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Epilepsy is a chronic neurological disorder characterized by abnormal synchronous 
discharges of neurons in the brain. It affects approximately 70 million people 
worldwide, and approximately 30% of patients are resistant to existing antiepileptic 
drugs. Repeated seizures can lead to neuronal damage, glial cell activation and 
neuroinflammation, creating a vicious cycle of seizures, inflammation, and 
neuronal damage. Recent studies have shown that microRNAs play a key role in 
the pathological process of epilepsy by regulating the phenotype, inflammatory 
response and metabolic function of astrocytes and microglia. In addition, long 
noncoding RNAs, as upstream regulators of miRNAs, influence miRNA function 
by acting as competitive endogenous RNAs, further regulating glial cell activation 
and inflammatory responses. This paper is the first to systematically elucidate the 
synergistic role of miRNAs and lncRNAs in epilepsy through glial cell polarization, 
metabolic imbalance and exosome-mediated transcellular communication, providing 
a theoretical framework for the development of multitargeted intervention strategies.
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1 Introduction

Epilepsy, a chronic neurological disorder characterized by recurrent seizures due to 
aberrant neuronal hyperexcitability, affects more than 70 million individuals globally, and 
approximately 30% of patients are resistant to currently available therapies (Espinosa et al., 
2025). While neuronal dysfunction remains a central focus in the study of epilepsy, glial cells—
astrocytes and microglia—have emerged as pivotal drivers of epileptogenesis, orchestrating 
neuroinflammation, synaptic remodelling, and metabolic imbalance (Hui Yin et al., 2013; 
McCormick and Contreras, 2001; Grillo, 2014). Activated astrocytes disrupt glutamate 
homeostasis due to impaired transporter function, leading to excitotoxic neuronal damage, 
whereas microglia are polarized toward the proinflammatory (M1) phenotype and release 
cytokines (e.g., IL-1β and TNF-α) that exacerbate blood–brain barrier leakage and synaptic 
hyperexcitability (Ghouli and Binder, 2025; Chen et al., 2017). This glia-centric “seizure-
inflammation-neuronal injury” axis underscores the urgent need for multitargeted 
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interventions to disrupt the cycle of pathological events (Scheid and 
Teich, 2007; Alsharafi et al., 2015; Hennebelle et al., 2014).

Within this axis, noncoding RNAs—microRNAs (miRNAs) and 
long noncoding RNAs (lncRNAs)—serve as master regulators of glial 
plasticity. miRNAs, small (~22 nt) posttranscriptional silencers 
(Martino et al., 2025), directly modulate glial gene expression. Despite 
increasing insights into the individual functions of miRNAs and 
lncRNAs, their synergistic regulation of glial crosstalk in epilepsy 
remains unknown. Previous studies have differentiated these 
mechanisms—focusing solely on miRNA-mediated neuronal 
excitability or lncRNA-driven blood–brain barrier (BBB) disruption—
while neglecting the integrated glial network. This review is the first 
to delineate the cooperative roles of miRNAs and lncRNAs in glial-
mediated epileptogenesis through three mechanisms: (1) Polarization 
control, i. e., bidirectional regulation of astrocyte A1/A2 and 
microglial M1/M2 polarization (e.g., miR-146a/Notch-1 vs. lncRNA 
SNHG5/NF-κB); (2) Metabolic rewiring, i. e., the modulation of 
glutamate uptake (miR-181c-5p/GLT-1) and oxidative stress (lncRNA 
UCA1/Nrf2) through miRNA–lncRNA networks; (3) Exosomal 
communication, i.e., propagation of inflammation through neuronal-
glial communication via extracellular vesicles (EVs) carrying miR-155 
or lncRNA ILF3-AS1.

By integrating the function of glia with that of noncoding RNAs, 
this work provides a transformative perspective for targeting the 
glial-RNA axis in drug-resistant epilepsy, bridging molecular 
discovery to therapeutic innovation.

2 miRNA-mediated regulation of 
astrocytic function

As the most numerous glial cell population in the central nervous 
system (CNS), astrocytes are widely distributed in normal neural 
tissues and play several key physiological regulatory roles. In the brain, 
these cells not only participate in the regulation of neurohomeostasis 
by maintaining neuronal structural integrity and promoting functional 
activities, but also play important roles in the regulation of ionic 
homeostasis, energy metabolism, synaptic network assembly and 
neurotransmitter transmission (Murphy-Royal et al., 2015; Eberhard 
et al., 2025). Notably, this class of glial cells with immunomodulatory 
properties has shown significant pathological relevance in several 
human diseases, and in particular their involvement in epileptic 
pathomechanisms by mediating the neuroimmune response has been 
confirmed by several studies (Shi et al., 2025). In vitro experimental 
data have shown that astrocytes in the activated state have significant 
inflammatory factor-secreting properties, a finding that is consistent 
with the abnormally high expression of pro-inflammatory mediators, 
such as interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), 
in experimental epilepsy models and epileptogenic human brain tissue 
(Zhou et  al., 2018). Recent research has shown that astrocyte 
dysfunction is closely associated with the pathological onset and 
progression of epilepsy, suggesting a central regulatory role in the 
pathogenesis of the disease (Shen et al., 2016). Some researchers have 
suggested that regulating the polarisation status of astrocytes may be a 
novel intervention strategy for the treatment of refractory epilepsy, 
and this therapeutic concept may also be applicable to other brain 
injury disorders involving glial cell polarisation (Zhang et al., 2022). 
Abnormally activated astrocytes in pathological states have been 

shown to exacerbate neuroinflammatory responses through the 
sustained release of pro-inflammatory cytokines. Experimental 
evidence suggests that this hyperactivated state is an important driver 
of inflammation-mediated neuronal degeneration (Devinsky et al., 
2013). Moreover, it has been demonstrated that inflammatory over 
activation of astrocytes can result in impaired glutamate transport, 
which, in turn, can trigger abnormal neuronal firing and ultimately 
induce epileptiform seizures (Sanz and Garcia-Gimeno, 2020). More 
information regarding the mechanisms by which miRNAs regulate 
astrocyte function is shown in Figure 1 and Table 1.

2.1 Proinflammatory miRNAs drive 
astrocyte 1 polarization

miR-132-3p: In a rat model of lithium-pilocarpine-induced 
sustained status epilepticus (SE), it was found that abnormally high 
expression of miR-132-3p drove the secretion of IL-1β and TNF-α 
from type A1 astrocytes, exacerbating neuronal damage and seizures 
by targeting gene methylated CpG-binding protein 2 (MeCP2) (down) 
and repressor reticulin 4 (RTN4) (up) (Wanet et al., 2012). Notably, 
targeted silencing of miR-132-3p (antagomiR-132) using specific 
inhibitors effectively inhibited the polarization process of type A1 
astrocytes, seizure severity, and recurrence, highlighting therapeutic 
potential (Zhang et al., 2022; Figure 2).

miR-155: in the microenvironment surrounding human brain 
tissue lesions, miR-155 is mainly localized in the cytoplasm of 
activated astrocytes, and pathologically (Korotkov et al., 2020; Huang 
L. G. et al., 2018). It regulates the inflammatory activation status of 
astrocytes and occupies a central regulatory position in 
neuroinflammatory pathology (Ammothumkandy et al., 2025). On 
the one hand, it can reduce the intensity of the neuroinflammatory 
response by inhibiting the release of pro-inflammatory mediators 
from type A1 astrocytes, and on the other hand, it can maintain the 
physiological function of the BBB-ECM complex structure by down-
regulating the expression of MMP3, which ultimately realizes a 
multidimensional intervention on epilepsy-related pathological 
damage (Korotkov et al., 2018; Toledo et al., 2025).

miR-146a: the study found that the overexpression of miR-146a is 
positively correlated with the severity of neuroinflammation (Perry 
et  al., 2008; Saba et  al., 2014). This neuroprotective mechanism 
involves coordinated regulation of downstream effectors: (1) Notch 
signaling modulation: The pivotal role of the pathway in neural stem 
cell maintenance and glial-neuronal lineage specification is disrupted 
through miR-146a silencing, which targets complementary binding 
sites within the 3′-untranslated regions (3’-UTRs) of Notch-1 
mRNA. (2) Astrocytic activation control: Glial fibrillary acidic protein 
(GFAP), a hallmark of reactive astrogliosis, exhibits pathological 
overexpression in epileptic tissues that correlates with 
neuroinflammatory exacerbation (Venkatesh et al., 2013; Ahmadian 
et  al., 2019; Hol and Pekny, 2015). miR-146a downregulation 
attenuates hippocampal gliosis by suppressing GFAP expression. (3) 
Apoptotic pathway regulation: Elevated caspase-9 activity in mesial 
TLE patients, positively associated with seizure frequency 
(Wetherington et al., 2008), is counteracted by miR-146a-mediated 
inhibition of caspase-9 signaling, reducing neuronal apoptosis. 
Silencing miR-146a attenuates gliosis and neuronal apoptosis, though 
specific inhibitors need development (Vega-García et al., 2021; Huang 
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et al., 2019). Future investigations should prioritize high-precision 
miR-146a targeting approaches, coupled with cross-species validation 
and comprehensive toxicological profiling to advance 
translational potential.

2.2 Anti-inflammatory miRNAs attenuating 
astrocyte activation

miR-15a: it was found that miR-15 was significantly down-
regulated in epilepsy and could serve as a potential biomarker for 
seizures (Ma, 2018; Cui et al., 2019). Mechanistically, miR-15a parallels 
the regulatory activity of miR-146a by directly binding complementary 
sequences within the 3′-untranslated region (3’-UTR) of GFAP 
mRNA, thereby suppressing posttranscriptional regulation and 
attenuating neurotoxic A1 astrocytic polarization. miR-15a/GFAP has 
great therapeutic potential as a key regulatory pathway in epileptic 
pathophysiology against seizures (Fan et al., 2020).

MiR-129-5p: immunohistochemical analyses demonstrate that 
exosome-derived miR-129-5p administration reverses SE-induced 
upregulation of glial activation markers while attenuating 
hippocampal IL-1β, IL-6, and TNF-α levels—effects mediated through 
HMGB1/TLR4 axis suppression and downstream inflammatory 
pathway inhibition (Liu et  al., 2024; Wu et  al., 2022). Upstream 

regulatory mechanisms involve the lncRNA NEAT1, which elevates 
IL-6/COX-2/TNF-α production via miR-129-5p sequestration and 
Notch pathway activation in epileptic networks (Wan and Yang, 2020). 
These findings collectively position miR-129-5p as a multimodal anti-
inflammatory agent with therapeutic potential for SE, suggesting that 
pharmacological targeting of NEAT1 or disruption of NEAT1-miR-
129-5p interactions could yield combined neuroprotective and anti-
inflammatory benefits.

miR-128-3p: the mitogen-activated protein kinase (MAPK) 
cascade plays critical regulatory roles in inflammatory processes and 
other cellular functions (Kyriakis and Avruch, 2001). Clinical and 
experimental studies document consistent downregulation of 
miR-128-3p in both TLE patients and rodent models throughout 
disease progression (Alsharafi and Xiao, 2015). Mechanistic 
investigations reveal MAPK6 expression counteracts the 
neuroprotective effects exerted by miR-128-3p in this cellular model 
(Pang et al., 2022).

2.3 miRNA-mediated dysregulation of 
astrocytic glutamate homeostasis

Among the mechanisms regulating neurotransmitter homeostasis 
in epileptogenesis, astrocytes maintain the dynamic homeostasis of 

FIGURE 1

Mechanisms of lncRNA in glial cell polarization during epilepsy.
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extracellular glutamate through their membrane-localized excitatory 
amino acid transporters (Glutamate Aspartate Transporter and 
Glutamate Transporter 1), and functional abnormalities of this 
system have been demonstrated to be an important pathological basis 
for hippocampal dysfunction and epileptogenesis (Hennebelle et al., 
2014). Mechanistic analyses have shown that Glutamate Transporter 
1 (GLT-1), as a core executive of the glutamate clearance system in 
the CNS, mainly undertakes the function of synaptic interstitial 
glutamate reuptake. Experimental studies have shown that specific 
inhibition of GLT-1 expression in astrocytes significantly elevates 
extracellular glutamate concentration, leading to a significant increase 
in seizure frequency and duration in epilepsy model animals, and 
restoration of glutamate transporter function through enhancement 
of GLT-1 stability has become an important research direction in 
antiepileptic therapy (Chotibut et al., 2014; Shibata et al., 1997; Norris 
et al., 2025). In pathological states, the expression and function of 
Glutamate Aspartate Transporter (GLAST) and GLT-1 are 
characterized by significant downregulation. This abnormality is 
closely related to the delivery mechanism of miRNAs within EVs 
secreted by pathogenic neurons: epilepsy-derived EVs deliver specific 
miRNAs to astrocytes via transcellular transport, which in turn 
inhibits the biosynthesis of glutamate transporter proteins and 
ultimately impairs the glutamate uptake capacity of glial cells (Seifert 
et al., 2006; Peghini et al., 1997; Wang F. et al., 2020; Ma et al., 2024). 

The resulting imbalance in glutamate homeostasis induces aberrant 
neuronal depolarization via NMDA receptor overactivation and 
drives synaptic plasticity remodeling (e.g., pathological alterations 
such as characteristic hippocampal mossy fiber outgrowths), which 
significantly reduces seizure threshold (Peterson and Binder, 2020; 
Peterson et al., 2021). These findings not only confirm the centrality 
of the astrocyte glutamate transport system (GLAST/GLT-1 axis) in 
epilepsy regulation, but also provide a theoretical framework for the 
development of novel therapeutic strategies for glial cell targeting 
(Shen et al., 2016). The specific mechanism is illustrated in Figure 2. 
Based on the above mechanisms, recent studies have been devoted to 
analyzing the key miRNAs targets that regulate glutamate metabolism 
in astrocytes, and the following are the research progresses with 
important translational value:

miR-181c-5p: in the multidimensional regulatory network of 
neurological diseases, miR-181c-5p is not only involved in the 
pathological process of Alzheimer’s disease (Manzano-Crespo et al., 
2019), but also exhibits an important regulatory function in 
epileptogenesis and development. In recent years, it has been found 
that EVs act as key delivery vehicles for miRNAs (Yu D. et al., 2022), 
mediating intercellular communication to achieve gene expression 
regulation and biological function remodeling (Yang et al., 2019). A 
typical paradigm can be  seen in the neuron–glial cell interaction 
system: neuron-derived EVs, after internalized and uptaken by 

TABLE 1 Functional roles of miRNAs in glial cells.

miRNA Levels Targets Levels Effects on 
glial cells

Model Epilepsy 
type

References

miR-132-3p ↑
MeCP2

RTN4

MeCP2↓

RTN4↑
A1 polarization↑ In vivo SE Zhang et al. (2022)

miR155 ↑ MMP3 ↑ A1 polarization↑ In vivo TLE Korotkov et al. (2018)

miR-146a ↓

Notch-1

GFAP

Caspase-9

↓ A1 polarization↓ In vivo TLE Liu et al. (2017)

miR-15a ↑ GFAP ↓ A1 polarization↓ In vivo – Fan et al. (2020)

miR129-5p ↑
HMGB1/TLR4

Notch
↓ A1 polarization↓ In vivo SE Wan and Yang (2020)

miR-128-3p ↑ MAPK6 ↓ A1 polarization↓ In vitro – Pang et al. (2022)

miR-181c-5p ↑ PKCδ/GLT-1 ↓

Diminished 

glutamate uptake by 

astrocytes

In vitro

–

Ma et al. (2024)

miR-155-5p ↑ GLAST ↓

Diminished 

glutamate uptake by 

astrocytes

In vivo – Gao et al. (2017)

miR-22 ↑ P2X7R ↓
Enhanced glutamate 

uptake by astrocytes
In vivo MTLE-HS

Guerra Leal et al. 

(2022)

miR-155 ↑
Inhibiting factor 

of SOCS1
↓ M1 polarization↑ In vivo TBI Aloi et al. (2023)

miR-200c-3p ↑ DUSP9 ↓ M2 polarization↑ In vivo – Du et al. (2019)

miR-106b-5p ↑
RGMa-Rac1-

JNK/p38 MAPK
↑ M1 polarization↑ In vivo SE Yu T. et al. (2022)

miR-135a-5p ↓ SIRT1 ↓
Promotion of 

microglia apoptosis
In vitro – Wang et al. (2021)

miR-181c-5p ↑ SIRT1 ↓ M1 polarization↓ In vivo – Kong et al. (2020)
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astrocytes, significantly enhance glutamate transport efficacy, which 
in turn achieves negative feedback regulation of neuronal 
electrophysiological activities (Men et al., 2019). Of particular interest, 
EVs released from epilepsy-derived neurons can specifically act on the 
protein kinase Cδ (PKCδ) /GLT-1 signaling axis in astrocytes by 
transporting miR-181c-5p, leading to impaired glial glutamate 
clearance and ultimately significantly elevating epilepsy susceptibility 
(Ma et al., 2024). This finding not only reveals a novel molecular 
mechanism of neuron–glia interaction in epileptic processes, but also 
lays a theoretical foundation for the development of therapeutic 
strategies targeting the contents of EVs, such as miRNA inhibitors or 
GLT-1 agonists.

miR-155-5p: MiR-155-5p (i.e., miR-155) exhibits pleiotropic 
regulatory features, and its function involves multiple pathological 
dimensions such as diffuse large B-cell lymphoma, imbalance of 
immune homeostasis (Ji et al., 2015), and tumor microenvironment 
regulation (Gasparini et al., 2014; Fang et al., 2024). Mechanistic 
studies have shown that activator protein-1 (AP-1), as a 
transcriptional regulatory complex composed of members of the 
JUN/FOS family, plays a central regulatory role in biological 
processes such as inflammatory response, cell proliferation, and 
programmed death by forming heterodimeric complexes that bind to 
specific DNA sequences (Karin et al., 1997). Of particular note, a 
pentylenetetrazol (PTZ)-induced epilepsy model demonstrated a 
significant antiepileptic effect, and its mechanism of action involves 
a targeted intervention in the AP-1/miR-155-5p/GLAST signaling 
cascade network: the compound reduces the downstream miR-155-5p 
expression level by inhibiting the AP-1 transcriptional activity, and 
at the same time reverses the miRNA inhibitory effect on the 
glutamate transporter GLAST in astrocytes. This dual regulatory 
action ultimately effectively corrected PTZ-induced disorders of 
glutamate metabolism and epileptiform seizures by restoring the 
efficacy of extracellular glutamate clearance, revealing the 

translational potential of the AP-1/miR-155-5p/GLAST pathway as a 
novel target for epilepsy therapy (Gao et al., 2017).

miR-22: miR-22 exhibits neuroprotective and neuromodulatory 
roles across epilepsy subtypes. Preclinical studies reveal reduced 
circulating miR-22 levels in refractory epilepsy models (Jimenez-
Mateos et  al., 2015a), consistent with its established antiapoptotic 
function in traumatic brain injury paradigms (Ma et  al., 2016). 
Mechanistically, miR-22 modulates neuronal hyperexcitability, 
neuroinflammatory responses, and maladaptive neurogenesis—
processes driven by ATP-mediated P2X7 receptor (P2X7R) activation 
(Jimenez-Mateos et al., 2015a). In drug-resistant epilepsy, neocortical 
P2X7R overexpression disrupts glutamate-GABA homeostasis by (1) 
reducing astrocytic glutamate uptake and (2) suppressing GABA 
synthesis, thereby enhancing GABAergic signaling and destabilizing 
excitatory-inhibitory balance (Barros-Barbosa et  al., 2016). This 
miR-22/P2X7R regulatory axis, potentially mediated through 
posttranslational modification mechanisms, emerges as a therapeutic 
target for refractory MTLE-HS. Pharmacological intervention 
targeting this interaction may advance development of next-generation 
antiepileptic therapies (Guerra Leal et al., 2022; Samões et al., 2024).

3 miRNAs regulate microglial 
phenotypic switching in epileptic 
neuroinflammation

In the regulatory network of neuroinflammation, microglia act 
as core effector cells, and their phenotypic polarization process is 
precisely regulated by miRNAs and long chain non-coding RNAs 
(lncRNAs) (Terrone et  al., 2017; Peng et  al., 2019). These 
immunoreactive cells not only possess the function of secreting 
multiple cytokines/chemokines, but also sense the dynamic changes 
of inflammatory signaling molecules within the CNS (Hanisch, 

FIGURE 2

miRNA regulates imbalance of glutamate metabolism in astrocytes.
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2002). After brain injury of epileptic origin, these cells become a 
major source of pro-inflammatory cytokine secretion, and the 
inflammatory mediators they release not only enhance the neuronal 
excitability threshold, but also directly contribute to the development 
of abnormal discharge activity, which has been recognized as a key 
driver of epilepsy formation (Colonna and Butovsky, 2017). Microglia 
in the CNS are highly plastic and are capable of polarizing toward 
different phenotypes such as classically activated (M1) type and 
alternatively activated (M2) type (Ma et al., 2017). Among them, the 
M1 type exacerbates the neuroinflammatory process by releasing 
pro-inflammatory mediators (Kalkman and Feuerbach, 2016), 
whereas the M2 type secretes immunosuppressive factors, such as 
TGF-β and IL-10, and is involved in the regulation of glioma cell 
proliferation (Lan et al., 2017; Wesolowska et al., 2008). Studies have 
shown that in the hypoxic microenvironment of glioblastoma (GBM), 
tumor cells can induce tumor-associated macrophages to polarize 
toward the M2 type through the secretion of paracrine factors such 
as periostin (POSTN) and exosomes (Guo et al., 2016). In terms of 
miRNA regulatory mechanisms, miR-181c-5p effectively inhibited 
microglia overactivation in a sepsis model by targeting high mobility 
group protein B1 (HMGB1), while decreasing the levels of 
inflammatory factors, such as TNF-α and IL-1β, and decreasing 
hippocampal neuronal apoptosis (Li et  al., 2021). These findings 
reveal the multidimensional regulatory properties of miRNAs in 
epilepsy pathology, and their specific mechanisms of action and 
potential as therapeutic targets will be systematically described below.

3.1 Proinflammatory miRNA axes 
amplifying microglial M1 polarization

miR-155: within epileptic neuroinflammatory networks, 
miR-155 emerges as a dual-functional regulator coordinating both 
proinflammatory responses and programmed cell death, serving as 
a pivotal molecular nexus in epileptogenic processes. Beyond its 
astrocytic overexpression (Korotkov et  al., 2020), this miRNA 
amplifies cerebral inflammatory cascades through glial activation 
modulation, potentially contributing to secondary injury 
mechanisms post-traumatic brain injury (TBI). Mechanistic 
investigations reveal microglial miR-155 induces M1 polarization by 
suppressing Suppressor of Cytokine Signaling 1 (SOCS1) expression, 
thereby exacerbating neuroinflammation (Sun et  al., 2018a). 
Paradoxically, in  vitro microglia-specific miR-155 knockdown 
triggers electrophysiological dysregulation, manifested by 
accelerated epileptogenesis onset, prolonged seizure duration, and 
elevated mortality—evidence of its bidirectional regulatory 
complexity (Aloi et al., 2023).

Notably, miR-155-5p (mature miR-155 isoform) demonstrates 
significant upregulation in both epileptic animal models and human 
medial TLE hippocampal tissues (Huang L. G. et al., 2018). Dusp14, 
as a MAPK pathway negative regulator, its dysfunction intensifies 
neurological damage (Kumar et al., 2021; Shi et al., 2022). miR-155-5p 
also drives neuronal inflammation and apoptosis through inhibition 
of Dusp14-mediated MAPK hyperphosphorylation while aggravating 
seizure severity and recurrence (Fang et  al., 2024). Paradoxically, 
in  vitro microglia-specific miR-155 knockdown triggers 
electrophysiological dysregulation, manifested by accelerated 
epileptogenesis onset, prolonged seizure duration, and elevated 

mortality—evidence of its bidirectional regulatory complexity (Aloi 
et al., 2023).

miR-200c-3p: in the study of cross-disease regulatory mechanisms 
between glioma and epilepsy, miR-200c-3p, as an important member 
of the miR-200 family (Cheng et al., 2016), exhibits unique double-
edged sword-like regulatory properties: (1) During the pathological 
process of GBM, the molecule drives the remodeling of the tumor 
microenvironment through the exosome-mediated neuron–microglia 
communication network. The specific mechanism is as follows: 
neuron-derived exosomes deliver miR-200c-3p to microglia, leading 
to a reduction in the level of mRNA methylation modification by 
inhibiting the expression of the zinc finger protein ZC3H13 (a key 
regulator of m6A methylation), which in turn down-regulates the 
expression of Dual-Specificity Phosphatase 9 (DUSP9). loss-of-
function of DUSP9 activates the ERK signaling pathway that induces 
microglia polarization toward a pro-tumorigenic M2 phenotype, 
ultimately accelerating the malignant progression of GBM (Guo et al., 
2024). (2) In epilepsy models, inhibition of miR-200c-3p expression 
exerts neuroprotective effects through a triple protective mechanism: 
(i) activation of the RECK/AKT signaling axis, up-regulation of the 
expression of cysteine-rich RECK proteins (inhibitors of matrix 
metalloproteinases), inhibition of the AKT phosphorylation cascade, 
and attenuate hippocampal neuronal damage (Alexius-Lindgren et al., 
2014). (ii) regulate the activation status of glial cells, and inhibit the 
process of reactive gliosis by decreasing the expression level of GFAP, 
a marker of astrocyte activation; (iii) remodel the microenvironment 
of neuroinflammation, and significantly reduce the release of 
pro-inflammatory factors (Du et al., 2019).

miR-106b-5p: Clinical assay data show that miR-106b-5p is 
characterized by significantly high expression in the peripheral blood 
of epilepsy patients, and its pathological mechanism of action involves 
transcriptional repression of rejection guidance molecule A (RGMa), 
which in turn activates the RGMa-Rac1-JNK/p38 MAPK signaling 
cascade network (Li et al., 2017; Wang et al., 2015; Yu et al., 2021). This 
molecular cascade response drives microglia polarization toward a 
pro-inflammatory M1 phenotype, which induces a massive release of 
inflammatory mediators such as IL-1β and IL-6, ultimately leading to 
deterioration of the neuroinflammatory microenvironment and 
neuronal degeneration. Experimental studies revealed that specific 
inhibition of miR-106b-5p could remodel the microglial M1/M2 
polarization balance, providing new ideas for the development of 
precision antiepileptic therapies based on glial cell phenotype 
modulation (Yu T. et al., 2022).

3.2 Anti-inflammatory miRNAs promoting 
M2 polarization

miR-22: miR-22 plays a key role in epilepsy pathology through the 
multidimensional regulation of inflammatory and metabolic functions 
in glial cells (Beamer et al., 2018). First, in astrocytes, miR-22 reduces 
the risk of seizures triggered by neuronal hyper excitability by 
regulating the expression of genes related to glutamate metabolism, 
increasing glutamate uptake and decreasing aberrant glutamate 
release, thereby maintaining the synaptic excitatory/inhibitory 
balance. Second, P2X7 is a receptor expressed by microglia, which can 
lead to the release of proinflammatory cytokines Il-1β and TNF-α and 
the production of reactive oxygen species (Monif et al., 2009; Choi 
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et al., 2012). miR-22 negatively regulates P2X7 receptor expression by 
directly binding to the 3’-UTR of the P2X7 receptor and inhibiting its 
translation, thereby suppressing the inflammatory response (Guerra 
Leal et al., 2022). This dual regulatory mechanism (interfering with 
astrocyte metabolic abnormalities and inhibiting microglial 
inflammatory activation) provides a theoretical basis for the 
development and potential clinical translational value of novel 
antiepileptic therapies targeting the miR-22/P2X7 axis, particularly for 
patients with drug-resistant epilepsy.

miR-181a-5p: SIRT1 (sirtuin-1) is a protein deacetylase that 
regulates gene expression by catalysing the deacetylation of histone 
proteins. NAD + is required for the deacetylase activity of SIRT1, 
which is directly linked to CNS disorders. SIRT1 deficiency in 
microglia has been associated with cognitive decline during 
neurodegeneration (Cho et  al., 2015). Increased hippocampal 
expression of miR-181a-5p was found in an immature rat model of 
lithium/pilocarpine-induced epilepsy. Inhibition of miR-181a-5p 
suppresses astrocyte and microglial activation by upregulating SIRT1, 
which plays a role in suppressing seizures and ameliorating cognitive 
decline in TLE patients (Kong et al., 2020).

miR-135a-5p: miR-135a-5p was found to induce apoptosis not 
only in glioma, ovarian cancer and cardiomyocytes but also in glial 
cells in epilepsy. In an in vitro model of epilepsy induced by kainic 
acid (KA), miR-135a-5p expression is significantly upregulated, and 
an miR-135a-5p inhibitor effectively increases BV2 cell proliferation 
and inhibits apoptosis. Moreover, miR-135a-5p may also 
be  involved in epilepsy-induced apoptosis through the SIRT1-
related signalling pathway. siRNA-SIRT1 effectively inhibits the 
proliferation of BV2 microglia and promotes microglial apoptosis 
(Wang et al., 2021).

4 LncRNA-miRNA crosstalk in glial 
pathophysiology

Mechanistically, long noncoding RNAs (lncRNAs) serve as 
competitive endogenous RNAs (ceRNAs) by sequestering shared 
miRNAs that would otherwise target mRNAs, thereby influencing 
disease pathogenesis through posttranscriptional regulation (Tan 
and Marques, 2016). Within the CNS, microglia and astrocytes 
demonstrate functional plasticity through polarized activation 
states: The pro-inflammatory M1/A1 phenotypes drive 
neurotoxicity via inflammatory mediator release and oxidative 
damage, while the M2/A2 phenotypes exhibit neuroprotective 
capacities through anti-inflammatory actions and synaptic 
maintenance (Kwon and Koh, 2020). Emerging research identifies 
lncRNAs as upstream epigenetic regulators of miRNAs, positioning 
them as potential diagnostic biomarkers and therapeutic targets for 
neurological disorders such as Alzheimer’s disease, ischemic 
cerebrovascular events, and demyelinating conditions (Khan et al., 
2022). Despite these advances, the precise regulatory networks 
through which lncRNAs govern neuroinflammatory processes via 
glial cell modulation in epilepsy remain poorly characterized. There 
exists a critical need for comprehensive analysis of lncRNA-
mediated regulatory circuits during epileptogenesis, particularly 
those involving glial activation and subsequent inflammatory 
pathway dysregulation. Current understanding of lncRNA-
mediated control over microglial and astrocytic functionality is 

summarized in Table 2 and Figure 3, and how lncRNAs influence 
miRNAs is summarized in Figure 4, revealing promising avenues 
for future mechanistic investigations.

LncRNA X-inactive-specific transcript (XIST): The X-inactive 
specific transcript (XIST), a long noncoding RNA encoded on the X 
chromosome, has emerged as a key epigenetic regulator of 
inflammatory pathways across multiple disease states (Zhang 
Y. et  al., 2019). Mechanistic studies reveal XIST functionally 
sequesters miR-29c-3p, a miRNA notably downregulated in epileptic 
rat models and demonstrating an inverse correlation with XIST 
levels (Zhang et al., 2021). Functional experiments demonstrate that 
miR-29c-3p overexpression suppresses proinflammatory cytokine 
secretion in BV2 microglial cells, effectively counteracting 
lipopolysaccharide (LPS)-induced inflammatory cascades (Wang 
R. et  al., 2020). Of particular therapeutic interest, this XIST/
miR-29c-3p axis has been implicated in controlling astrocytic 
polarization toward the neurotoxic A1 phenotype, positioning these 
molecules as promising therapeutic candidates for epilepsy 
intervention (Zhang et al., 2021; Table 3).

LncRNA Peg13: The 26S proteasome non-ATPase regulatory 
subunit 11 (Psmd11) serves as a pivotal coordinator of cellular 
stress adaptation and inflammatory modulation (Wang et al., 2018; 
Wei et  al., 2019). Experimental evidence from rodent epilepsy 
models reveals that hippocampal Psmd11 expression undergoes 
coordinated regulation through lncRNA Peg13-mediated molecular 
interactions. Functioning as a competitive endogenous RNA, Peg13 
binds and sequesters miR-490-3p, thereby alleviating its inhibitory 
effect on Psmd11 transcripts. This post-transcriptional derepression 
elevates Psmd11 levels, which in turn: (1) Inhibits Wnt/β-catenin 
signaling-mediated A1 astrocyte polarization. (2) Attenuates 
neuroinflammatory cascades.

The resultant suppression of epileptogenic processes highlights 
the Peg13/miR-490-3p/Psmd11 axis as both a disease-promoting 
network and a viable therapeutic target for seizure disorders (Hodges 
and Lugo, 2018). Pharmacological validation studies further confirm 
its dual role in epilepsy pathophysiology and treatment development 
(Feng et al., 2020; Wang et al., 2018).

LncRNA ILF3-AS1: Matrix metalloproteinases (MMPs) constitute 
pivotal mediators of epileptogenic processes through their proteolytic 
regulation of neurovascular integrity. Pathological upregulation of 
MMP activity post-injury drives epileptogenesis via tripartite 
mechanisms: (1) extracellular matrix degradation, (2) BBB 
compromise, and (3) neuroimmune activation, as evidenced by 
elevated MMP2/3/9 levels in both TLE patients and experimental 
models (Dubey et al., 2017; Korotkov et al., 2018; Rempe et al., 2018). 
This mechanistic understanding positions MMP inhibitors as 
promising disease-modifying therapies for refractory epilepsy (Dubey 
et al., 2017).

Emerging evidence implicates the long noncoding RNA ILF3-AS1 
as a master regulator of MMP-mediated epileptogenic processes in 
TLE pathogenesis. Multi-omics analyses demonstrate consistent 
ILF3-AS1 upregulation coupled with miR-212 downregulation in 
hippocampal tissues and serum samples from TLE patients versus 
controls (Cai et  al., 2020). Functional studies reveal ILF3-AS1 
exacerbates neuroinflammation and matrix remodeling through dual 
epigenetic mechanisms: (1) Sponging miR-212 to derepress MMP3/9 
expression; (2) Sequestering miR-504-3p to amplify HMGB1-
mediated oxidative stress.
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These synergistic effects promote neuronal hyperexcitability in 
both in vitro epileptiform models (magnesium-deprived hippocampal 
neurons) and in  vivo TLE paradigms (Gao et  al., 2024; Cai 
et al., 2020).

LncRNA UCA1: the long noncoding RNA UCA1 demonstrates 
antiepileptic effects through multimodal suppression of astrocyte 
activation and neuroinflammation. Its protective mechanisms 
involve three primary pathways: (1) miR-203/MEF2C/NF-κB Axis: 
Myocyte enhancer factor 2c (MEF2C), a MADS/MEF2 family 
transcription factor critical for epilepsy regulation, modulates both 
neuronal excitability/synaptic plasticity and neuroinflammatory 
processes via inflammatory mediators and signaling networks (Xu 
et  al., 2015). UCA1 forms a regulatory circuit by suppressing 
miR-203 (which directly inhibits MEF2C) (Luo et al., 2014; Gong 
et  al., 2018), thereby enhancing MEF2C expression. This 
upregulation attenuates NF-κB pathway activity, limiting A1 
astrocyte activation and subsequent release of proconvulsive factors 
like IL-1β that promote neuronal hyperexcitability (Bellot-Saez et al., 
2017; Yu et al., 2020). (2) miR-495/Nrf2 Pathway: UCA1 mitigates 
seizure-associated neuronal apoptosis and cerebral damage via 
modulation of the miR-495/Nrf2 signaling axis (Geng et al., 2018). 
(3) JAK/STAT3 Signaling: Through inhibition of JAK/STAT3 
activation, UCA1 downregulates astrocytic glutamate transporters 
(e.g., GLAST), reducing glial hyperactivation and neuroinflammatory 
cascades (Raymond et al., 2011; Wang H. et al., 2020).

Collectively, UCA1 counteracts epileptogenesis by targeting these 
interconnected pathways to suppress A1 astrocytosis, neuronal death, 
and neuroinflammation. These insights position UCA1 as a promising 

therapeutic target and underscore the potential of lncRNA-based 
strategies for epilepsy intervention.

miR-155hg: the long noncoding RNA miR-155hg serves as the 
precursor of miR-155, with its second exon directly encoding this 
miRNA. Both miR-155hg and miR-155 are critically involved in CNS 
disorders (Korotkov et al., 2020). miR-155hg is predominantly expressed 
in macrophages and microglia, where it plays a central role in maintaining 
brain homeostasis and modulating neuroinflammation. During 
convulsive status epilepticus (CSE), microglial phagocytic activity is 
essential for responding to neuronal injury and preserving brain 
homeostasis. Studies demonstrate that miR-155hg inhibits microglial 
phagocytic function, thereby delaying the clearance of damaged neurons 
and exacerbating hippocampal neuronal injury (Wang et  al., 2024). 
Suppression of miR-155hg expression enhances microglial phagocytic 
activity, promotes neuronal repair, and reduces neuroinflammatory 
responses through regulation of miR-155 signaling, suggesting 
therapeutic potential for mitigating CSE progression (Wang et al., 2024).

LncRNA H19: functioning through immunoinflammatory and 
neuronal injury-associated pathways, H19 drives neuroglial 
hyperactivation via NF-κB-mediated inflammatory cascades (Han 
et al., 2017; Han et al., 2018b). In GBM tissues, this lncRNA promotes 
malignant phenotypes including glioma cell proliferation, migration, 
and invasion (Jiang et  al., 2016). Within epileptic contexts, H19 
exacerbates disease progression by dual mechanisms: (1) activating 
the JAK/STAT pathway to induce astrocytic GFAP expression and A1 
polarization (Xu et  al., 2011), and (2) enhancing microglial M1 
polarization (evidenced by elevated CD86/iNOS) and astrocyte 
activation, which collectively amplify proinflammatory cytokine 

TABLE 2 Functional roles of lncRNAs in glial cells.

lncRNA Levels Targets Levels The effects on 
glial cells

Models Epilepsy 
type

References

SNHG1
↑

miR-186–5p ↓
M1 polarization↓

M2 polarization↑
In vitro Ischaemic epilepsy Bao et al. (2024)

Mir155hg

↑

Mir-155

NF-κB
↑

Inhibition of 

microglial phagocytic 

activity/

M1 polarization↑M2 

polarization↓

In vivo CSE
Wang et al. (2024) and 

Fang et al. (2024)

H19 ↓ NF-κB ↓ M1 polarization↓ – CSE Xie et al. (2022)

XIST
↓ miR-29c-3p 

-NFAT5
↑ A1 polarization↓ In vivo – Zhang et al. (2021)

Peg13
↑ miR-490-3p--

Psmd11
↑ A1 polarization↓ In vivo – Feng et al. (2020)

H19
↑

JAK/STAT ↑ A1 polarization↑ In vitro TLE
Han et al. (2017) and 

Han et al. (2018b)

ILF3-AS1
↑ miR-212--

MMP3/9

miR-212↓

MMP3/9↑
A1 polarization↑ In vivo TLE Cai et al. (2020)

UCA1
↑ miR-203/

MEF2C/NF-κB
↓ A1 polarization↓ In vitro – Yu et al. (2020)

CASC2 ↑ PTEN ↑ Astrocytes In vitro – Zhu et al. (2020)

NEAT1
↑ miR-129-5p 

--notch

miR-129-5p ↓

notch↑
M1 polarization↑ In vivo TLE Wan and Yang (2020)

ILF3-AS1
↓ miR-504-3p/

HMGB1

miR-504-3p↑

HMGB1 ↓
A1 polarization↓ In vitro TLE Gao et al. (2024)
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release (e.g., IL-1β, TNF-α). This creates a self-reinforcing cycle of 
gliosis, neuroinflammation, and hippocampal neuronal apoptosis, 
ultimately worsening seizure pathology (Han et al., 2018a; Vezzani 
and Friedman, 2011).

Experimental validation demonstrates that H19 knockdown 
suppresses NF-κB phosphorylation/nuclear translocation, reduces M1 
marker expression, decreases neuronal apoptosis, and mitigates 
CSE-induced brain damage (Limanaqi et al., 2019). These findings 
establish H19 as a central regulator of TLE pathogenesis through glial 
phenotype modulation and NF-κB-dependent inflammation. 

Therapeutic targeting of H19 or its downstream effectors may disrupt 
this pathogenic network by restoring anti-inflammatory 
microenvironments and preserving neuronal integrity.

LncRNA Snhg5: the long noncoding RNA Snhg5, whose expression 
is dysregulated in inflammatory disorders, contributes to epileptogenesis 
through neuroinflammatory modulation (Shen et  al., 2020). In vitro 
studies confirm that lipopolysaccharide (LPS) activates NF-κB signaling 
via p65 phosphorylation and nuclear translocation, facilitating 
proinflammatory gene transcription—consistent with established 
mechanisms (Sun et al., 2018b; Davari et al., 2020). Critically, Snhg5 

FIGURE 3

Mechanisms of lncRNA–miRNA crosstalk during glial cell polarization in epilepsy.

FIGURE 4

ceRNA serves as a “molecular switch” regulating cellular functions. LncRNA XIST functions as a ceRNA by binding to miR-29c-3p, leading to its 
functional sequestration. This derepresses miR-29c-3p target genes (e.g., NFAT5), ultimately promoting neurotoxic A1 astrocytic polarization in 
epilepsy.
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silencing attenuates LPS-induced NF-κB pathway activation and exerts 
anticonvulsant effects by reprogramming microglial polarization. This 
dual modulation involves: (1) reducing proinflammatory M1 polarization 
(marked by CD86/iNOS downregulation) and associated cytokine release 
(IL-1β, TNF-α). (2) Enhancing anti-inflammatory M2 polarization 
(indicated by Arg-1/CD206 upregulation) and protective factor 
expression (e.g., IL-10). These shifts remodel the neuroinflammatory 
milieu, alleviating epilepsy-associated neuronal injury (Wang et al., 2022). 
Collectively, Snhg5 emerges as a pivotal regulator of microglial M1/M2 
equilibrium via NF-κB signaling, highlighting lncRNA-targeted strategies 
to mitigate glia-driven neuroinflammation.

LncRNA NEAT1: the long noncoding RNA NEAT1, a critical 
regulator of paraspeckle formation in mammalian nuclei, plays a 
multifaceted role in glial-mediated neuroinflammation and neurological 
disorders through its functional dysregulation (Katsel et al., 2019). In 
oligodendroglial cells, NEAT1 maintains neural homeostasis by 

orchestrating myelin-related gene expression, with its aberrant activity 
linked to schizophrenia pathogenesis (Katsel et  al., 2019). Within 
epileptic contexts, NEAT1 exacerbates neuroinflammatory responses 
and glial activation via two principal mechanisms: (1) Inflammasome 
activation: NEAT1 enhances NLRP3/NLRC4 inflammasome activity, 
triggering pyroptotic cell death and proinflammatory mediator release 
(IL-6, COX-2, TNF-α), which collectively induce oxidative stress and 
mitochondrial dysfunction (Zhang P. et  al., 2019); (2) microglial 
polarization: by sequestering miR-129-5p to derepress Notch signaling, 
NEAT1 drives microglial M1 polarization, amplifying IL-1β secretion 
and aggravating seizure-associated neuroinflammation and neuronal 
injury (Wan and Yang, 2020). These coordinated actions position 
NEAT1 as a promising therapeutic target for epilepsy, given its dual 
regulatory capacity over glial functions (myelination regulation, 
phenotypic polarization) and inflammatory network modulation.

LncRNA SNHG1: small nucleolar RNA host gene 1 (SNHG1), a 
chromosome 11-derived lncRNA critical for 18S rRNA processing 
(Huang L. et  al., 2018), demonstrates neuroprotective properties in 
cerebral ischemic pathologies (Zhang et  al., 2018). Mechanistically, 
SNHG1 overexpression modulates the transcription factor YY1 
(implicated in acute ischemic hippocampal injury) (Wan et al., 2019) 
through miR-186-5p sequestration, achieving dual immunoregulatory 
outcomes: (1) Suppression of proinflammatory mediators (TNF-α, IL-1β). 
(2) Enhancement of anti-inflammatory IL-10 production via microglial 
phenotype regulation. These effects collectively mitigate hypoxia-induced 
neuronal damage while preserving M2 microglial function. Notably, 
nanoengineered delivery systems for SNHG1 mimics present a novel 
therapeutic strategy for ischemia-related epilepsy (Zhang et al., 2018).

The emerging evidence collectively underscores that lncRNAs 
orchestrate epileptogenic processes through convergent mechanisms: 
(1) ceRNA-mediated miRNA sequestration (e.g., XIST/miR-29c-3p, 
Peg13/miR-490-3p, ILF3-AS1/miR-212), which derepresses 
downstream targets to drive glial polarization; (2) inflammatory 
pathway amplification via NF-κB (H19, Snhg5), JAK/STAT (H19), and 
inflammasome activation (NEAT1); and (3) dual regulation of neuronal 
excitability and neurovascular integrity through MMPs (ILF3-AS1), 
glutamate transporters (UCA1), and oxidative stress responses (UCA1/
miR-495/Nrf2). Crucially, these lncRNAs form interconnected axes—
such as NEAT1/miR-129-5p/Notch in microglial M1 polarization and 
H19/NF-κB in astrocytic A1 conversion—that create self-reinforcing 
cycles of gliosis and neuroinflammation. Their consistent dysregulation 
in epileptic tissues (e.g., ILF3-AS1↑ in TLE hippocampi, miR-155hg↑ 
in CSE) positions them not only as biomarkers but as master regulators 
of the “glial-RNA axis.” Therapeutic targeting of these nodes—via 
antisense oligonucleotides against H19/NEAT1 or engineered exosomes 
delivering UCA1/SNHG1 mimics—represents a promising paradigm 
for multitargeted intervention in drug-resistant epilepsy.

5 Exosomal noncoding RNAs: 
biomarker discovery and therapeutic 
engineering in epilepsy

Neuroinflammation constitutes a pivotal pathological mechanism in 
epilepsy, where inflammatory cascades frequently drive disease 
progression and seizure recurrence. Targeting neuroinflammatory 
pathways represents a promising disease-modifying strategy, supported 
by (1) demonstrated efficacy of anti-inflammatory drugs in drug-resistant 

TABLE 3 Abbreviations and corresponding full names in the text.

Abbreviation Full name

AP-1 Activator protein-1

Arg-1 Arginase-1

BBB Blood–brain barrier

ceRNA Competing endogenous RNA

CSE Convulsive status epilepticus

DUSP9 Dual-specificity phosphatase 9

EVs Extracellular vesicles

GFAP Glial fibrillary acidic protein

GLAST Glutamate aspartate transporter

GLT-1 Glutamate transporter 1

HMGB1 High-mobility group box 1

IFN-γ Interferon-gamma

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

JAK/STAT
Janus kinase/signal transducer and activator of 

transcription

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

MMP Matrix metalloproteinase

MTLE-HS Mesial temporal lobe epilepsy with hippocampal sclerosis

NF-κB Nuclear factor kappa B

NLRP3 NOD-like receptor pyrin domain containing 3

Nrf2 Nuclear factor erythroid 2-related factor 2

PKCδ Protein kinase C delta

PTZ Pentylenetetrazol

SE Status epilepticus

SOCS1 Suppressor of cytokine signaling 1

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor-alpha

TLE Temporal lobe epilepsy

TSC Tuberous sclerosis complex
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epilepsy (Vezzani et al., 2019), (2) preclinical evidence showing reduced 
seizure frequency and enhanced neuroprotection via anti-inflammatory 
interventions (Terrone et  al., 2020), and (3) regulatory potential of 
noncoding RNAs (miRNAs/lncRNAs) in inflammatory modulation. 
However, therapeutic application of free miRNAs faces challenges 
including (1) rapid degradation by serum nucleases and lysosomal 
pathways, (2) limited BBB permeability, and (3) poor target specificity.

Exosomes (30–100 nm vesicles) address these limitations through 
(1) endogenous phospholipid bilayer protection against enzymatic 
degradation, (2) bidirectional BBB penetrability without structural 
modification, and (3) natural tropism via membrane-bound ligands 
(Shyam et  al., 2025). Clinically, exosomal biomarkers exhibit 
diagnostic value through (1) elevated miR-134 levels in TLE serum, 
exacerbating neuronal hyperexcitability via LIMK1 inhibition 
(Jimenez-Mateos et  al., 2012), (2) upregulated miR-146a/miR-155 
correlating with neuroinflammation severity and 
Electroencephalogram abnormalities (Omran et al., 2012; Liu et al., 
2022), and (3) downregulated forebrain miR-346/miR-331-3p levels 
(Gitaí et al., 2020). Therapeutically, exosome advantages over synthetic 
nanoparticles include (1) reduced immunogenicity and macrophage 
clearance, (2) prolonged circulatory half-life, and (3) versatile cargo-
loading capacity for proteins/nucleic acids (Xian et al., 2019; Ou et al., 
2020). These dual diagnostic-therapeutic properties position exosomes 
as transformative tools for precision epilepsy management.

Inhibiting the expression of pathogenic miRNAs is a promising 
therapeutic strategy for example. For example, the delivery of miR-134 
antisense oligonucleotides (antagomirs) via exosomes significantly 
reduces spontaneous seizures and protects hippocampal neurons from 
damage in an epilepsy mouse model (Jimenez-Mateos et al., 2015b). 
Similarly, exosome-mediated delivery of inhibitors of miR-155 inhibits 
microglial activation and attenuates epilepsy-associated inflammation 
(Liu et al., 2022). In addition, measuring miR-155 levels in serum 
exosomes may be used to diagnose epilepsy in early stages to assess 
epilepsy severity (Liu et al., 2022). Levetiracetam also inhibits M2 
polarization of microglia by blocking abnormal neuronal activation 
and reducing miR-200c-3p levels in exosomes, which inhibits the 
protumorigenic effects of M2 microglia (Guo et al., 2024). Exosomes, 
as natural therapeutic vectors with an excellent ability to cross the 
BBB, can be  used to efficiently deliver therapeutic miRNAs. 
miR-142-3p, miR-223-3p and miR-21-5p levels were found to 
be significantly increased in epileptogenic TSC lesions and to contain 
nucleic acid motifs that activate toll-like receptors (TLR7/8), allowing 
them to activate a neuroinflammatory response. These results provide 
new evidence for the role of exosomes and noncoding RNA cargo in 
the neuroinflammatory cascade in epilepsy and may help advance the 
development of novel biomarkers and therapeutics for refractory 
epilepsy (Cukovic et al., 2021). Liu et al. (2024) demonstrated that 
exosomes loaded with miR-129-5p significantly attenuate 
neurodegeneration in a mouse model of persistent epilepsy and reduce 
neuronal damage in the CA3 region in the epileptic brain by inhibiting 
HMGB1/TLR4-mediated neuroinflammation. miR-23b-3p interacts 
with the 3’-UTRs of STAT1 and GlyR1 to inhibit inflammatory factor 
expression in M1 microglia, and miR-23b-3p -loaded exosomes 
derived from adipose-derived stem cells (ADSCs) alleviate 
KA-induced inflammation in mice with epilepsy (Yang et al., 2024). 
Although exosomal miRNAs show great potential in treating epilepsy, 
there are still many related challenges, including the need to 
standardize of exosome sources, improve target delivery efficiency, and 
assess long-term safety. Future studies involving the use of multiomics 

techniques to screen specific miRNAs and optimize exosome 
engineering strategies are needed to facilitate clinical translation.

6 Future directions in epilepsy 
research: decoding glial RNA 
networks for therapeutic innovation

Although important progress has been made in understanding the 
mechanisms by which miRNAs and lncRNAs regulate glial cell 
function and neuroinflammation in epilepsy, the clinical translation 
of related therapies still faces several challenges. First, current evidence 
on glial ncRNA mechanisms relies predominantly on mouse models, 
limiting the translatability of glial findings to humans. Expanding 
investigations to diverse animal systems is imperative to validate 
pathophysiological relevance. Second, miRNAs and lncRNAs act 
through a complex multi-target network, and the inhibition of glial 
inflammation may also inhibit the phagocytosis of glial cells, which is 
not conducive to the control of epilepsy. Therefore, the mechanism of 
action of these molecules should be further explored (Huang et al., 
2015). Third, although exosomes can penetrate the BBB, they have low 
yields and unstable drug delivery efficiencies, and free miRNAs are 
easily degraded in body fluids. The use of exosomes for therapeutic 
delivery remains a bottleneck (Wortzel et al., 2019; Liu et al., 2024).
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