Ahmed et al., 2019). The most widely expressed nicotinic receptor

subtypes are the α7 homomeric and α4β2 heteromeric nAChRs (Hendrickson et al., 2013);
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while themuscarinic acetylcholine receptors consist of five subtypes

(M1-M5), which all are widely expressed throughout the CNS

(Tobin, 2024).

For decades, the muscarinic receptor family has been the

focus of drug development for treating neuropathology, despite

the important role of nicotinic receptors in cognitive and reward

functions (Tobin, 2024). In this Research Topic, Braunscheidel et al.

explored a novel positive allosteric modulator of α4β2 nicotinic

receptors, SR9883, for general reward and nicotine reinforced

behaviors. They found significant effects on nicotine reward

suggesting that SR9883 may hold promise as a novel treatment of

tobacco use disorder (Braunscheidel et al.).

In the research article, “Nicotinic α7 receptors on cholinergic

neurons in the striatum mediate cocaine reinforcement, but not

food reward,” Fritz et al. uncovered a new role for nicotinic

α7 receptors on striatal cholinergic interneurons selective in

regulating cocaine seeking and reward, but not natural food

reward. These findings suggest that acetylcholine signaling through

nicotinic α7 receptors regulate drug selective behaviors, linking

nicotinic receptor signaling not only to nicotine reward but also to

psychostimulant addiction (Fritz et al.).

Striatal cholinergic interneurons (CINs) are rare but exert

widespread influence on striatal output by regulating dopamine

and glutamate signaling (Cox and Witten, 2019; Picciotto et al.,

2012). These interneurons exhibit tonic firing but can generate

phasic responses to salient stimuli, contributing to processes such

as learning, plasticity, and motor control (Zhang and Cragg, 2017).

In the review article “Extrinsic and intrinsic control of striatal

cholinergic interneuron activity,” Ratna and Francis explore the role

of CINs, providing an overview of significant findings on their

activity. They focus on intrinsic factors and neuromodulators that

govern phasic CIN responses involved in learning and plasticity

(Ratna and Francis).

Acetylcholine exerts neuromodulatory actions through

muscarinic GPCRs on CINs, including the M4-receptors (Zhang

et al., 2002; Caulfield, 1993). Berezovskaia et al. found that selective

ablation of muscarinic M4 receptors from cholinergic neurons

influences locomotor responses to cocaine and scopolamine in a

sex-specific manner. The study points out important discrepancies

between experimental findings, potentially arising from distinct

mouse-lines and gender differences, relevant for both study design

considerations and interpretation within the field (Berezovskaia

et al.).

In the paper “Distinct cholinergic circuits underlie discrete

effects of reward on attention,” Runyon et al. review the role of

cholinergic circuits in reward and cognition, further examining

the contexts in which attention and reward computations interact,

to propose two discrete neural circuits responsible for stimulus-

reward associations (Runyon et al.).

Kim et al. explored the role of PPN cholinergic neurons for

updating action-outcome expectations in a reward reversal learning

paradigm using a Designer Receptors Exclusively Activated by

Designer Drugs (DREADDs) strategy in rats (Roth, 2016).

Collectively, their findings suggest that cholinergic PPN neurons

are essential for flexible update of behavioral strategies for

maximizing reward (Kim et al.).

The articles of our Research Topic provide insight in the

most recent findings on cholinergic receptor and circuit dynamics

in motivation and cognition. We hope that this Research Topic

will contribute to the understanding and furthering of scientific

progress in the field; and that it will be as interesting to read as it

was for us to compose it.
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