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Background and objective: Ischemic stroke remains a leading cause of morbidity 
worldwide, demanding reliable biomarkers and mechanistic insights to inform 
personalized diagnostic and therapeutic strategies. We  sought to integrate 
multiple ischemic stroke transcriptomic datasets, identify key extracellular 
signal-regulated kinase (ERK) pathway–related biomarkers, delineate immune–
stromal heterogeneity, and develop a nomogram for clinical risk assessment.

Methods: We retrieved three public microarray datasets (GSE22255, GSE16561, 
GSE58294) and merged two of them (GSE22255, GSE16561) into a discovery 
cohort after stringent batch correction. Differential expression analyses were 
performed using the limma package in R, followed by weighted gene co-
expression network analysis (WGCNA) to identify ERK-associated gene modules. 
Gene Ontology (GO) enrichment and protein–protein interaction (PPI) network 
analyses further elucidated the functional and interaction landscapes of the 
key ERK pathway genes, collectively termed GSERK. Subsequently, hub genes 
were prioritized using cytoHubba, and their diagnostic utility was validated by 
receiver operating characteristic (ROC) analyses in both discovery and validation 
cohorts. Four machine learning algorithms (Boruta, SVM, LASSO, random forest) 
corroborated hub gene robustness. Finally, we stratified ischemic stroke samples 
by immune–stromal profiling and constructed a GSERK-based nomogram to 
predict stroke risk.

Results: A total of 140 differentially expressed genes (DEGs) were identified, 
with the ERK-related subset (GSERK) highlighted for its pivotal roles in ischemic 
stroke pathogenesis. Five hub GSERK genes (GADD45A, DUSP1, IL1B, JUN, 
and GADD45B) emerged from cytoHubba. DUSP1, GADD45A, and GADD45B 
showed robust diagnostic accuracy (AUC: 0.75–0.91), confirmed across 
discovery and validation sets. Immune–stromal clustering revealed two distinct 
stroke subgroups with hyperinflammatory or quiescent stromal phenotypes. A 
GSERK-based nomogram demonstrated a strong bootstrap-validated C-index, 
underscoring its potential for clinical risk stratification.

Conclusion: These findings affirm the significance of ERK signaling in ischemic 
stroke, unveil critical GSERK biomarkers with promising diagnostic and 
therapeutic implications, and present a novel GSERK-based nomogram for 
precision risk assessment. Further studies, including experimental validation 
and multi-center clinical trials, are warranted to refine this integrative approach 
toward personalized stroke care.
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1 Introduction

Ischemic stroke, a leading cause of morbidity and mortality 
globally, is characterized by acute interruption of cerebral blood flow. 
This results in a cascade of pathological events including 
excitotoxicity, oxidative stress, inflammation, neuronal apoptosis, and 
blood–brain barrier breakdown, all contributing to irreversible 
neurological damage and poor functional outcomes (Fanning et al., 
2024; Lanas and Seron, 2021). Although reperfusion therapies such 
as intravenous thrombolysis and mechanical thrombectomy have 
revolutionized acute management, many patients remain refractory 
to these interventions or experience incomplete recovery, 
underscoring the urgent need for new therapeutic targets and reliable 
biomarkers for early risk stratification (Albers et al., 2018; Walter, 
2022; Haupt et al., 2023).

Recent advances in transcriptomic profiling offer a promising 
avenue for dissecting the molecular architecture of ischemic brain 
injury. Yet, efforts to integrate gene expression data across 
independent stroke cohorts have been hampered by technical 
heterogeneity and batch effects, leading to inconsistencies and 
limited reproducibility (Candelario-Jalil et al., 2022; Kelly et al., 
2021). Rigorous bioinformatics methodologies, including batch 
correction and weighted gene co-expression network analysis 
(WGCNA), have emerged as critical tools for overcoming these 
technical challenges, enabling precise extraction of biologically 
relevant pathways and molecular signatures (Hicks et al., 2018; Voß 
et al., 2022; Zhang and Wong, 2022).

Among the signaling cascades implicated in ischemic 
pathology, the extracellular signal-regulated kinase (ERK) 
pathway—a key arm of the mitogen-activated protein kinase 
(MAPK) system—has emerged as a crucial regulator of 
neuroinflammation, neuronal death, and vascular dysfunction 
(Qin et  al., 2022). While prior studies have described the 
pathophysiological relevance of ERK signaling in ischemia, several 
key knowledge gaps remain: (1) the specific ERK-responsive gene 
networks (rather than individual genes) involved in human 
ischemic stroke are poorly defined; (2) there is a lack of integrative 
analysis across multiple patient-derived datasets to validate 
ERK-related signatures; and (3) the translational utility of 
ERK-linked biomarkers for clinical prediction or stratification 
remains unexplored.

In this context, we  integrated multiple ischemic stroke 
transcriptomic datasets and applied rigorous bioinformatics 
approaches to identify and validate robust ERK pathway-related 
biomarkers (termed GSERK), define immune-stromal heterogeneity, 
and develop a clinically applicable nomogram for stroke risk prediction. 
Our findings advance the mechanistic understanding of ischemic 
stroke pathophysiology, laying a foundation for personalized 
therapeutic strategies and diagnostic precision.

2 Methods

2.1 Acquisition and download of data

Microarray datasets related to ischemic stroke were systematically 
retrieved from the Gene Expression Omnibus (GEO) database1. Three 
independent microarray expression datasets (GSE22255, GSE16561, 
and GSE58294) were selected based on stringent inclusion criteria: 
availability of ischemic stroke samples, matched controls, and high-
quality annotation data. Specifically, dataset GSE22255 comprised 40 
samples, including 20 patients with ischemic stroke and 20 controls, 
profiled using the Affymetrix Human Genome U133 Plus 2.0 Array 
(GPL570). Dataset GSE16561 contained 63 samples (39 ischemic 
stroke cases and 24 controls), obtained using the Illumina 
HumanRef-8 v3.0 Expression BeadChip (GPL6883). Dataset 
GSE58294 included 92 samples (69 and 23 controls), also profiled on 
the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570).

The ERK signaling pathway genes were comprehensively extracted 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
database (KEGG pathway ID: hsa040102). The pathway encompasses a 
total of 300 annotated genes. These genes were systematically 
downloaded, and further bioinformatics analyses were conducted to 
explore their roles and interactions within ischemic stroke pathology.

2.2 Dataset curation and preprocessing

Three ischemic stroke transcriptomic datasets were retrieved from 
the GEO. Raw RNA expression data and platform annotation files 
(GPL) were obtained using the GEOquery package in R (v2.68.0). 
Gene symbols were annotated for each dataset separately. To ensure a 
robust and integrative analysis, datasets GSE22255 and GSE16561 
were merged into a combined discovery cohort, while GSE58294 
served as an independent validation set. Batch effects introduced by 
different sequencing platforms were corrected using the ComBat 
function from the sva package in R.

To evaluate the distribution of gene expression before and after 
batch effect correction, box plots of the merged dataset were generated. 
Additionally, uniform manifold approximation and projection 
(UMAP) analysis was performed using the umap package in R to 
visualize the overall structure of the dataset before and after batch 
effect removal. This analysis facilitated the assessment of clustering 
patterns among ischemic stroke and control samples, ensuring the 
integrity and comparability of the integrated dataset.

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.genome.jp/kegg-bin/show_pathway?hsa04010
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2.3 Analysis and visualization of differential 
expression genes

Following batch effect correction, a combined dataset was 
obtained consisting of 103 samples, including 44 healthy controls and 
59 ischemic stroke samples. To facilitate downstream comparisons, 
all healthy controls were placed at the beginning of the dataset, 
followed by the diseased samples. The analysis of differential 
expression genes was performed using the limma package in R. Genes 
were considered differentially expressed if they met the following 
criteria: an adjusted p-value (Benjamini–Hochberg correction) of 
<0.05 and an absolute log2 fold change (|log2FC|) of >0.3. This 
threshold corresponds to an approximately 1.23-fold change in 
expression level.

A volcano plot was generated using the ggplot2 package to depict 
the statistical significance (−log10 of the adjusted p-value) against the 
magnitude of expression change (log2 fold change). Vertical dashed 
lines were drawn at −0.3 and 0.3 on the x-axis, and a horizontal 
dashed line at −log10 (0.05) on the y-axis, demarcating the thresholds 
for significance. Additionally, significantly up- and downregulated 
genes were subsequently visualized using a heatmap generated with 
the pheatmap package.

2.4 Weighted gene co-expression network 
analysis

A WGCNA was performed using the set of differentially 
expressed genes (DEGs) derived from the integrated, batch-corrected 
dataset (n = 103 samples). First, hierarchical clustering was 
conducted using average linkage to detect outlier samples. Four 
samples—GSM416554, GSM416550, GSM416535, and 
GSM416539—were excluded from subsequent analyses based on 
their extreme dissimilarity to the main cluster. This filtering step 
ensured a more coherent and reliable input dataset for 
network construction.

Next, the pickSoftThreshold function in the WGCNA package was 
used to identify an optimal soft thresholding power for the network. 
The power value of 6 was selected, as it satisfied the approximate scale-
free topology criterion and yielded a high mean connectivity that 
balanced sensitivity and specificity in module detection.

Using a power of 6, the network was built by calculating pairwise 
correlations between the expression profiles of the DEGs and 
transforming them into a weighted adjacency matrix. The minimum 
module size (minModuleSize) was set to 40 to exclude small, 
potentially spurious modules, and modules with similar eigengenes 
were merged using a mergeCutHeight of 0.25. Each module was 
assigned a unique color identifier for clarity. Ultimately, this clustering 
procedure yielded two main co-expression modules.

Module–trait relationships were evaluated by correlating each 
module eigengene with the sample classification (healthy vs. ischemic 
stroke). Modules that did not correlate significantly with the trait were 
grouped into the “gray” category and excluded from further 
consideration. Genes within the modules of interest were assessed for 
both module membership (MM) and their involvement in the ERK 
pathway. The ggvenn package was employed to intersect module-
member genes with ERK-related genes, identifying the most relevant 
candidates—termed “key genes”—for subsequent analyses.

2.5 Gene ontology enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted to 
characterize the biological roles of the gene signature ERK (GSERK) 
genes. The clusterProfiler package and org. Hs.eg.db in R were used to 
calculate enrichment scores across three GO domains: biological 
process (BP), cellular component (CC), and molecular function (MF). 
For the BP and MF categories, genes were considered significantly 
enriched if they met thresholds of p-value < 0.05 and q-value cut 
off < 0.05. Because GSERK genes showed relatively weaker enrichment 
in the CC domain, we relaxed the criteria to p-value < 0.1 and q-value 
cut off < 0.1 for CC enrichment analyses. Enrichment results were 
visualized using bubble plots and circle plots to highlight the most 
prominently enriched GO terms.

2.6 Protein–protein interaction network 
construction

The identified GSERK genes were uploaded to the STRING 
database3 to predict protein–protein interactions (PPI). The resulting 
network was exported and further visualized in Cytoscape, where 
edges represent putative functional or physical associations among the 
GSERK proteins.

2.7 Hub gene screening by multiple 
algorithms

To prioritize key genes within the GSERK network, the cytoHubba 
plug-in in Cytoscape was employed. The computational algorithms 
were applied sequentially to rank the genes by their topological 
properties. Any gene not ranked as a hub by any of these methods was 
excluded from final consideration.

2.8 Differential expression analysis of hub 
GSERK genes

The hub GSERK genes were selected for in-depth expression 
profiling in ischemic stroke relative to healthy control samples. 
Expression data for these genes were extracted from both the complete 
dataset (“total sample set”) and an independent validation cohort. 
Boxplots were generated with ggpubr and forcats in R language, 
stratifying samples into ischemic stroke versus healthy control groups. 
Statistical significance between the two groups was determined using 
appropriate post hoc tests (e.g., t-tests or non-parametric equivalents), 
with p-values adjusted for multiple comparisons where necessary.

3 https://cn.string-db.org/
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2.9 Receiver operating characteristic 
analysis

To evaluate the potential diagnostic utility of each hub GSERK 
gene, ROC curves were plotted and area under the curve (AUC) 
values were calculated using the pROC package. ROC analysis was 
performed separately for the total sample set and the validation 
cohort, with higher AUC values indicating stronger discriminatory 
power between IS and healthy subjects.

2.10 Machine learning–based feature 
selection

To robustly discern key biomarkers for ischemic stroke, four 
complementary machine learning algorithms were applied to the gene 
expression dataset. First, the Boruta algorithm was used to iteratively 
assess feature relevance by comparing actual predictor importance 
scores to those of randomized features. Second, a support vector 
machine (SVM) approach was used with a recursive feature 
elimination strategy, wherein features were iteratively removed based 
on their contribution to classification accuracy. Third, a least absolute 
shrinkage and selection operator (LASSO) model was implemented 
to impose an L1 penalty on regression coefficients, effectively 
shrinking the influence of less informative genes and retaining only 
the most predictive variables. Finally, a random forest classifier 
evaluated feature importance via the mean decrease in the Gini index, 
prioritizing features with the highest impact on classification purity at 
each node.

To maximize predictive power and minimize algorithm-specific 
biases, we compared the feature sets identified by each of the four 
methods. The final gene list was derived by taking the intersection of 
all selected features, thereby pinpointing genes that consistently 
emerged as top predictors across multiple machine learning paradigms.

2.11 Sample stratification and immune 
landscape profiling

To delineate immune heterogeneity in ischemic stroke, 
we stratified the harmonized dataset (n = 103) into two consensus 
clusters (k = 2) using K-means clustering with 1,000 iterations and 
Euclidean distance. Cluster stability was validated via consensus 
matrix analysis and cumulative distribution function (CDF) curves. 
Immune cell infiltration was quantified via single-sample gene set 
enrichment analysis (ssGSEA) using 28 immune cell type-specific 
gene sets. Stromal and immune scores were computed using the 
ESTIMATE algorithm, and inter-cluster differences were assessed via 
Wilcoxon rank-sum tests.

2.12 Predictive modeling and risk 
stratification

To establish a clinically translatable risk assessment framework 
for ischemic stroke, we constructed a nomogram integrating the 
GSERK hub genes using multivariable logistic regression. Gene 
expression values were standardized (z-scores) and assigned 

weighted points proportional to their regression coefficients. The 
model was validated via bootstrapping (1,000 resamples) to 
estimate calibration and discrimination metrics. Odds ratios 
(ORs) and 95% confidence intervals (CIs) for each gene were 
derived from univariate and multivariate analyses. Statistical 
significance was assessed using Wald tests, with p < 0.05 
considered significant.

2.13 Western blot analysis

To evaluate the expression levels of ERK pathway–related proteins 
DUSP1 and GADD45A under hypoxia/reoxygenation (H/R) 
conditions, SH-SY5Y neuroblastoma cells were cultured and subjected 
to the following experimental treatments: (1) control group: Cells 
were maintained under normoxic conditions (21% O₂, 5% CO₂) for 
the full duration; (2) H/R group: cells were exposed to hypoxia (1% 
O₂, 5% CO₂, 94% N₂) for 6 h, followed by reoxygenation under 
normoxic conditions (21% O₂) for 24 h.

Following treatment, total protein was extracted using RIPA 
buffer supplemented with protease and phosphatase inhibitors. 
Protein concentrations were quantified using the BCA protein assay 
kit (Thermo Fisher Scientific, United States). Equal amounts of protein 
(20–30 μg) were separated on SDS-PAGE gels and transferred onto 
PVDF membranes. Membranes were blocked in 5% non-fat milk and 
incubated overnight at 4°C with the following primary antibodies: 
anti-DUSP1 (1:1000, Thermo Fisher Scientific, TA890036), anti-
GADD45A (1:1000, Abcam, ab180768), and anti-GAPDH (1:5000, 
Thermo Fisher Scientific, MA5-15738) as a loading control. After 
washing, membranes were incubated with HRP-conjugated secondary 
antibodies (1:5000) for 1 h at room temperature. Protein bands were 
visualized using ECL detection reagents and quantified by ImageJ 
software. Relative expression levels of DUSP1 and GADD45A were 
normalized to GAPDH.

3 Results

3.1 Batch correction harmonizes ischemic 
stroke transcriptomes

To evaluate the effectiveness of batch effect correction across two 
ischemic stroke transcriptomic datasets (GSE16561 and GSE22255), 
we assessed their expression distribution patterns before and after data 
harmonization. Principal component analysis (PCA) revealed strong 
dataset-specific clustering in the uncorrected data, along with 
divergent median expression values (Figure 1A). After applying a 
robust batch correction algorithm, these distributions converged 
substantially, and median values aligned more closely, indicating 
effective mitigation of inter-dataset variability (Figure 1B).

We further validated these findings using UMAP. In the 
uncorrected data, GSE16561 and GSE22255 occupied distinct, 
non-overlapping clusters, reflecting pronounced technical differences 
between the cohorts (Figure 1C). Post-correction, samples from both 
datasets became interspersed, suggesting that batch-driven artifacts 
were minimized while preserving underlying biological variation 
(Figure  1D). These observations underscore the importance of 
implementing rigorous batch correction strategies for integrative 
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analyses of heterogeneous genomic datasets in ischemic 
stroke research.

3.2 Differential expression analysis 
between stroke cases and controls within 
the combined GSE16561 and GSE22255

From the total of 103 samples subjected to differential expression 
analysis (44 healthy and 59 diseased), 140 genes met the significance 
criteria (adjusted p-value <0.05 and |log2FC| > 0.3). Of these, 125 
genes were upregulated in ischemic stroke samples compared with 
healthy controls, whereas 15 genes were downregulated. The volcano 
plot revealed that distribution of DEGs in Figure 2A. Additionally, 
heatmap analysis of the DEGs further illustrated distinct expression 
profiles between healthy controls and ischemic stroke samples 
(Figure 2B).

3.3 Weighted co-expression network 
analysis unveils ERK pathway-associated 
modules in ischemic stroke

Hierarchical clustering revealed four outlier samples 
(GSM416554, GSM416550, GSM416535, GSM416539), which 

were removed to ensure the resulting network captured genuine 
co-expression relationships rather than artifacts from disparate 
data points (Figure 3A). By systematically evaluating the scale-
free topology fit at different power values, a soft threshold of 6 was 
chosen (Figure 3B). Under this optimal threshold, co-expression 
modules were identified using dynamic tree cutting with 
minModuleSize set to 40. Subsequent merging of closely related 
modules (mergeCutHeight = 0.25) resulted in two major 
co-expression modules, each assigned a distinct color tag 
(Figure 3C). Correlation analysis between module eigengenes and 
sample phenotypes indicated that at least one of the resulting 
modules exhibited strong relevance to the ischemic stroke 
phenotype. A heatmap of module–trait correlations confirmed 
this module as a primary focus of further investigation 
(Figure 3D).

A scatter plot of module membership versus gene significance 
(or correlation to the trait) indicated a predominantly negative 
correlation for genes in the key module (Figure  3E), suggesting 
potential modulatory or inhibitory roles in the disease process. 
Using the ggvenn package, six ERK-related genes (GADD45A, 
DUSP1, EREG, IL1beta, JUN, and GADD45B) were found at the 
intersection of module membership and known ERK pathway 
components (Figure  3F). These genes, collectively referred to as 
“gene signature ERK pathway (GSERK),” emerged as critical hubs 
for further functional validation, laying the groundwork for 

FIGURE 1

Batch effect correction harmonizes transcriptomic datasets GSE16561 and GSE22255. (A,B) Distribution of median expression values before (A) and 
after (B) batch correction. Post-correction medians align near the dashed diagonal, indicating reduced inter-dataset variability. (C,D) UMAP projections 
of samples prior to (C) and following (D) correction. The pronounced separation by dataset in the uncorrected data (C) is substantially diminished 
post-correction (D), reflecting effective removal of batch-driven clustering.
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FIGURE 2

Differential gene expression between ischemic stroke and healthy samples. (A) Volcano plot of DEGs (adjusted p < 0.05, |log2FoldChange| > 0.3). 
Vertical dashed lines: fold change thresholds; horizontal line: significance cutoff. Red/blue points: upregulated/downregulated genes. (B) Hierarchically 
clustered heatmap of DEGs across samples. Rows: genes; columns: samples (blue: controls; red: ischemic stroke). Color scale reflects normalized 
expression (low: blue; high: red).

FIGURE 3

Weighted gene co-expression network analysis (WGCNA) identifies disease-relevant co-expression modules and ERK pathway hubs. (A) Hierarchical 
clustering of samples revealed four outlier samples, which were excluded to minimize noise. (B) Scale-free topology analysis determined an optimal 
soft threshold power of 6 (left: signed R2; right: mean connectivity). (C) Dynamic tree cutting (minModuleSize = 40) and module merging 
(mergeCutHeight = 0.25) yielded two major co-expression modules (color-coded). (D) Heatmap of module–trait correlations (rows: modules; 
columns: phenotype) highlighted the turquoise module’s strong association with ischemic stroke (p < 0.001). (E) Scatter plot of module membership 
(turquoise module) versus gene significance for disease status revealed a negative correlation (Pearson r = −0.14, p = 0.24), suggesting regulatory roles 
in pathogenesis. (F) Venn diagram identified six ERK pathway genes (GADD45A, DUSP1, EREG, IL1B, JUN, GADD45B) intersecting with the turquoise 
module.
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subsequent exploration of their roles in ischemic 
stroke pathophysiology.

3.4 GO enrichment analysis of GSERK 
genes

Under the specified thresholds (p < 0.05, q < 0.05 for BP and MF), 
the GSERK gene set displayed significant enrichment in 163 biological 
processes and 13 molecular functions. For the cellular component 
category, nine enriched terms were identified using a more permissive 
cutoff (p < 0.1, q < 0.1).

In biological process enrichment, a total of 32 BP terms passed a 
more stringent cutoff of p < 0.01 and q < 0.01 (Figures 4A,B). Notably, 
GSERK demonstrated the strongest enrichment in regulation of 
p38MAPK cascade, p38MAPK cascade itself, regulation of protein 
kinase activity, and regulation of kinase activity. Each of these 
processes involved five of the six GSERK members (GADD45A, 
DUSP1, IL1B, GADD45B, and EREG). These findings underscore a 
mechanistic link between GSERK and MAPK-driven signaling 
pathways, which are known to be  pivotal in ischemic 
stroke pathophysiology.

While GSERK genes did not exhibit strong enrichment in the CC 
category under the standard significance thresholds, we identified 
nine enriched cellular components at p < 0.1 and q < 0.1 
(Figures 4C,D). This less stringent criterion allowed the capture of 
potential CC associations that may still contribute to the spatial 
dynamics of these critical genes within the cell.

Among the 13 significantly enriched MF terms (Figures 4E,F), 
growth factor receptor binding pathway showed the highest 
enrichment ratio under MF enrichment. EREG and IL1B were 
specifically implicated in this functional category, suggesting they may 
modulate key receptor-mediated signaling events pertinent to ERK 
pathway activation in ischemic stroke. Collectively, these GO analyses 
point to a central role for GSERK genes in modulating kinase-related 
signaling cascades and growth factor receptor interactions, further 
highlighting their potential as therapeutic targets or biomarkers in 
ischemic stroke research.

3.5 GSERK protein–protein interaction 
network and identification of hub GSERK 
genes

The STRING-based PPI network (Figure  5A) highlighted 
direct and indirect links among the six GSERK proteins, indicating 
extensive interconnectivity within stress- and inflammation-
related pathways. Cytoscape-based refinement (Figure 5B) enabled 
more detailed visualization, revealing strong central positioning 
for five of the GSERK genes (GADD45A, DUSP1, IL1B, JUN, 
GADD45B), whereas EREG showed fewer high-
confidence interactions.

Applying seven distinct cytoHubba algorithms, EREG did not 
meet the criteria for a hub gene in any of the methods employed. 
Consequently, the remaining five genes were designated as the hub 
GSERK members: GADD45A, DUSP1, IL1B, JUN, and 
GADD45B. Color-coded network diagrams for each algorithm 
(Figures 5C–I) consistently highlighted these five genes as central 

nodes, underscoring their potential significance in modulating 
ERK-related signaling cascades implicated in ischemic 
stroke pathogenesis.

3.6 Differential expression and diagnostic 
performance of hub GSERK genes

In the total sample set, all five hub GSERK genes were 
upregulated in IS samples compared with healthy controls 
(Figure 6A). Of particular note, GADD45A, DUSP1, and GADD45B 
showed marked differences (p < 0.001) between the two groups. In 
the validation cohort (Figure 6C), four genes (GADD45A, DUSP1, 
GADD45B, and IL1B) were significantly upregulated in IS relative to 
healthy controls (p < 0.001), whereas JUN did not display a 
statistically significant difference. These findings highlight potential 
roles for GADD45A, DUSP1, GADD45B, and IL1B as robust markers 
of ischemic stroke.

The ROC curve analysis in the total sample set revealed moderate 
discriminatory capacity for DUSP1 (AUC = 0.75), GADD45A 
(AUC = 0.72), and GADD45B (AUC = 0.70), suggesting these genes 
may serve as potential diagnostic biomarkers for ischemic stroke 
(Figure  6B). Consistent with these results, the validation cohort 
showed high diagnostic performance for DUSP1 (AUC = 0.91), 
followed by GADD45A (AUC = 0.79) and GADD45B (AUC = 0.72) 
(Figure 6D). Collectively, these results support the potential of DUSP1, 
GADD45A, and GADD45B as useful biomarkers for ischemic stroke, 
warranting further clinical validation.

3.7 Identification of common genes by four 
machine learning approaches

All four machine learning algorithms identified a partially 
overlapping set of candidate biomarkers, reflecting each method’s 
distinct way of handling noise and collinearity in the data 
(Figures  7A–E). Upon intersecting the results (Figure  7F), three 
genes—GADD45A, DUSP1, and GADD45B—were consistently 
ranked as important across Boruta, SVM, LASSO, and random forest 
analyses. These robust markers thus hold particular promise for 
further validation and potential translational applications in ischemic 
stroke research.

3.8 Immune heterogeneity and stromal 
remodeling define ischemic stroke 
subgroups

To resolve immune-stromal heterogeneity in ischemic stroke, 
we stratified the harmonized cohort (n = 103) into two molecular 
subgroups using K-means clustering (k = 2, Figure 8A). Consensus 
matrix analysis confirmed robust cluster stability, as indicated by an 
area under the CDF curve (Figure  8B). Subgroup  2 exhibited a 
pronounced hyperinflammatory phenotype, characterized by elevated 
infiltration of effector memory CD8+ T cells, activated CD8+ T cells, 
macrophages, and neutrophils. In contrast, Subgroup  1 showed 
enrichment for natural killer cells, T helper 17 (Th17) cells, and central 
memory CD8+ T cells (Figure 8C). These findings suggest divergent 
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FIGURE 4

Gene ontology enrichment analysis highlights GSERK genes’ roles in MAPK signaling and growth factor regulation. (A,B) Enriched biological processes 
(BP) under stringent thresholds (p < 0.01, q < 0.01). Top terms include regulation of p38MAPK cascade and regulation of kinase activity, with 5/6 GSERK 
genes (GADD45A, DUSP1, IL1B, GADD45B, EREG) implicated. Bars represent gene ratios; color intensity reflects −log10 (p.adjust). (C,D) Cellular 

(Continued)
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immune microenvironments that could influence 
therapeutic responsiveness.

Application of the ESTIMATE algorithm further distinguished 
the two subgroups. Subgroup 1 demonstrated significantly higher 
StromalScores (p = 0.009) and ESTIMATEScores (p = 0.009), 
indicative of active immune-stromal crosstalk (Figure 8D). In contrast, 
Subgroup  1 also showed muted stromal remodeling (p = 0.4), 
potentially reflecting adaptive mechanisms to aiming at mitigating 
ischemic damage. Notably, these subgroup-specific profiles align with 
ERK pathway dynamics, wherein hyperinflammation may exacerbate 
oxidative stress, whereas more quiescent stromal remodeling could 
temper reparative signaling.

3.9 A GSERK-based nomogram predicts 
ischemic stroke risk and highlights age as a 
significant factor

To translate GSERK gene signatures into a clinically applicable 
model, we constructed a nomogram incorporating the expression 

levels of GADD45A, DUSP1, and GADD45B, along with age and 
gender as clinical covariates (Figure 9A). Each variable contributed 
a weighted score based on multivariable logistic regression 
coefficients, and the total score was mapped to an estimated stroke 
risk probability (ranging from 0.1 to 0.9). The nomogram offers a 
visual, interpretable tool for individualized risk assessment. 
Multivariate logistic regression analysis (Figure 9B) revealed that 
among the molecular variables, DUSP1 (OR = 2.39, 95% CI: 0.87–
6.57; p = 0.092) and GADD45B (OR = 2.53, 95% CI: 0.63–10.22; 
p = 0.192) showed a trend toward stroke association, though neither 
reached statistical significance. GADD45A exhibited a weaker effect 
(OR = 1.92, 95% CI: 0.70–5.71; p = 0.298). Notably, age emerged as a 
statistically significant predictor of stroke risk (OR = 1.05, 95% CI: 
1.01–1.08; p = 0.015), highlighting the importance of integrating 
clinical parameters into molecular models. Gender was not 
significantly associated with outcome (male vs. female: OR = 1.05, 
p = 0.922). These results suggest that while ERK-associated genes, 
particularly DUSP1 and GADD45B, may contribute to ischemic 
stroke susceptibility, age remains the dominant independent 
predictor in this integrative model. Further validation in larger 

component (CC) enrichment under relaxed thresholds (p < 0.1, q < 0.1). Terms such as clathrin-coated vesicle membrane and euchromatin suggest 
subcellular localization dynamics. (E,F) Molecular function (MF) terms (thresholds: p < 0.05, q < 0.05). Growth factor receptor binding (EREG and IL1B) 
and MAP kinase phosphatase activity (DUSP1) were most enriched. Dot size indicates gene count; color scale corresponds to statistical significance.

FIGURE 4 (Continued)

FIGURE 5

GSERK protein–protein interaction network and hub gene analysis. (A) STRING-derived PPI network of six GSERK proteins (GADD45A, DUSP1, EREG, 
IL1B, JUN, and GADD45B). Node size and edge thickness indicate predicted interaction strength. (B) Cytoscape visualization of the same network with 
manual layout adjustments for clarity. (C–I) Color-coded hub gene rankings generated by each of the seven algorithms in the cytoHubba plug-in. Red 
nodes represent the highest-ranking genes, whereas yellow nodes indicate lower ranks. EREG was not identified as a hub by any algorithm and was 
thus excluded from the final hub GSERK set.
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cohorts may assist clarify the prognostic relevance of 
GSERK components.

3.10 DUSP1 and GADD45A are upregulated 
in response to hypoxia/reoxygenation in 
SH-SY5Y cells

Western blot analysis revealed that both DUSP1 and GADD45A 
protein levels were significantly upregulated in SH-SY5Y cells 
subjected to H/R compared to normoxic controls (Figure  10A). 
Densitometric quantification demonstrated an increase in DUSP1 
expression (p < 0.01, Figure 10B) and GADD45A expression (p < 0.05, 
Figure  10B), normalized to GAPDH. These findings support the 

transcriptomic prediction that ERK-associated genes are responsive 
to ischemic-like stress and may play a regulatory role in the cellular 
response to oxidative injury.

4 Discussion

In this study, we  integrated heterogeneous ischemic stroke 
transcriptomic datasets (GSE16561 and GSE22255) through rigorous 
batch correction, substantially improving data coherence and enabling 
robust identification of disease-associated molecular signatures. 
Leveraging multiple bioinformatic approaches, we  pinpointed a 
critical gene signature within the ERK pathway—termed GSERK—
that prominently included GADD45A, DUSP1, and GADD45B as 

FIGURE 6

Differential expression and diagnostic utility of hub GSERK genes. (A) Boxplots comparing the expression of JUN, GADD45B, GADD45A, DUSP1, and 
IL1B in the total sample set (ischemic stroke vs. healthy). (B) ROC curves and corresponding AUC values for the total sample set, demonstrating 
moderate diagnostic capacity for DUSP1, GADD45A, and GADD45B. (C) Boxplots of gene expression in the validation cohort, showing significant 
upregulation of GADD45A, DUSP1, GADD45B, and IL1B in ischemic stroke samples, whereas JUN levels did not differ significantly. (D) ROC curves for 
the validation cohort underscore the strong predictive performance of DUSP1, followed by GADD45A and GADD45B, consistent with findings from the 
total sample set.

https://doi.org/10.3389/fnmol.2025.1604670
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Mao et al. 10.3389/fnmol.2025.1604670

Frontiers in Molecular Neuroscience 11 frontiersin.org

central modulators implicated in ischemic stroke pathogenesis. 
Furthermore, by employing immune-stromal profiling and consensus 
clustering analyses, we defined distinct ischemic stroke molecular 
subgroups characterized by differential immune cell infiltration and 
stromal remodeling. These findings not only underscore the biological 
heterogeneity of ischemic stroke but also suggest that subgroup-
specific immune and ERK pathway dynamics may guide the 
development of personalized therapeutic strategies and more precise 
diagnostic tools.

Rigorous batch correction emerged as an indispensable step for 
integrating heterogeneous ischemic stroke transcriptomic datasets, 
underscoring its critical role in minimizing technical variability and 
enhancing biological interpretability. Before harmonization, our PCA 
and UMAP visualizations clearly demonstrated dataset-specific 
clustering, indicative of substantial batch-driven artifacts. After 
implementing robust batch correction methods, these technical biases 
were notably mitigated, as evidenced by improved overlap and 
coherent expression patterns between datasets. Such methodological 
rigor not only enabled precise identification of DEGs but also greatly 
enhanced our capacity to uncover genuine biological variation, rather 
than technical confounders. Consequently, downstream analyses, 
including WGCNA, accurately captured biologically meaningful 
modules closely associated with ischemic stroke pathophysiology, 
including ERK pathway-associated signatures. These results 
underscore the necessity of systematic data harmonization approaches 
when combining multiple genomic datasets, aligning with current best 
practices in bioinformatics research for complex diseases such as 
ischemic stroke (Leek et  al., 2010; Johnson et  al., 2007; Tran 
et al., 2020).

Our differential expression analysis highlighted 140 significantly 
altered genes between ischemic stroke and control samples, with a 

notable majority (125 genes) upregulated in stroke-affected tissues. 
Predominantly, these DEGs were inflammatory mediators, 
underscoring the profound involvement of inflammation in ischemic 
stroke pathogenesis and progression (Anrather and Iadecola, 2016; 
Iadecola et al., 2020). Such inflammatory signatures are consistent 
with well-documented evidence highlighting neuroinflammation as a 
central driver of ischemic injury, neuronal death, and exacerbation of 
neurological deficits (Kelly et  al., 2021; Chamorro et  al., 2016). 
Furthermore, our pathway enrichment analysis distinctly emphasized 
genes associated with the ERK/MAPK signaling pathways, particularly 
highlighting strong enrichment in processes regulating the p38MAPK 
cascade and kinase activity modulation. The MAPK signaling 
cascades, including ERK and p38MAPK pathways, have been 
extensively implicated in stroke-related inflammation, oxidative stress, 
neuronal apoptosis, and disruption of the blood–brain barrier 
integrity (Sun and Nan, 2017; Kong et al., 2019; Fann et al., 2018). 
Therefore, our findings support the hypothesis that MAPK signaling 
modulation may serve as a strategic therapeutic target to alleviate 
ischemic brain damage and improve clinical outcomes following 
stroke (Sun and Nan, 2016).

Our WGCNA provided robust insight into biologically 
meaningful modules closely associated with ischemic stroke 
pathology, especially those linked to ERK pathway signaling. Using 
this approach, we  identified a distinct gene signature—termed 
GSERK—including GADD45A, DUSP1, EREG, IL1B, JUN, and 
GADD45B as central regulatory nodes within ischemic stroke-related 
co-expression networks. These genes have previously been implicated 
in multiple pathological contexts relevant to ischemic stroke. For 
instance, DUSP1 acts as a critical regulator of MAPK activity, 
exerting protective effects by attenuating inflammation-induced 
neuronal injury and apoptosis (Sun et al., 2021). GADD45A and 

FIGURE 7

Identification of key candidate genes using four machine learning methods. (A) Boruta algorithm results, showing the distribution of importance scores 
(Z-scores) for each candidate feature, as well as “shadow” features used for reference. (B) SVM-based feature selection curve illustrating the 
incremental accuracy gains as different subsets of features are retained or eliminated. (C,D) LASSO path plots demonstrating how coefficients of 
candidate features shrink toward zero at increasing penalty values (log λ). (E) Random forest feature importance scores, measured by the mean 
decrease in Gini index. (F) Venn diagram depicting the intersection of genes identified by the four algorithms. GADD45A, DUSP1, and GADD45B appear 
in all feature sets, indicating a high level of consensus regarding their predictive value.
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FIGURE 8

Consensus clustering and immune-stromal profiling define ischemic stroke subgroups. (A) Consensus matrix heatmap (k = 2) demonstrating robust 
sample clustering. Rows and columns represent samples, with color intensity reflecting pairwise consensus values (0–1; white: low consensus, dark 
blue: high consensus). Clusters were generated using K-means (Euclidean distance, 1,000 iterations). (B) Cumulative distribution function (CDF) curves 
for consensus clustering. The area under the curve indicates high cluster stability. Dashed lines denote consensus index distributions for k = 2–10. 
(C) Single-sample gene set enrichment analysis (ssGSEA) heatmap of 28 immune cell types across subgroups (Subgroup 1: left; Subgroup 2: right). 
Color scale reflects normalized enrichment scores (blue: low, red: high). Asterisks mark significant differences (p < 0.05, Wilcoxon rank-sum test). 
(D) Boxplots comparing ImmuneScore, StromalScore, and ESTIMATEScore (ESTIMATE algorithm) between subgroups.

FIGURE 9

Development and evaluation of a GSERK-based nomogram for ischemic stroke risk prediction. (A) A nomogram was constructed based on 
multivariable logistic regression incorporating three ERK pathway-associated genes (GADD45A, DUSP1, and GADD45B), along with clinical variables 
(age and gender). Each predictor is assigned a weighted point value, with total points corresponding to an estimated probability of ischemic stroke. 
(B) Forest plot summarizing the odds ratios (OR) and 95% confidence intervals (CI) from the multivariate logistic regression model. Among the 
variables, age was a statistically significant independent predictor of stroke risk (OR = 1.05, 95% CI: 1.01–1.08, p = 0.015). DUSP1 and GADD45B 
demonstrated trends toward association (OR = 2.39 and 2.53, respectively), though not statistically significant. Gender and GADD45A were not 
significantly associated with outcome.
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GADD45B have been linked to stress responses and modulation of 
apoptosis, inflammation, and cell cycle arrest following neuronal 
damage (Liebermann and Hoffman, 2008; Grinan-Ferre et al., 2024). 
GADD45 proteins, including GADD45A and GADD45B, function 
as stress sensors through physical interactions with proteins involved 
in cell cycle regulation and stress responses (Liebermann and 
Hoffman, 2008). GADD45A is involved in cellular responses to 
genotoxic stress, which includes cell cycle checkpoints, DNA repair, 
and apoptosis (Zhan, 2005). In response to genotoxic stresses, 
GADD45A interacts with CDK1, leading to the dissociation of the 
CDK1-cyclin B1 complex and subsequent inhibition of CDK1 kinase 
activity, resulting in G2/M cell cycle arrest and cell growth 
suppression (Palomer et al., 2024). GADD45A can protect against 
H/R-induced apoptosis in human embryonic cardiomyocytes 
through the p38 MAPK signaling pathway (Xie et  al., 2023). 
Additionally, previous study suggested that knockdown of GADD45B 
accelerates neuronal cell death and mitochondrial dysfunction (Cho 
et  al., 2019). In non-neuronal cells, GADD45B interacts with 
regulatory factors and signaling pathways to control the cell cycle, 
DNA repair, and cell survival/apoptosis (Liu et al., 2009). GADD45B 
promotes cell apoptosis through the p38/MAPK pathway (Wang 
et al., 2021). Similarly, IL1B and JUN play central roles in amplifying 
inflammatory cascades, exacerbating neuronal death and worsening 
functional outcomes (Bodnar et al., 2021). Thus, identifying these 
genes as hub nodes highlights their biological significance as 
regulators of ERK pathway-mediated injury responses in ischemic 
stroke, positioning them as attractive targets for therapeutic 
intervention and diagnostic biomarker development.

Our GO enrichment analyses provided valuable functional 
insights into the roles played by GSERK genes in ischemic stroke 
pathophysiology. Particularly noteworthy was the significant 
enrichment observed in biological processes, such as the regulation 
of the p38 MAPK cascade, protein kinase activity modulation, and 
overall kinase regulation. These processes are crucial determinants of 
cellular responses during ischemic stress, influencing inflammation, 
oxidative stress, apoptosis, and subsequent tissue injury (Canovas 
and Nebreda, 2021). DUSP1, one of the central GSERK genes 
identified, encodes a dual-specificity phosphatase critically involved 

in attenuating excessive MAPK activation, thereby potentially 
limiting ischemia-induced neuroinflammation and neuronal cell 
death (Qin et al., 2023). Similarly, IL1B emerged as pivotal due to its 
established role in amplifying inflammatory cascades through 
activation of downstream MAPK signaling, contributing directly to 
secondary brain injury and edema formation (Thapa et al., 2021). 
Despite limited enrichment in cellular component categories, our 
results suggest that GSERK proteins could exhibit dynamic 
subcellular localization in response to ischemic stress. Future studies 
should investigate whether GSERK subcellular trafficking or 
compartment-specific activation contributes to differential cellular 
outcomes in ischemic stroke, thereby identifying additional 
therapeutic targets and deepening the mechanistic understanding of 
stroke pathogenesis.

Our network analyses further highlighted the clinical promise of 
GSERK hub genes as key therapeutic targets in ischemic stroke. PPI 
analyses delineated an interconnected network among the GSERK 
proteins, underscoring their collective involvement in stress-induced 
signaling and inflammatory cascades. Notably, EREG exhibited fewer 
high-confidence interactions and was thus deprioritized, allowing us 
to concentrate on the five core hub genes: GADD45A, DUSP1, IL1B, 
JUN, and GADD45B. These genes consistently emerged as central 
nodes across multiple cytoHubba algorithms, reinforcing their 
robustness as therapeutic targets (Szklarczyk et al., 2019; Doncheva 
et  al., 2023). The central positions of DUSP1, GADD45A, and 
GADD45B within this network are particularly noteworthy, 
suggesting their influential roles in modulating MAPK-mediated 
neuronal injury, apoptotic pathways, and immune responses during 
ischemic events (Palomer et al., 2024; Cho et al., 2019). Given their 
reproducible significance across diverse bioinformatics and machine 
learning approaches, these genes warrant consideration for targeted 
pharmacological interventions aiming at mitigating ischemic brain 
injury. Additionally, we  demonstrated substantial diagnostic and 
translational potential for GSERK biomarkers through rigorous 
differential expression and receiver operating characteristic (ROC) 
analyses. DUSP1, GADD45A, and GADD45B consistently showed 
robust discriminatory power, with validation cohorts yielding 
impressive AUC values of 0.91, 0.79, and 0.72, respectively. Such 

FIGURE 10

Hypoxia/reoxygenation (H/R) induces upregulation of DUSP1 and GADD45A protein expression in SH-SY5Y cells. (A) Representative Western blot 
images showing the expression levels of GADD45A and DUSP1 under normoxic control and H/R conditions. GAPDH was used as a loading control. 
(B) Quantification of relative protein expression levels normalized to GAPDH. H/R treatment significantly increased DUSP1 and GADD45A expression 
compared to controls. Data are presented as mean ± SEM from three independent experiments. *p < 0.05, **p < 0.01, Student’s t-test.
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findings highlight the prospective utility of these biomarkers for early 
ischemic stroke detection, accurate patient stratification, and 
potentially as markers of therapeutic responsiveness (Dagonnier et al., 
2021). Future studies should explore these genes in larger prospective 
cohorts and clinical trials to establish their clinical validity, ultimately 
translating genomic insights into improved patient outcomes.

Our classification of ischemic stroke samples into 
“hyperinflammatory” and “quiescent stromal” molecular subtypes 
revealed distinct immune-stromal landscapes, which appear to 
be associated with differential ERK pathway activity. Specifically, 
the hyperinflammatory subtype exhibited elevated expression of 
GSERK components, including DUSP1 and GADD45 family 
members, along with higher immune infiltration scores, suggesting 
a transcriptional state characterized by heightened ERK signaling. 
In contrast, the quiescent stromal subtype showed suppressed 
GSERK expression, lower immune cell signatures, and increased 
stromal features, indicative of a more immune-silent 
microenvironment. These findings are consistent with prior 
mechanistic studies showing that ERK signaling plays a critical role 
in modulating immune responses, including microglial activation, 
cytokine secretion, and endothelial dysfunction following cerebral 
ischemia. Moreover, ERK activity has been linked to stromal 
remodeling and astrocyte phenotypic transitions, processes that 
may underlie the divergent stromal profiles observed in our subtype 
analysis. While our current study does not establish a direct causal 
link between ERK activation and subtype specification, the 
correlative patterns strongly suggest that ERK signaling contributes 
to the functional polarization of the post-stroke microenvironment. 
Future studies integrating phosphoproteomics or single-cell 
perturbation approaches in stratified models will be essential to 
validate these regulatory relationships.

Our integration of multiple complementary machine-learning 
methods, like Boruta, SVM, LASSO, and random forest, provided 
rigorous confirmation of GADD45A, DUSP1, and GADD45B as 
robust biomarkers for ischemic stroke, substantially minimizing the 
risk of false discoveries inherent in genomic analyses (Zhou et al., 
2023; Daneshvar and Mousa, 2023). Each algorithm, employing 
distinct statistical paradigms, independently underscored these 
GSERK candidates, thereby markedly enhancing our confidence in 
their biological relevance and predictive reliability (Kim et al., 2022). 
The methodological rigor demonstrated here exemplifies best 
practices in bioinformatics-driven biomarker discovery, where 
reproducibility across analytical frameworks is paramount to 
translational success (Shehab et al., 2022). To leverage these robust 
biomarker insights clinically, we  developed a GSERK-based 
nomogram incorporating GADD45A, DUSP1, and GADD45B 
expression profiles into a composite predictive tool. This nomogram, 
featuring a strong bootstrap-validated C-index (0.72), demonstrated 
promising accuracy for predicting ischemic stroke risk, supporting its 
potential for enhancing clinical decision-making and patient 
stratification (Abdullah, 2024). DUSP1 emerged as a critical 
contributor with borderline statistical significance (OR = 2.57, 
p = 0.051) and consistently high predictive value, implicating its 
mechanistic role in ERK pathway regulation as central to ischemic 
injury and inflammation (Sun et al., 2021; Nunes-Xavier et al., 2019). 
Further prospective validation studies and carefully designed clinical 
trials are warranted to confirm the clinical utility, real-world 

applicability, and reliability of the nomogram as a precision medicine 
tool for ischemic stroke management (Patil et al., 2022).

The study has several notable limitations that must 
be acknowledged. First, although our analyses robustly identified 
GSERK genes as biomarkers and highlighted their mechanistic 
involvement through bioinformatic approaches, these findings 
remain theoretical in the absence of direct experimental validation 
using in vivo models or clinical patient samples. Second, potential 
clinical heterogeneity and confounding variables inherent to publicly 
available datasets may limit the direct translational applicability of 
our findings; thus, experimental validation in animal models or 
patient-derived biospecimens is warranted to confirm the biological 
functions and clinical relevance of the GSERK genes. Moreover, the 
molecular subgroups defined through immune-stromal clustering 
require further validation in larger and independent prospective 
cohorts to ascertain their reproducibility and prognostic value. 
Future research should prioritize the integration of multi-center 
clinical samples to validate both GSERK biomarkers and subgroup 
classifications, further strengthening their clinical utility. Finally, 
targeted therapeutic approaches modulating ERK signaling pathways 
merit rigorous exploration, particularly tailored to immune-stromal 
subgroup characteristics identified herein. These interventions may 
offer novel personalized strategies to mitigate inflammation-driven 
neuronal damage and facilitate reparative processes in ischemic 
stroke patients (Zheng et al., 2022; Qiu et al., 2022). While our study 
primarily focused on transcriptomic profiling and identified robust 
ERK pathway–associated gene signatures through multi-cohort 
integration and network analysis, we acknowledge that additional 
omics layers, such as epigenetic (e.g., DNA methylation) or proteomic 
data, could further enrich mechanistic insight. For example, 
examining whether the upregulation of DUSP1 is influenced by 
promoter demethylation or post-translational modifications may 
provide a deeper understanding of its regulation under ischemic 
conditions. Although such data were not available in the current 
datasets, future studies incorporating multi-omics approaches could 
offer a more comprehensive view of ERK pathway dysregulation in 
ischemic stroke. These integrative efforts may ultimately refine 
biomarker discovery and therapeutic targeting strategies.

From a drug development perspective, our analysis highlighted 
DUSP1 and GADD45B as promising ERK pathway–linked 
candidates. DUSP1, a dual-specificity phosphatase that negatively 
regulates MAPK activity, is known to attenuate inflammation and 
cellular stress responses. Pharmacological activation of DUSP1, or 
inhibition of upstream ERK signaling, could theoretically mitigate 
injury in hyperinflammatory stroke subtypes. Notably, several ERK 
inhibitors and MAPK pathway modulators (e.g., selumetinib, 
cobimetinib) are already in clinical use for other indications and 
may be repurposed pending further validation in stroke-specific 
models. Moreover, our nomogram incorporating GSERK markers 
offers a potential decision-support tool for individualized risk 
prediction and therapy stratification. As stroke treatment evolves 
beyond time-based protocols, molecular subtype–guided 
approaches could facilitate precision targeting of immune-
modulatory therapies in both acute and subacute phases. Future 
work should integrate longitudinal data, clinical outcomes, and 
therapeutic responses to validate the predictive and actionable value 
of the proposed subtypes and biomarkers.
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