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While the overall ATP level in neurons remains relatively stable, local fluctuations
in synaptic compartments - driven by synaptic potentials - necessitate rapid ATP
adjustments. The energy supply for synaptic activity in neurons must be under
precise homeostatic control: increased ATP consumption in active synapses
requires continuous replenishment, whereas in periods of inactivity, excess
ATP production may occur. Overproduction of ATP in thousands of individual
synapses is metabolically wasteful, while underproduction threatens to disrupt
molecular cascades associated with ongoing synaptic bursts, ion homeostasis,
protein synthesis, and neural plasticity. Fine-tuned regulation of ATP synthesis
must therefore be controlled locally and dynamically, ensuring metabolic
efficiency while preventing disruptions in synaptic bursts, ion homeostasis, and
neuronal plasticity. This review summarizes the intricate molecular mechanisms
through which mitochondria (MT) interact with their postsynaptic environment
to maintain energy balance. We examined the fundamental features of
mitochondria in conjunction with their unique properties and roles in nervous
tissue, highlighting their ability to dynamically adjust energy production based
on local demand rather than maintaining a strictly uniform ATP output. The
regulation of ATP synthesis may involve mitochondrial transport, fusion, and
fission, as well as changes in mitochondrial shape and molecular structure.
This review describes the activity of ATP synthase, the mitochondrial calcium
uniporter and other signaling cascades in the context of their uneven distribution
within mitochondria. Furthermore, we discuss rapid calcium influxes from
postsynaptic membranes and the endoplasmic reticulum into mitochondria-
associated membranes (MAMs), their buffering mechanisms, and the generation
of dynamic responses. We focus on the role of calcium ion (Ca*) as a precise
regulator of ATP production, particularly in mitochondria located near synaptic
regions, where it ensures an adequate energy supply for local activity. Overall,
we propose potential pathways of interaction between mitochondria and their
postsynaptic microdomains. Given that some of the mechanisms discussed
remain hypothetical, we emphasize the urgent need for experimental validation
to refine understanding of mitochondrial function in synaptic transmission.
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1 Introduction

Energy is a fundamental necessity for all cells, enabling their
functional activity, growth, and survival. Neurons, however,
differ significantly from other cell types due to their unique
characteristics: they do not undergo cell division and possess
exceptionally long processes—axons and dendrites—that extend
across considerable distances to facilitate complex communication
networks. This structural specialization demands substantial
energy, particularly at synaptic sites where neurotransmission
occurs. The primary source of cellular energy is adenosine
triphosphate (ATP), which is predominantly synthesized by
mitochondria (MT)—symbiotic organelles present in most
eukaryotic cells. MT perform multiple functions, some of which
remain incompletely understood. Their energy-producing role is
closely tied to ATP synthases, which facilitate ATP generation by
harnessing proton gradients across mitochondrial membranes.
However, mitochondrial functions are dynamic and depend
on their structural organization, which undergoes continuous
remodeling in response to physiological changes. These alterations
affect mitochondrial transport, docking, fusion, and fission
(McCarron et al., 2013; Trigo et al., 2022). Notably, elongated
MT enhance oxidative capabilities, whereas spherical or ovoid
forms are often associated with increased calcium (Ca?™) levels in
cytosol, adaptive mechanisms, or pathology (Glancy et al., 2020).

Beyond mitochondrial ATP synthesis, additional mechanisms
contribute to maintaining energy homeostasis. Membrane-
associated ATP synthases can support localized ATP production,
ensuring energy availability in specific subcellular compartments
(Xing et al., 2011; Chang et al., 2023). Astrocytes also play a crucial
role in metabolic support through the astrocyte-neuron lactate
shuttle, a mechanism that links astrocytic glycolysis to neuronal
oxidative metabolism (Chih and Roberts, 2003; Roumes et al.,
2023). Particularly, such shuttle mechanism may appear during
memory formation (Drulis-Fajdasz et al., 2018) and some forms of
synaptic plasticity (Marty-Lombardi et al., 2024; Kim et al., 2025).

Cytosolic ([Ca?*],) and mitochondrial ([Ca®*],,) calcium
signaling play a critical role in regulating ATP synthesis and
cellular energy balance. The voltage-dependent anion channel
(VDAC) in the outer mitochondrial membrane (OMM) serves
as the primary gateway for Ca?" entry into the MT from the
cytosol (Rajendran et al, 2023). Once inside, Ca** transport
is facilitated by the mitochondrial calcium uniporter (MCU)
complex, which governs mitochondrial Ca?* uptake and influences
enzymatic activity within the tricarboxylic acid cycle (TCA, also
known as the Krebs cycle), thereby enhancing ATP production
(De Mario et al., 2023). While this mechanism is particularly vital
in neurons, it also operates in highly active cells such as cardiac
myocytes and endocrine cells, where precise control of energy
metabolism is essential for physiological function. Additionally,
ATP synthase (F-ATPase), responsible for ATP production,
undergoes conformational changes driven by the proton gradient,
with its rotor-stator architecture optimizing energy conversion.
Tertiary structures of MCU, VDAC and ATP synthase have been
resolved and successfully used for structure-function link (see for
review: Najbauer et al., 2021; Zhuo et al.,, 2021; Vlasov et al., 2022).

Ca’* directly modulates ATP synthase activity by influencing
its conformational states, potentially enhancing enzyme efficiency

Frontiers in Molecular Neuroscience

10.3389/fnmol.2025.1621070

and mitochondrial energy output. However, disruptions in
[CaZJr]m
conditions,

handling are implicated in various pathological

including neurodegenerative diseases, such as
Alzheimer’s and Parkinson’s disease, cardiovascular disorders,
and metabolic syndromes (see for review: Walters and Usachev,
2023; Balderas et al., 2024; Zong et al., 2024; Borbolis et al,
2025; Sun et al, 2025). Dysregulated Ca>* uptake through the
VDAC-MCU complex can lead to mitochondrial dysfunction,
excessive oxidative stress, and even apoptosis, highlighting the
need for maintaining [Ca%t],, homeostasis for overall cellular
health (Giorgio et al., 2017; Wang et al., 2025).

In neurons, Ca?" signaling mechanisms and alternative
energy supply pathways are particularly crucial in the
context of postsynaptic mitochondria in neurons, where
fluctuations in energy demands closely interact with neuronal
activity. Ca?™ dynamics regulate mitochondrial function by
influencing ATP synthesis and metabolic coupling, ensuring
that synaptic compartments maintain adequate energy levels for
neurotransmission and plasticity (Groten and MacVicar, 2022).
Additionally, Ca?* plays a key role in shaping mitochondrial
distribution, morphology, ion balance, and functional modulation
under both normal and pathological conditions. This review will
explore these aspects in detail, highlighting their significance in
cellular health and disease.

2 Morphology and ultrastructure of
mitochondria

2.1 Mitochondrial morphologies in
different cell types

MT exhibit diverse morphologies and mobility, ranging
from spherical to elongated structures, with their distribution
and movement regulated according to cell type and metabolic
requirements (Figure 1; Table 1). MT size ranges from 0.5 to
more than 2 pm, in cross section (Frey and Mannella, 20005
Perkins and Frey, 2000). Their morphology and distribution vary
significantly depending on cellular function. Thus, in fibroblasts,
mitochondria are approximately the same size and dispersed
evenly, supporting anabolic processes (Figure 1A; Brantovd et al.,
2006), whereas in skeletal muscle cells, they are categorized into two
main populations: intermyofibrillar (IMF) mitochondria, which
are located between myofibrils and primarily support oxidative
metabolism, and subsarcolemmal (SSM) mitochondria, which
cluster beneath the plasma membrane and are more involved in
localized energy supply (Figure 1B; Wahwah et al., 2020; Pekkurnaz
and Wang, 2022). The SSM mitochondria tend to align in chain-like
structures, optimizing ATP distribution for membrane-associated
functions and signaling processes (Holmuhamedov et al., 2012).
In brain tissue, the morphological differences between MT in
neurons and glial cells become increasingly complex depending on
the cellular compartment. Thus, in astrocytes, MT are relatively
abundant within the soma, where they display diverse orientations,
supporting the cell's metabolic and regulatory functions. As
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FIGURE 1

Schematic illustration of mitochondrial morphological variations across cell types and subcellular compartments. (A) Mitochondria (MT) of
fibroblasts have elongated form with less density of cristae arrangement. (B) MT of skeletal muscle fibers have small and short sizes with high density
of cristae arrangement. The MT categorized into two populations: intermyofibrillar (IMF) mitochondria located between myofibrils and
subsarcolemmal (SSM) mitochondria clustered beneath the plasma membrane. (C) MT of astrocytes have diverse morphological properties; MT of
astrocytic somata have elongated, twisted form with less density of cristae arrangement, whereas MT of astrocytic endfeet have small, elongated
thin structure under endfeet base. (D) MT of neurons have great diversity of size and shape; MT of the axon and the axon bulb have small size and
short and globular form with high density of cristae arrangement. MT of neuron’s soma have elongated, twisted form with less density of cristae
arrangement. MT of dendrites and within spine cluster have elongated form with less density of cristae arrangement. Scale bar: 1 um. References to
electron microscope images of MT in fibroblasts (Brantova et al., 2006), skeletal muscle cells (Wahwah et al., 2020), astrocytes (Pysh and Khan, 1972;
Bergami and Motori, 2020), pyramidal neurons (Faitg et al., 2021).

TABLE1 Comparison of some mitochondrial characteristics in different cell types.

MT size, pm MT membrane Speed of movement Speed of
potential (A¥mt), | (anterograde), Lm/s) movement
10\ (retrograde), um/s
Neurons Axons ~1.4 (Chang et al., 2006) ~ 0.4-0.6 ~0.5
(Ligon and Steward, 2000; (Ligon and Steward, 2000;
Niescier et al., 2016) Niescier et al., 2016)
Dendrites ~ 2.2 (Chang et al., 2006) -108 to -158 ~ 0.5 ~04
(Gerencser et al., 2012; (Ligon and Steward, 2000) (Niescier et al., 2016)
Zorova et al., 2018)
Soma 0.72 — 3.56 (Narayanareddy ~ 0.8 (Narayanareddy et al., 2014)
etal., 2014)
Astrocytes ~ 2.4 (Stephen et al., 2015) ~ -150 ~0.15 ~0.2
(Feeney et al., 2003) (Jackson and Robinson, 2018)  [(Jackson and Robinson, 2018)
Cardiomyocytes ~1-2 (Lietal, 2023) ~-140 to -150 Near nuclear: 0.05
(Di Lisa et al., 1995; Mathur
etal, 2000) Near periphery: 0.005
(Kassab et al., 2021)
Fibroblasts ~ 1 (Nadalutti and Wilson, ~-91to-112 ~ 0.35 (Drabik et al., 2021)
2020; Goldstein et al., 1984) | (Gurm et al,, 2012; Huang
et al., 2004)
Skeletal muscle fibers ~0.2 ~ -147 ~ 0 (around 0.0008) (Igbal and Hood, 2014)
wm? (Picard et al., 2013) (Pelletier-Galarneau et al.,
2017)
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astrocytic processes extend and thin, mitochondrial morphology
transitions from a more branched and disorganized network in
the soma to elongated, parallel structures within finer outgrowths,
particularly in perivascular endfeet, where they often appear
more compact and fragmented, likely reflecting localized energy
demands and dynamic Ca®" signaling (Figure 1C; Popov et al.,
2023; Salazar et al, 2024). In neurons, MT exhibit the highest
degree of compartmental specialization, adapting their morphology
and dynamics to meet distinct metabolic requirements: in the
soma, mitochondria form elongated, interconnected networks with
diverse orientations, while in dendrites, mitochondria are more
linear and tubular, with some exceeding 1 wm? in volume, whereas
shorter forms are occasionally observed within dendritic spines.
In axons, mitochondria are highly mobile, typically punctate,
and rarely surpass 1 jum?, ensuring efficient energy distribution
along thin but exceptionally long axonal projections (Figure 1D;
Faitg et al., 2021; Pekkurnaz and Wang, 2022). The heterogeneity
in mitochondrial volume reflects the overall complexity of the
cell, with highly differentiated cells requiring precise spatial and
morphological adaptations.

2.2 Mitochondrial ultrastructure

At the ultrastructural level, MT are surrounded by two
phospholipid membranes insertions

(Figure 2). OMM is abundantly equipped with integral beta-barrel

with massive protein

channels or porins to transport hydrophilic molecules. These
porins include the VDAC, which is the most abundant protein
on OMM and is involved in the transport of ATP and ADP
anions, Ca’t, and other metabolites, as well as playing a key
role as a switch in mitochondrial functions (Rostovtseva and

10.3389/fnmol.2025.1621070

Bezrukov, 2008; Noskov et al., 2013; Rajendran et al., 2023). There
is an intermembrane space (~ 8 nm) between OMM and the
inner mitochondrial membrane (IMM) (Neupert, 1997). The ion
concentration within this space is similar to that of the cytosol.
In contrast, the IMM provides a high level of impermeability,
which is crucial for maintaining a stable proton gradient across the
membrane. The impermeability of the IMM is primarily provided
by the phospholipids cardiolipin and phosphatidylethanolamine,
which have double hydrophobic “tails” of fatty acids (Ikon and
Ryan, 2017). The proton gradient is maintained by the energy
derived from aerobic respiration, which is a system of redox
reactions in transmembrane protein complexes called electron-
transport chain (ETC). Additionally, there are transmembrane
proteins in the IMM that support metabolic connections with
the space within IMM, called the matrix, including a critically
important protein that mediates the entry of Ca?’ into the
matrix—MCU. The IMM has a highly folded structure in the form
of creases called cristae to increase the surface area. The ionic and
molecular composition of the narrow space between the cristae
may differ compared to the rest of the matrix.

2.3 Structure and location of
mitochondrial ATP synthase

ATP molecules are synthesized in the mitochondrial matrix
from ADP and inorganic phosphate by using electrochemical
energy produced by the proton gradient (Neupane et al., 2019
Mnatsakanyan and Jonas, 2020b). The process of ATP synthesis is
generated by a specific enzyme, also anchored in the IMM, known
as ATP synthase. In a broad sense, ATP synthase is related to
the superfamily of rotary ATPases. Rotary ATPases can catalyze
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FIGURE 2

Nat/Ca?* exchanger (NCLX).

A scheme of mitochondrial membrane ultrastructure: components of the outer (OMM) and inner mitochondrial membrane (IMM). Proteins present
in OMM: dynamin-related protein 1 (Drp1, responsible for mitochondrial fission); dynamin-like GTPase mitofusins 1/2 (Mfn1/2, facilitate physical
connections between OMM and other membranes); mitochondrial Rho GTPase 1/2 (Miro1/2, acts as a calcium (Ca2*t) sensor; PINK1 (PTEN-induced
kinase 1, initiates mitophagy); voltage-dependent anion channel (VDAC, responsible for the transport of ions and nucleotides). IMM is equipped with
proteins such as: dynamin-like GTPase optic atrophy 1 (OPAL, facilitates mitochondrial fusion); electron transport chain (ETC) components, includes
complexes |, Il, 11, IV, and cytochrome c; ATP synthase (catalyzes the synthesis of ATP), adenine nucleotide translocator (ANT, enables ADP/ATP
exchange); mitochondrial calcium uniporter (MCU, facilitates Ca2* transport); uncoupling protein (UCP, capable of dissipating the proton gradient);
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ATP hydrolysis to perform useful work, such as ion transfer across
cellular membranes. Conversely, they can synthesize ATP through
directed ion flow, more specifically via proton leakage along the
concentration gradient, while protons re-enter the mitochondrial
matrix through ATP synthase (Watson and McStay, 2020). Thus,
ATP synthase can operate in both directions—synthesizing ATP
or hydrolyzing it—depending on the current local needs of the
cell (Figure 3). Eukaryotic ATPases are divided into two types:
F-ATPase and V-ATPase (Jonckheere et al., 2012). F-ATPase has
the ability to synthesize and hydrolyze ATP (Jonckheere et al,
2012; Pinke et al., 2020). Nevertheless, in MT, F-ATPase primarily
functions as an ATP synthase. In contrast, V-ATPase exclusively
hydrolyzes ATP to obtain energy for proton pumping across
membranes. V-ATPase is present not only in the IMM, but
also in various cellular membranes, where it is essential for the
acidification of endosomes, lysosomes, and the trans-Golgi network
(Abbas et al., 2020; Zubareva et al., 2020).

The composition of F-ATPase is presented in Figures 3A,B.
It consists of two components: the transmembrane proton pore
Fo and the inner component F;. The hexamer structure of F;
consists of a- and B-subunits, which alternate with each other and
surround the y-subunit. The central stalk (CS) and the peripheral
stalk (PS) connect through the 8 and ¢ subunits and oligomycin-
sensitivity conferring protein (OSCP), b, d, and h (F6 in mammals)
subunits (Walker and Dickson, 2006; Gerle, 2020). Proton transfer
into the matrix is achieved through the rotation of the c-ring
composed of several c-subunits and the a-subunit, which contains
a proton channel, all coupled with the rotation of the y-subunit.
The CS passes through the center of the F; hexamer, connecting the
transmembrane part of Fy with the catalytic part of F;. The PS acts

10.3389/fnmol.2025.1621070

as a stator, preventing the co-rotation of the F; domain (Giorgio
etal., 2017; Gerle, 2020). The height of the transmembrane domain
Fo reaches ~6.4 nm and the diameter of ~10-12 nm (Hatefi,
1993). The F; reaches a length of ~11-12 nm and a diameter of
~7.4 nm, the CS has length of approximately ~4.3-4.5 nm (Hatefi,
1993; Nirody et al., 2020; Nesterov and Yaguzhinsky, 2023). The F;
domain plunges into mitochondrial matrix due to its hydrophilic
properties. Specifically, this domain is responsible for the synthesis
and/or hydrolysis of ATP (Walker and Dickson, 2006; Nirody et al.,
2020; Frasch et al., 2022).

As discussed above, although the eukaryotic F-ATPase (a
member of the ATPase family) is typically associated with ATP
synthesis, it can work in opposite directions: using the proton
gradient for synthesis (Figure 3A) or hydrolyzing ATP to create a
proton gradient (Figure 3B).

ATP production is achieved by the transmembrane
electrochemical proton gradient generated by the ETC, resulting
in the mitochondrial membrane potential (AW ). The threshold
level of AWy in IMM required to initiate the rotation of ATP
synthase’s rotor is -65 mV in mammals (Wescott et al., 2019).
The value of AWy can vary up to -170 mV, with the rate of ATP
synthesis increasing nonlinearly with increasing potential (Wescott
et al,, 2019; Kaim and Dimroth, 1999). Effective ATP generation
occurs when AW is around -100 to =120 mV (Lee et al., 2002).
In addition to the transmembrane electrochemical proton gradient
(AW t), the reduced form of NADH (TCA product) is required for
ATP generation (Meléndez-Hevia et al., 1996; Sonenshein, 2001;
Bonora et al., 2012). Some of the TCA dehydrogenases are Ca>*-
dependent enzymes. Therefore, activation of these dehydrogenases
requires Ca?™ influx into mitochondria and the presence of a Ca*

ATP synthesis

FIGURE 3

A scheme of mitochondrial ATP synthase composition during ATP synthesis (A) and hydrolysis. (B) ATP synthase converts the energy of the proton
electrochemical transmembrane gradient into ATP through mechanical rotation. F; complex is a hexamer composed of a- and B-subunits,
connected to the peripheral stalk (PS), which includes b-, d-,and h (F6 in mammals)-subunits, and the central stalk (CS), containing y-, e-, and
3-subunits. Fp is a transmembrane complex composed of the c-ring and the a-subunit. OSCP (oligomycin-sensitivity conferring protein) — connects
F1 with PS, provides structural stability and coupling the rotary action of the Fg domain to ATP synthesis in F1. (A) The proton electrochemical
gradient (HT) drives the rotation of the c-ring within the Fg complex. This motion initiates conformational changes in the g-subunits of the Fy
complex, leading to the sequential binding of ADP and inorganic phosphate (Pi) and ATP release. (B) In conditions of low membrane potential, ATP is
utilized to drive the reverse rotation of the c-ring within the Fg complex. This motion initiates conformational changes in the -subunits of the F;
complex, leading to sequential ATP cleavage into ADP and inorganic phosphate (Pi), leading to proton translocation across the membrane.
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buffer (to be discussed later) (Bonora et al., 2012; Markovinovic
etal., 2022).

The maintenance of AW, ETC, and ATP synthase function is
supported by several key messengers and factors that are universal
in eukaryotic cells. Among these are the ATPase Inhibitory Factor
1 (IF1) (Garcia-Bermudez and Cuezva, 2016; Glancy and Balaban,
2012; Gore et al., 2022) and Ca?* (Glancy and Balaban, 2012;
Wescott et al., 2019), which regulate mitochondrial bioenergetics,
and nitric oxide (NO) produced by nitric oxide synthase (NOS)
within the IMM (Finocchietto et al.,, 2009; Kohlhaas et al., 2017;
Godoy et al, 2021). In neuronal cells in particular Ca?* can
enter the mitochondria from the extracellular space via various
pathways, such as activation of N-methyl-D-aspartate receptors
(NMDARSs), a subtype of glutamate receptors (Garthwaite, 2008;
Negri et al,, 2021), highlighting the specialized role of these
receptors in regulating mitochondrial function in the postsynaptic
region, opening of voltage-gated calcium channels, engaging store-
operated calcium currents, and activating other pathways (see for
review: Nanou and Catterall, 2018; Chin and Kaeser, 2024). We will
discuss this issue in more detail in section 6.

3 Mitochondria in central neurons

3.1 Features of neuronal mitochondria

Despite the similarities in physiology and functional principles
of mitochondria across all tissue types, there are unique
characteristics and specific patterns of mitochondrial structure,
dynamics, form and localization that are tailored to the energy
demands and functions of specific cell types. In the central nervous
system tissue, there are several cell types, including neurons and
glial cells such as astrocytes, microglia, and oligodendrocytes
(Garman, 2011; Herculano-Houzel, 2014; Liu et al., 2023). In
comparison with glial cells (Kann and Kovacs, 2007; Jackson
and Robinson, 2018), cardiomyocytes and skeletal muscle fibers
(Kuznetsov et al.,, 2009), neuronal MT are more motile in both
ratio (for instance, the number of mobile MTs in neurons is
approximately twice as high as in glia (Jackson and Robinson,
2018) and velocity of the motion: ~0.3 wm/s in neurons and
~0.1 pm/s in astrocytes (Stephen et al., 2015; Table 1). Moreover,
the speed of mitochondrial movement in neurons and astrocytes
varies depending on the direction, either anterograde (from
the soma) or retrograde (toward the soma), but the speed of
neuronal MT is around three times greater than astrocytes’
one (Jackson et al., 2014; Table 1). Furthermore, in comparison
with astrocytes, dysfunctional mitochondria elimination is more
developed in neurons (Sukhorukov et al., 2021), which may impact
the functionality of these cells (see in the next chapter). MT features
within different types of neurons also possess some differences.
As an example, MT of fast-spiking [~ 30-100 Hz (Kann et al,
2014; Kann, 2016)] inhibitory interneurons are distinct from
MT of cortical neurons. The unique physiological properties of
interneuronal MT require the enhancement of ETC in the IMM,
enriched in a number of proteins such as cytochrome c oxidase
and the ETC complex I (Whittaker et al., 2011; Kann et al., 2014;
Kann, 2016) which ensure the dynamics of ATP synthase and cell
survival. As for MT velocity in the neurons of different origins, it
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may be affected by multiple factors, for example, by activity, stages
of cell development (Silva et al., 2021) or by activating modulatory
pathways (Pekkurnaz et al., 2014; Jenkins et al., 2024), for example
by the AKT-glycogen synthase kinase 3p pathway in serotoninergic
and dopaminergic neurons (Pekkurnaz and Wang, 2022).

Little is known about AW in neurons, which differ in
morphology, origin, and the main transmitter released. One study
showed that dopaminergic cells of the substantia nigra keep
relatively low AW, ~ -94 mV (Huang et al., 2004). Higher
values were found in several types of cultured neurons: -100 mV in
hippocampal culture (Korkotian et al., 2019), =139 mV in cortical
neurons (Gerencser et al., 2012) and -150 mV in cerebellar granule
cells (Ward et al., 2000). Several physiological factors, including
depolarization, hyperpolarization and overall activity are believed
to influence AWy, contributing to its volatility and dynamic
instability. In general, it should be noted that neuronal AW
fluctuates within a fairly wide range, comparable to the potential
in astrocytes and myocytes, but exceeding it in fibroblasts (Table 1).

Thus, neuronal and especially dendritic MT possess a set of
unique features that shape their specialized metabolic properties,
which will be explored in the context of Ca?t buffering and ATP
production in the following sections.

3.2 Mechanisms of mitochondria motility
in neurons

As mentioned above, neuron is a type of cell that exhibits
a spatially polarized and elongated form. The MT structure,
clustering, and distribution in neurons are highly distinct due
to the differentiation of neuronal compartments (Perkins et al.,
2001; Kann and Kovacs, 2007) and the significant length of
their processes, which can extend several meters from the cell
soma (Cai and Sheng, 2009a). Neuronal MT mobility occurs
through their movement along cytoskeletal elements such as
microtubules and actin filaments (Shah et al., 2021; Alberti et al.,
2022; Zaninello and Bean, 2023). There is a specific principle for
microtubule orientation in neurons: in axons and distal dendrites,
microtubules are strictly oriented such that their dynamic ends, or
plus-ends, are conditionally directed toward the terminals, while
their stable ends, or minus-ends, are directed toward the cell
soma. Different motor proteins provide movement in anterograde
(toward the terminals) or retrograde (toward the soma) directions
(Figure 4A). Thus, the superfamily of kinesin provides mostly for
anterograde transport, while dynein provides retrograde transport.
In proximal dendrites, the orientation of microtubules could be
mixed, with both minus- and plus- ends present, so the direction
of motility in dendrites is not solely dependent on motor proteins
(Hirokawa and Takemura, 2005; Kapitein et al., 2010; Kruppa and
Buss, 2021). In the neuronal soma, mitochondria exhibit specific
orientations related to the microtubule network, contributing to
the overall cellular architecture and function (Petersen et al., 2014;
Seager et al., 2020).

Mitochondria are attached to motor proteins through specific
adaptor proteins such as Miro1/2 and TRAK1 (Trafficking Kinesin
Protein 1) and TRAK2, both homologues of Milton (MacAskill
et al., 2010; Misgeld and Schwarz, 2017; Kruppa and Buss, 2021;
Duarte et al., 2023). TRAKI is responsible for axonal transport and

frontiersin.org


https://doi.org/10.3389/fnmol.2025.1621070
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/

Feofilaktova et al.

10.3389/fnmol.2025.1621070

EF-hands

A

dendrite

mushroom spine

&Mim 12 D TRAK 2 }. Dynein

9000009909999 Microtubule

Kinesin

————— movement

control

@ Glutamate
® Ca?*

FIGURE 4

unpublished confocal images generated by the authors.

Schematic description of neuronal mitochondria motility. (A) Miro1/2 (Mitochondrial Rho GTPasel/2) acts as a Ca®* sensor. Through binding with
the motor-adaptor protein TRAK2, Miro1/2 inhibits the interaction between dynein and microtubules. This inhibition allows mitochondria to remain
within the local Ca?* burst region (dotted line), which occurs due to the activation of N-methyl-D-aspartate receptors (NMDARs). The presence of
four EF-hand domains in Miro1/2 facilitates this process. Local Ca?* bursts are restricted to ~2—3 um from the site of origin (dashed line). As a
result, mitochondria are anchored beneath the base of dendritic spines, optimizing ATP production and enabling efficient Ca®* buffering. Different
motor proteins provide movement in anterograde (toward the terminals) or retrograde (toward to the soma) directions: kinesin provides anterograde
transport, while dynein provides retrograde transport. (B) Another form of mitochondrial motility involves mitochondrial “fission,” which separates
organelles, and “fusion,” where they merge into a single cluster. Fission is regulated by the GTPase Dynamin-1-like protein, Drpl, while
mitochondrial fusion is controlled by Mitofusins (Mfn) and the dynamin-like GTPase Optic Atrophy 1 (OPAL). During local synaptic glutamate release,
high concentrations of [Ca2*]. can induce mitochondrial fission, whereas low concentrations of [Ca2+t]c promote fusion. This scheme is based on

binds with both kinesin and dynein, while TRAK2 binds exclusively
with dynein, promoting dendritic mitochondrial transport (Sheng,
2014; Seager et al., 2020). It was established that Miro1l/2 works
not only as GTPases, acting as molecular switchers by binding
and hydrolyzing guanosine triphosphatases (GTP) but is also Ca?*
sensitive (Cai and Sheng, 2009b; Lee et al., 2018; Duarte et al., 2023).
Miro EF-hands act as Ca%t sensors and inhibit kinesin, leading to
the inactivation of the Miro-TRAK-kinesin complex.

Local Ca’**t gradients play an essential, though not fully
understood, role in the mitochondrial movement. On the one
hand, the increase in [Ca?*]. in the active zones should attract
MT, causing their movement toward the activation site, specifically
to the presynaptic bouton and/or the active spine. On the other
hand, the movement of MT should halt due to the rise in
[Ca*], concentration at the activation site. The Ca** sensors
are in the OMM whereby mitochondria connect not only with
motor protein but move along microtubules towards local Ca™*
gradients caused by ongoing synaptic activity (MacAskill et al.,
2010; Lin and Sheng, 2015; Rangaraju et al., 2019b; Kushnireva
and Korkotian, 2022). Neuronal activity, cytosolic calcium rises,
and synaptic glutamate release contribute to a reduction of speed
of mitochondrial movement (MacAskill et al., 2009). The growth
of synaptic activity reduces dendritic mitochondrial mobility
along microtubules and enhances their density at the spine base,
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especially in mushroom-type spines, where mitochondria organize
into stable tubular elongated clusters (Lee et al., 2018; Thomas
et al., 2023). Inhibiting the connection between mitochondria and
motor kinesin within the mitochondrial motor-adaptor complex
leads to the undocking of the mobile fraction of MT from
microtubules and their docking in areas of local [Ca?t], spikes
(Figure 4A; Sheng, 2014; Duarte et al., 2023). It is assumed that
Ca?*-induced mitochondrial transport arrest near active synapses
provides alternate energy to glutamatergic synapses (Colgan and
Yasuda, 2014; Duarte et al., 2023).

The largest difference in MT shape and dynamics is observed
between axonal and dendritic compartments, favoring larger sizes
(with some exceptions) and slower dynamics for the latter. For
example, the volume of dendritic mitochondria exceeds that of
axons and soma in the dentate gyrus of the hippocampus, but not
in the CA1 region (Faitg et al., 2021). Also, layer 2/3 of cortical
neurons exhibit elongated mitochondrial morphology in dendrites
(range from 1.31 to 13.28 wm) compared to axonal MT (ranging
from 0.45 to 1.13 pwm), both in vivo and in vitro (Lewis et al.,
2018; Seager et al., 2020; Yao et al., 2020). Axonal mitochondria
exhibit greater velocity and longer-range motility and a generally
globular or ovoid shape (Seager et al., 2020; Chang et al., 2006). In
dendrites, mitochondria exist as extended tubular clusters with high
density (Li et al., 2004). A particularly high density of mitochondria
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is observed in postsynaptic areas, where it supplies local protein
synthesis by ribosomal complex, support ionic, or more precisely
Ca?* homeostasis and cytoskeleton structural re-modeling (Chang
et al., 2006; Palikaras and Tavernarakis, 2020; Murali Mahadevan
et al., 2021; Duarte et al., 2023; Thomas et al., 2023; Bapat et al.,
2024). Occasionally, postsynaptic MT can invade dendritic spine
head (Bosch and Hayashi, 2012; Thomas et al., 2023), however,
typically it is concentrated in the parent dendrites under the spine
neck (Nimchinsky et al., 2002; Chang et al., 2006; Bourne and
Harris, 2008; von Bohlen Und Halbach, 2009; Thomas et al., 2023).
Furthermore, greater mobility is typical of newly formed
mitochondria, created by fission (see below). This MT pool
maintains high mobility within the transport motor/adaptor
complex due to its small size (Gu et al., 1994; Sheng and Cai,
2012; Segal and Korkotian, 2014; Green et al., 2022). It has been
shown that this complex moves directly to areas of elevated [Ca®*],
concentration (Colgan and Yasuda, 2014; Duarte et al., 2023).

3.3 Mechanisms of mitochondria motility
in dendrites

It is generally assumed that synaptic activity determines
the topography and dynamics of mitochondria associated
with the relevant dendritic spines, as well as the total length
of mitochondrial clusters (Bereiter-Hahn and Jendrach, 2010;
Leung et al, 2021; Thomas et al, 2023). This depends on
two types of opposing processes: cluster division or “fission”
to separate organelles and merging or “fusion” into one
cluster (Figure 4B). Fission is controlled by GTPase from the
dynamin superfamily: DNMIL (Dynamin-1-like protein) or
Drpl (dynamin-related protein 1) (Pekkurnaz and Wang,
2022; Duarte et al, 2023). Disruption or delay in fission
caused by Drpl dysfunction prevents mitophagy of damaged
mitochondria, which negatively impacts synaptic function.
Drpl-dependent modulation of anti-apoptotic proteins Blc-
w and Blc-xL expression exerts influence on MT location
and is correlated with an increase in protein number in the
postsynaptic density (MacAskill et al., 2010). Drpl-dependent
mitochondrial division has been increased by the influence of

10.3389/fnmol.2025.1621070

PTEN-induced kinase 1 (Phosphatase and tensin homolog PINK1)
and Ca?™ leak following synaptic potentiation (Duarte et al., 2023;
Thomas et al., 2023). Enhanced mitochondrial fission promotes
structural morphological alterations of dendritic spines in turn
(Duarte et al., 2023).

Mitofusins (Mfn) and the dynamin-like GTPase Optic Atrophy
1 (OPAL), which facilitate mitochondrial fusion, play a crucial
role in stabilizing mitochondrial morphology (Williams et al,
2010; Emery and Ortiz, 2021). Their dysfunction can result
in pathological fragmentation of the organelle and various
degenerative conditions (Pellegrini and Scorrano, 2007; Knott and
Bossy-Wetzel, 2008; Santos et al., 2015). The mutual and balanced
work of Mfn2 and Drpl is required to maintain physiological
function and balance between fission and fusion (MacAskill
et al,, 2010; Misgeld and Schwarz, 2017). Moreover, the proteins’
connection with transport proteins such as Miro and TRAK
are necessary to maintain different forms of synaptic plasticity
(MacAskill et al., 2010; Eberhardt et al., 2020).

The loss of functional mitochondria in postsynaptic areas
leads to an energy deficit, which blocks morphological plasticity.
Ultimately, this process results in dendritic spine pruning and
synapse loss (MacAskill et al, 2010; Dromard et al, 2021).
Therefore, maintaining a “healthy” pool of mitochondria in
the postsynaptic area is essential. However, MT are often
damaged there due to increased functional load. The removal
of defective mitochondria, which have accumulated improperly
folded proteins and lost mitochondrial potency—through a
process called mitophagy—is necessary to replace the damaged
organelles with new ones (Figure 5). The PINKI/Parkin
signaling pathway is primarily involved in the realization
of mitophagy (Misgeld and Schwarz, 2017; Palikaras and
Tavernarakis, 2020; Figure 5). When the serine/threonine-
protein kinase PINK1 accumulates on OMM, it phosphorylates
and activates Miro and GTPase protein Mfn2, as well as
E3 ubiquitin ligase Parkin and ubiquitin itself. Activated
Parkin binds to Miro or ubiquitin to attach to the OMM,
where Parkin continues to bind and append phosphorylated
ubiquitin, recruiting additional mitophagy adapters. As Parkin
is ubiquitinated, the autophagosome degrades the damaged
mitochondria  (Misgeld and Schwarz, 2017;

or dysfunctional
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FIGURE 5

Elimination of dysfunctional MTs from postsynaptic sites. In dendrites, dysfunctional MTs are removed via PINK1-Parkin signaling pathway: (1) PINK1
accumulates on OMM, promoting phosphorylation of Miro1/2, mitofusin proteins (Mfn1/2) and Parkin. (2) Phosphorylated Parkin becomes anchored
to OMM, where it binds and recruits phosphorylated ubiquitin. (3) As a result of Parkin-mediated ubiquitination, damaged and dysfunctional

mitochondria are targeted for degradation by autophagosomes.
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Quinn et al,, 2020). Disturbances in mitophagy processes may
trigger synaptic failure, and cell death (Dagda et al, 2009
Makarov and Korkotian, 2023).

In summary, neuronal mitochondria, that are located away
from the cell body, should work with higher level of self-
sufficiency and sustain essential functional load. Furthermore,
MTs are required to have instantaneous reaction due to
the high-speed kinetic (milliseconds) of the major part of
electrochemical events along dendritic branches and/or synaptic
micro- compartments. The same way signaling pathways getting
energetic requests should act. It is possible that mitochondrial
dynamic relocation along calcium gradients and changes in the
length and shape of mitochondrial clusters can be considered
as possible solutions to the functional task. However, it is still
unclear whether organelle mobility alone is sufficient to meet
the complex energetic demands in neuronal and glial cells, or
if more molecular tunings are required. In the next chapters,
we will discuss which molecular mechanisms are potentially
not only fast but also accurately direct ATP secretion in
appropriate compartments.

10.3389/fnmol.2025.1621070

4 Mitochondria in postsynaptic
regions of central neurons

4.1 Mitochondria and local activity at
postsynaptic sites

After the completion of the intense phase of synaptogenesis
associated with neuronal development, dendritic mitochondria
of mature neurons form spatially stable compartments about
30 pm in length (Rossi and Pekkurnaz, 2019; Palikaras and
Tavernarakis, 2020; Pekkurnaz and Wang, 2022). Excitatory
presynaptic terminals tend to contact dendritic spines, whereas
most inhibitory inputs are localized on somatic and proximal
dendritic areas (Leung and Peloquin, 2006; Jadi et al, 2012).
Frequently, neighboring spines form spatial functional groups or
clusters (see an example on Figure 6C; Nimchinsky et al., 2002;
Dromard et al., 2021). Likewise, increased activity in such a clusters
causes mitochondrial relocation toward presynaptic terminals
(Lees et al., 2020; Seager et al., 2020), where energetically the
mitochondria support the increased secretion of neurotransmitters,
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FIGURE 6

Postsynaptic Ca2* signaling pathway to the mitochondria. (A) Black arrows present calcium currents. Ca?* penetrates dendritic spine head via the
activation of ionotropic glutamate receptors: N-methyl-d-aspartate receptor NMDAR and AMPAR. The sarcoplasmic/endoplasmic reticulum

Ca?*-ATPase (SERCA) allows Ca2* to enter the spine apparatus (SA). Ca2*

is released into the mitochondria-associated membranes (MAM) space

through ryanodine-sensitive receptors (RyR), presenilin proteins (PSEN1/2) and inositol- 3-phosphate receptors (IPzR) located at the dendritic base
on the endoplasmic reticulum (ER). PSEN1/2 and sigma-1-receptor (o-1R) stabilize RyR and IP3R, respectively. Subsequently, calcium ions flux into
the mitochondrial matrix through voltage-dependent anion channels (VDAC) and the mitochondrial calcium uniporter (MCU), located on OMM and
IMM, respectively, where Ca2™ influences ATP synthase (ATPs) activity. Mitofusins (Mfn1/2) physically connects the organelles, keep free space
between them with a length of 10-30 nm. Other abbreviations: mGluR1/5—the | and V type metabotropic glutamate receptor coupled with
G-protein. (B) Confocal image of a single mitochondrion (MT) (red; MT morphology marker) located under dendritic spine base of a hippocampal
dendrite, with immunolabeled ATP synthase (green) and MCU (blue); (C) the same as (B). A cluster of dendritic spines with underlying MT. Note
non-uniform distribution of MCU and ATP synthase along the MT surface (unpublished observation).
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calcium maintenance, and presynaptic plasticity (Li et al., 2004;
Chang et al., 2006; Obashi and Okabe, 2013). As mentioned
earlier, the mitochondrial protein Miro functions as a Ca’*
sensor, inhibiting the connection between mitochondria and motor
kinesin within the mitochondrial motor-adaptor complex. This
leads to the undocking of the mobile fraction of mitochondria from
microtubules and their docking in areas of local [Ca?T], spikes
(Figure 4A; Sheng, 2014; Duarte et al,, 2023). It is assumed that
Ca’*-induced mitochondrial transport arrest near active synapses
provides alternate energy to glutamatergic synapses (Colgan and
Yasuda, 2014; Duarte et al., 2023).

The MT located under the spine bases with synchronized
synaptic inputs are not only influenced by them but also exert
influence on the structure of new dendritic spine groups themselves
within ~5 (Dromard et al, 2021) to 30 pwm (Bapat et al,
2024) from the plasticity induction focus. The appearance of new
spines around the potentiation focus is perhaps related to the
fission and extension of the mitochondrial network (Dromard
et al, 2021). Despite the evident significance, the connection
between the local volume and morphology of mitochondria and
synaptic functional activity remains apparently unclear. In the
study by Thomas et al. (2023), it was discovered that the dendritic
spine head volume and its postsynaptic density size do not
correlate with the volume of adjacent MT. Instead, mitochondria
are preferably concentrated around heterogeneous spine clusters
receiving structurally and functionally diverse inputs in dendritic
areas undergoing structural dynamics.

4.2 Mitochondria-driven modulation of
synaptic plasticity

In the context of synaptic plasticity [long-term potentiation,
(LTP) and/or long-term depression, (LTD)], free MT retain
motility, allowing them to move along cytoskeleton elements,
sometimes over quite long distances (Chang et al., 2006; Colgan
and Yasuda, 2014). In postsynaptic compartments, MT do not only
react to the current synaptic activity but are also able to affect
synaptic currents, specifically by long-term regulation of synaptic
strength. It is assumed that MT can exert a modulating effect on
LTP/LTD in different ways (see chapter 6.2). For instance, with
endoplasmic reticulum (ER) they form mitochondria-associated
membranes (MAMs). These specialized regions emerge in narrow
areas where the two structures take close positions, with a distance
of approximately 10-30 nm (Li et al., 2004; Rangaraju et al., 2019a).
MAM-contacts facilitate Ca?* transfer from the ER to nearby
MT, which maintains Ca?t homeostasis in dendrites (Colgan and
Yasuda, 2014; Garcia-Bermudez and Cuezva, 2016; Kushnireva
and Korkotian, 2022; Kuijpers et al., 2024). MAM-contacts are
regulated by Miro through clustering along OMM (Duarte et al,,
2023). In addition, mitofusin 2 (Mfn2) acts as a MAM-contact
protein and influences mitochondrial transport along microtubules
by associating Miro (Johri and Chandra, 2021).

MT are able to buffer ions over physiological [Ca?*], range,
within certain limits (around ~100 wM; MacAskill et al., 2010)
immediately in response to a local increase in [Ca2t], levels,
thereby restricting Ca?* spread along the dendrite in lateral
directions (MacAskill et al., 2010; Kushnireva et al, 2022).
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Moreover, MT, having collected Ca>T, provide gradual, slow release
of the ions to control the basal Ca?* level and restrict functional
interactions between neighboring dendritic spines (MacAskill
et al,, 2010). In the absence of synaptic transmission, [Ca®*],,
concentration is approximately equal to [Ca?t], concentration
and is around 100 nM (Segal and Korkotian, 2014; Seager et al.,
2020). Postsynaptic depolarization leads to a rapid increase in
[Ca®t]. (Gu et al., 1994; Pivovarova et al., 1999), and calcium is
sequestered by calcium stores when [Ca®*], reaches 500 nM (Gu
et al.,, 1994; Garbincius and Elrod, 2022). It has been established
that changes in [Ca®t],, follow local fluctuations in [Ca?*],
with a slight delay not exceeding a few milliseconds (Kushnireva
et al., 2022). Moreover, changes in [Ca?*t],, significantly correlate
with fluctuations in [Ca?*]., while the latter are framed by
physiological conditions. Presumably, the mechanism ensures
selective postsynaptic potentiation for neighboring spines at a
distance around ~2-5 pm (Kushnireva et al., 2022). Thus, if
mitochondria-buffered cytosolic calcium has a direct or indirect
relationship with mitochondrial activity in space, it is expected
that Ca%t is also be distributed unevenly in the cluster. Indeed,
direct measurements indicate that [Ca®*],, reactions are higher
in area clusters under the spine base in comparison to more
“lateral” clusters (Kushnireva et al, 2022). There is a high
detection probability of [Ca?T],, events under the spine base,
compared to the probability in lateral zones of the same cluster
(Kushnireva et al., 2022). Furthermore, it has been established
that during mitochondrial depolarization related to functional
activation, there is a short-term increase in reactive oxygen species
(ROS) production by mitochondria (A¥,; on IMM =~ -140 mV
and lower) (Kaim and Dimroth, 1999; Lee et al., 2002). ROS could
act as trigger to LTP induction (Thiels et al., 2000; Massaad and
Klann, 2011) (see section 7).

In conclusion, mitochondria are directed to local Ca** bursts
regions within dendrites to ensure the supply of ATP, proximal
to dendritic spines. Dysfunctional mitochondria are eliminated
through the mitophagy process to preserve dendritic spine
functionality. However, a critical question remains: is there a
distinct distribution of ATP synthase within IMM? Specifically, if
mitochondria exhibit a non-uniform ATP synthase distribution,
what impact does this have on ATP dynamics within the MT and
on the surrounding cellular processes reliant on ATP?

5 Regulation of ATP synthesis

5.1 ATP as a glial signaling molecule

It is assumed that precise spatial organization and regulation of
ATP synthase activity play significant roles both on presynaptic and
postsynaptic sites. However, these roles remain largely unknown.
One complicating factor is the fact that the synaptic region is
engulfed by astrocytes and microglia which assume important
roles in isolating the synapse. During heightened neuronal activity,
astrocytes extensively release ATP to neurons while simultaneously
increasing the amplitude and frequency of their calcium waves
(see for review: Lezmy, 2023; Illes et al.,, 2025). This process is
central to the concept of the tripartite synapse, where astrocytes not
only support neurons but also regulate synaptic communication.
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ATP is released through pannexin and connexin channels and
then converted into adenosine, modulating synaptic transmission
(Dahl, 2015; Boué-Grabot and Pankratov, 2017; Illes et al., 2019).
Additionally, astrocytes are involved in the glutamate shuttle,
absorbing excess glutamate from the synaptic cleft and converting it
into glutamine, which is then transported back to neurons for reuse
(Rose et al., 2020; Zhang et al., 2023). This mechanism maintains
excitatory signal balance and prevents neurotoxicity. Research
indicates that astrocytic calcium waves can propagate to nearby
cells, coordinating activity across neuronal networks (Fujii et al.,
2017; Letellier and Goda, 2023). This highlights astrocytes as crucial
modulators of synaptic plasticity and neuronal communication.

In addition to the effect on ion balance and neurotransmitter
control, there is evidence of energy support of the most
active synapses by astrocytes. They carry highly specialized
structures, endfeet, through which glucose is absorbed from the
cerebrovascular network. As hepatocytes, astrocytes are able to
reserve glucose in the form of glycogen. It is believed that the
mobilization of these reserves correlates with current neuronal
activity. The targeted supply of synapses occurs through thin
processes in the tripartite synapses mentioned above. For the
implementation of this mechanism, the local process must be
“aware of” the level of local synaptic activity. Moreover, the
branched network of the astrocytic ER can serve as a carrier for
intracellular glucose transport. However, it is not glucose but its
derivative lactate that is released to the extrasynaptic space (Miiller
et al.,, 2018; Pellerin, 2018; Beard et al., 2022; Zhang et al., 2023). In
this process, astrocytes metabolize glucose via glycolysis, producing
lactate, which is transported to neurons via monocarboxylate
transporters. Neuronal mitochondria then convert lactate to
pyruvate, which serves as a substrate for ATP production (Beard
et al., 2022; Pekkurnaz and Wang, 2022). However, the efficacy
of astrocyte-neuron lactate shuttle may be affected by aging
(Drulis-Fajdasz et al., 2018; Bonvento and Bolaios, 2021) because
of glycogen metabolism enzymes concentration increasing in
neurons’ MT (Drulis-Fajdasz et al., 2018).

In pathological conditions, astrocytes and microglia can shift
from metabolic support to an inflammatory profile, altering
their interactions with neurons. Instead of supplying ATP and
maintaining neurotransmitter balance, they begin to release
pro-inflammatory cytokines (IL-1B, TNF-a), which can impair
neuronal function. Microglial purinergic P2X7 receptors become
highly active in response to excess ATP, exacerbating inflammation
and promoting neurotoxicity (see for review: Giovannoni and
Quintana, 2020; Lopez-Teros et al., 2024). Meanwhile, astrocytes
may lose their ability to efficiently recycle glutamate, leading to
excitotoxicity. This metabolic-inflammation switch contributes to
the progression of neurodegenerative diseases, highlighting the
dual role of glial cells in both support and dysfunction.

5.2 Regulation of local ATP synthesis in
neuronal mitochondria

ATP in both presynaptic and postsynaptic MT is regulated
by synaptic activity, and aberrant synaptic activity may lead to
mitochondrial dysfunction. It has been established that under
normal conditions action potentials (AP) stimulate local ATP
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production in axons (van Hameren et al., 2019). It is reasonable to
assume that an analogous effect on ATP regulation may occur not
only in the presynaptic terminal of an activated synapse but also
in postsynaptic structures. Generally, because of increased [Ca?*],,
a number of local events take place: (1) Buffering of Ca’t by
MT increases [Ca®],,, which regulates the entry of glutamate and
pyruvate into the TCA cycle and enhances ATP production within
the range of approximately —-130 to -170 mV. This enhancement
is due to a greater number of protons moving through the IMM
voltage field per ATP synthase cycle, possibly as a consequence of
adaptive stoichiometry or increased c-ring turnover (Wescott et al.,
2019); (2) Intense mitochondrial fission takes place within 7-8 pm
from the active dendritic spines as a result of NMDA-dependent
LTP involving Ca?T /calmodulin-dependent protein kinase IT
(CaMKII), Drp1 and actin polymerization (Divakaruni et al., 2018).
Hyperpolarization enables Ca’" uptake into the mitochondrial
matrix, which leads to an increase in ATP production. This
can occur during mitochondrial fusion (Klotzsch et al, 2015;
Divakaruni et al., 2018). However, it is likely that ATP synthesis,
increased after mitochondrial fission, is contributory to sustaining
LTP, which is facilitated by intensified Ca>* buffering because of
new divided mitochondria is presented (Divakaruni et al., 2018).
There is just fragmentary evidence for ATP synthase
distribution in neurons. Thus, it is known that ATP synthase
competes in proton motive force with proteins such as UCP4
(uncoupling protein) concentrated on IMM as well (Klotzsch
et al, 2015). UCP4 is included in the family of mitochondrial
anion carrier proteins (MACP) (Smorodchenko et al., 2011). The
notable feature of UCP4 relates to its expression in neuronal tissue
(Ledesma et al., 2002; Crivelli et al., 2024). UCP4 utilizes oxidative
phosphorylation energy similar to ATP synthase, however, not for
ATP synthesis but for heat generation. Due to the proton gradient
charge, the functioning of both proteins causes mitochondrial
depolarization. We assume that their activity and expression
could differ spatially as well as temporally. Spatial separation of
ATP synthase and UCP4 is observed within MT and between
the mitochondria of different sections of a neuron. ATP synthase
is more expressed in cristae, while UCP4 is expressed in IMM
regions adjacent to OMM (Klotzsch et al., 2015). Meanwhile, the
proteins anchored in cristae are influenced by a higher AW ;¢ than
the proteins adjoining the OMM. The maximal transmembrane
proton gradient is limited by rapid lateral proton diffusion from
cristae to UCP4 (Klotzsch et al., 2015). However, ATP synthase
molecules are able to relocate from cristae to the inner boundary
membrane (Weissert et al., 2021). Likewise, it has been observed
that ATP synthase expression is mostly typical for dendritic
branches, where local events requiring high energy leakage occur
(Mironov, 2009), while UCP expression is pronounced in the
neuron’s soma (Smorodchenko et al., 2009; Klotzsch et al., 2015).
Both enzymes’ expressions are partly separated in time. Thus, ATP
synthase is actively expressed in more mature, postnatal neurons,
while UCP4 and ATPase as enzymes that hydrolyze ATP are more
typical for mitochondria in embryonic cells when AW does
not reach -100 mV, thereby hindering ATP production by the
synthase at this stage (Surin et al., 2013). ATP synthase molecules
in mitochondria are typically concentrated at the cristae rims
(Jezek et al., 2023). However, mitochondrial ATP synthases in all
eukaryotic cells can form dimer or tetramer complexes across the
crista surface, which are arranged in linear rows forming helical
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patterns (Acehan et al,, 2011; Davies et al., 2011, 2012). The same
can be said about neuronal mitochondria cristae (Nirody et al.,
2020). The average distance between neighboring rows is around
~28-30 nm, and the mean interval between neighboring dimer
centers in a row is approximately ~12-18 nm (Acehan et al,
2011; Davies et al., 2011). Dimerization and oligomerization also
contribute to the high-degree curvature of cristae (Acchan et al,
2011; Dominguez-Zorita et al., 2022). The angle between the
axis of rotation of ATP synthase V-shaped dimers in mammalian
cells is dynamic, which permits the enzyme to function and/or
contribute to the structural changes of cristae (Nirody et al., 2020;
Dominguez-Zorita et al., 2022).

5.3 Ultrastructural and functional
features of ATP synthase in dendrites

mitochondrial ATP
distribution on cristae, its oligomerization, and structure are
influenced by IF1. It has been established that the absence of IF1
reduces the quantity of neuronal mitochondrial cristae, making

Neuronal synthase localization, its

them shorter and wider (Romero-Carraminana et al.,, 2023). IF1
also regulates ATP synthase activation in neuronal mitochondria,
promoting the delicate adjustment of ATP production and the
distribution of the AWy proton gradient within and between
cristae (Campanella et al., 2009).

The conversion of ATPase from hydrolyzing to synthesizing
ATP is accompanied by a shift in the FO-complex c-ring direction
and a conformational alteration of the entire synthase (Surin et al.,
2013), particularly the B-subunit of the F1-complex (Weber and
Senior, 2003; Nath, 2023), (see Figure 3B). The conformation of
ATP synthase can change due to the influx of Ca?* into the
mitochondrial matrix through MCU and the subsequent binding
of ions to the B-subunit of ATP synthase (Hubbard and McHugh,
1996; Giorgio et al., 2017).

Although ATP synthase molecules are concentrated in
mitochondrial cristae, a number of studies have described the
ability of ATP synthase to move from MT to the plasma membrane
of excitable cells (Xing et al., 2011; Chang et al., 2023). ATP synthase
located in plasmatic membrane, called ectopic (eATPase) is capable
of generating and secreting ATP into an extracellular environment
to regulate extracellular ATP/ADP ratio and intracellular pH level
(Xing et al, 2011). Before anchoring in the plasma membrane,
the future eATPase complex is located in the mitochondria. Its
transport to the mitochondria occurs as follows: kinesin family
member 5B (KIF5B) interacts with Drpl and binds to Miro and
TRAK proteins, directing the bound complex along microtubules
within mitochondrial fragments, or mitochondrial “vesicles,” to the
plasma membrane (Chang et al., 2023). It has been established
that both mitochondrial membranes can attach to the cell’s plasma
membrane to anchor eATPase in it (Chang et al., 2023).

Nowadays, there is a consensus that the cytosolic calcium
gradient precisely regulates ATP synthesis and/or secretion in
eukaryotic cells (Boyman et al.,, 2020), including neuronal cells
(Giorgio et al., 2017). This is especially relevant in the postsynaptic
neuronal zone, where calcium signaling plays a key role in
synaptic strength regulation. Additionally, there is a significant
open question: how exactly is the local ATP level regulated,
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and is this regulation connected with the spatial distribution of
ATP synthase in the postsynaptic zone? In other words, what
signaling mechanisms provide the initiation of ATP synthesis and
its secretion on a fast dynamic timescale, around milliseconds?

6 Calcium gradients in dendrites

6.1 Calcium signaling in mushroom
spines

As mentioned above, the AP-evoked Ca?t influx into the
synaptic area and dendritic cytosol occurs through NMDAR in
response to glutamate release from the presynaptic terminal,
which is triggered by postsynaptic activation of AMPAR (a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) current
(Jonas et al.,, 2004; Keller et al., 2008; Ashhad and Narayanan,
20135 Strobel et al., 2017). AMPAR and NMDAR are two major
subtypes of glutamate receptors that play distinct roles in synaptic
transmission and plasticity. AMPARs mediate fast excitatory
synaptic transmission by quickly responding to glutamate binding,
while NMDARs are voltage-dependent and require both glutamate
and membrane depolarization to activate, leading to Ca?t influx
that influences synaptic modulation and plasticity (Figures 6A, 7).

Excitatory synapses are located on both dendritic spines and
dendritic shafts. Shaft synapses are typical of developing neurons
(Papa et al., 1995; Cottrell et al., 2000; Bucher et al., 2020). In
more mature neurons, non-spine contact types are not able to form
spatially bounded Ca** gradients due to the relative freedom of ion
diffusion along the dendrite. However, why is the calcium gradient
so crucial? The gradient is able to influence enzymatic chains, local
protein synthesis, maintenance, and ATP production (Korkotian
and Segal, 2006; Higley and Sabatini, 2012). In this context, it is
essential to consider the factors influencing the uneven dynamic
Ca?* distribution in dendrites.

First, a synaptic Ca®t gradient appears around the base of the
dendritic spine. One of the forms of a mature dendritic protrusions
is the mushroom-shaped spine, which consists of a head and a
narrow neck connecting it to the dendritic shaft. However, there
are other morphological types of dendritic spines, in particular
thin spines that lack a distinct head and stubby spines, that are
virtually neckless. The role and degree of functional maturity of
these morphologies are still under debate (see for review Hering
and Sheng, 2001). Briefly, thin spines, due to the lack of sufficient
surface area, do not carry a significant receptor complex. In
addition, branches of the ER rarely penetrate them. In contrast,
stubby spines are too closely associated with the parent dendrite
and do not actually represent an isolated chemical and electrical
compartment. Hence, we will focus on mushroom spines.

Due to the synaptic current, [Ca?T], in the spine head
may be significantly higher compared to the dendritic [Ca®*],
(Holcman et al., 2005; Segal, 2010; Yuste, 2013). This deviation
is achieved by the following factors: (1) the head volume is not
large, approximately 1 x 10718 - 10720 L (Koch and Zador,
1993; Harris and Kater, 1994); (2) the head contains significant
concentrations of Ca**-binding proteins, such as CaMKII and
calmodulin (Yuste et al., 2000); (3) free diffusion from the head
through the neck, with a diameter of ~0.1-0.2 pm (Arellano
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FIGURE 7

General trends of postsynaptic Ca2™ distribution and the associated ATP concentrations. High ATP section: AMPAR
(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, placed in the middle at the top) activation by glutamate triggers plasma
membrane depolarization. NMDAR (N-methyl-D-aspartate receptors, on the left in the center) requires both glutamate binding and membrane
depolarization for activation. NMDAR efficiently conducts Ca?*, which is taken up by the SERCA pump and transported to the local compartment of
the endoplasmic reticulum (blue field), where Ca2* is buffered by calreticulin (CRT). Voltage-gated sodium channels (VGSCs) are activated due to
membrane depolarization, which in turn opens voltage-gated calcium channels (VGCCs), allowing Ca* to leak from the intracellular space into the
cytosol. Localized in the ER (endoplasmic reticulum), RyRs (ryanodine receptors) open due to interaction with elevated cytosolic Ca2* via the
calcium-induced calcium release (CICR) mechanism, leading to a high level of Ca?* release within the MAM (mitochondria-associated membrane,
space between the ER and the mitochondria) region. Ca®* release is also facilitated by PSEN 1/2 modulating RyRs and/or serving as leak channels.
From the MAM, Ca?* penetrates through the OMM via VDAC (voltage-dependent anion channel) and MCU (mitochondrial calcium uniporter), which
may facilitate ATP synthase (ATPs), leading to increased ATP production from ADP exchanged across the IMM via ANT (adenine nucleotide
translocator). Activation of the mitochondrial Na*/Ca?* exchanger (NCLX) facilitates Ca®* efflux from MT into the cytosol, regulate MT Ca®*
homeostasis. Elevated ATP section: upon activation, the G-protein bound to type | and V metabotropic glutamate receptors (mGluR1/5) dissociates
into subunits. The a-subunit of the G-protein activates phospholipase C (PLC), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP;) into
diacylglycerol (DAG), which remains membrane-bound, and inositol trisphosphate (IPz), which diffuses into the cytosol. DAG subsequently activates
protein kinase C (PKC), initiating signaling cascades involved in long-term plasticity. IPz binds to the inositol 1,4,5-trisphosphate receptor (IP3R),
facilitating its opening and Ca2* leakage into the cytosol. IP3Rs, oriented toward the MAM region, release Ca2t toward mitochondria (MT) in lower
amounts compared to the previously described pathway, contributing to a moderate ATP increase. Basal ATP section: The interaction of the
inhibitory neurotransmitter GABA (gamma-aminobutyric acid) with ionotropic GABA4 (GABA type A) or metabotropic GABAg (GABA type B)
receptors conducts Cl~ (chloride) anions into the cytosol or removes K* (potassium) via GIRK (G-protein-coupled inwardly rectifying potassium
channels), thereby hyperpolarizing the membrane without creating an influx of Ca2*. As a result, cytosolic Ca2* levels remain low. The only source
of Ca?* store replenishment in this case is the activation of Orai (voltage-independent calcium release-activated protein), which connects with
oligomerized STIM (stromal interaction molecules) located near the plasma membrane and facilitates Ca2" influx into the store/ER. The absence of
increased Ca?* and IP3 in the cytosol prevents Ca* release from the store, as RyR and IP3R remain closed. Under these conditions, ATP levels
remain at the basal level.

10.3389/fnmol.2025.1621070

et al, 2007; Ofer et al,, 2021), is hindered, creating an effect
of ion compartmentalization (Arellano et al, 2007). Due to
this accumulation of Ca?t in the spine head, related to its
buffering and diffusion obstruction from the neck, the transition
process duration in the postsynaptic area increases (Hayashi and
Majewska, 2005). Thus, Ca>* gradient appearances around the
spine neck base (Yuste et al.,, 2000; Korkotian and Segal, 2007).
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This is possibly one of the reasons that 90-95% of excitatory
synapses are changed over to spines during the development of
most brain structures (Nimchinsky et al., 2002; Bucher et al., 20205
Kandel, 2021).

In comparison with excitatory synapses, most inhibitory ones
are located on proximal dendrites and the soma surface (Megias
et al, 2001; Bucher et al, 2020), where they repress Ca2*-
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and NaT-currents responsible for synaptic plasticity and AP-
evoked spikes, respectively, through membrane hyperpolarization
(Miles et al., 1996; Megias et al, 2001). This location of
inhibitory synapses relative to excitatory inputs is required for
effective enhanced inhibition (Kandel, 2021). However, in several
cases, inhibitory synapses are observed around dendritic spines
(Miillner et al.,, 2015), or on the spines themselves. This occurrence
is especially common for pyramidal neurons of neocortex (Marlin
and Carter, 2014; Bucher et al., 2020) and CAl hippocampal
neurons (Huang et al., 2005). Inhibitory dendritic synapses are
located on proximal dendrites (Chalifoux and Carter, 2011; Gidon
and Segev, 2012; Ravasenga et al,, 2022), as well as on apical
ones (Chalifoux and Carter, 2011; Marlin and Carter, 2014). The
main receptors involved in these synapses are the metabotropic
gamma-aminobutyric acid B receptors (GABAgRs) (Huang et al.,
2005; Chalifoux and Carter, 2011). There is evidence that dendritic
and spine GABAgRs receptors are regulated by G-protein-coupled
inwardly rectifying K* (GIRK) channels, as well as NMDARSs,
which mediate Ca?* influx into the postsynaptic area, leading to
CaMKII activation (Huang et al,, 2005; Schulz et al., 2021). It
is possible that synaptic GABAgRs play a key role in dendritic
plasticity and excitability (Huang et al., 2005), by maintaining local
Ca?* homeostasis (Chalifoux and Carter, 2011; Figures 6A, 7).

Some forms of spines (for instance, stubby spines) do not
contain a thin neck, which provides a Ca?* gradient. In the case
of mushroom-like structures, the neck functions as a link rather
than a barrier for Ca?*t diffusion into the dendrite (Korkotian
and Segal, 2000). Diffusion kinetics of Ca?T through the neck
are also influenced by ER tubules (Segal and Korkotian, 2016). In
the case of complete separation from the rest of the reticulum,
the ER assumes an isolated structure in the form of the spine
apparatus (SA), which possesses an actin-associated complex based
on proteins such as synaptopodin. Local ER (Sheng and Cai, 2012)
and SA (Vlachos et al., 2009; Segal, 2010) control [Ca®>*], levels
in response to ion influx from the outside. Ca®* received through
NMDAR into the spine head is accumulated into the local ER
storage, while being secreted through ryanodine receptor (RyR)
or inositol trisphosphate receptor (IP3R) anchored on ER into
dendrite (Kushnireva and Korkotian, 2022; Figure 6).

Ca?* released from ER acts as a messenger, particularly in
MAM-contacts (Johri and Chandra, 2021; Figure 6). There are
major proteins related to MAM: (1) RyRs, located on ER/SA
under the spine base and facing the dendritic shaft (Basnayake
et al., 2021, 2022); (2) presenilins (PSEN1/2) (Korkotian et al.,
2019) acted as RyR regulators (Rybalchenko et al., 2008) and (3)
sigma-1 receptors (01Rs) that regulate and stabilize IP3R-MAM
contacts (Hayashi and Su, 2007; Raturi and Simmen, 2013; Johri
and Chandra, 2021). It is assumed that PSENs influence Ca?*-
leakage from ER in two ways. Firstly, PSEN1/2 modulates RyR
conductance by interacting with the receptor’s cytosolic domain
at the N-terminus (Rybalchenko et al., 2008; Payne et al., 2015).
In this regard, there is experimental evidence that RyR levels
are increased in the presence of mutant PSENs (Lerdkrai and
Garaschuk, 2018), possibly serving as a compensatory mechanism
for PSEN1 regulation deficit (Kushnireva and Korkotian, 2022;
Makarov et al., 2023). Secondly, there is evidence that PSEN1 can
function as an ion leak channel through the large hydrophilic loop
located on the cytosolic side (Tu et al., 2006; Bagaria et al., 2022).
MAM-contact proteins also include resident ER proteins such as
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calnexin or calbindin, the chaperone protein glucose-regulated
protein 75 and deglycase, which together with IP3R and VDAC
regulate the transfer of Ca?* from the ER to the mitochondrial
matrix through MCU (Johri and Chandra, 2021; Markovinovic
et al, 2022). Additionally, the role of mitofusins (Mfn1/2) in the
organization of MAM-contacts should be noted (Barazzuol et al.,
2021; Markovinovic et al., 2022). Mfn1/2 is involved in anchoring
mitochondria under the active spine base: the proteins physically
hold ER/SA and the mitochondria at quite a close distance, ~10-
30 nm (Markovinovic et al., 2022). MAM-contacts are involved in
Ca?t level maintenance, as well as in the regulation of apoptosis,
mitochondrial dynamics, mobility, and autophagy (Vance, 2014;
Johri and Chandra, 2021; Zhao and Sheng, 2024). The alteration of
distances within MAM by Mfn1/2 can affect the rate and efficiency
of Ca?™ buffering, which in turn influences mitochondrial energy
metabolism and signaling pathway regulation. Ca?* released by
RyR, PSEN1/2, and/or IP3R enters the mitochondrial matrix
through VDAC and MCU, located just under MAM-contacts on
the OMM and IMM, respectively (Garbincius and Elrod, 2022;
Markovinovic et al., 2022; Kuijpers et al., 2024). Below, we will
discuss how this mechanism is able to provide directed ATP
secretion. Dendritic spine(-s) with MT are imaged on the confocal
microscope in Figures 6B,C, respectively. Panel B represents a
single mushroom spine in contact with an axon. Panel C contains
a cluster of spines. MT (single on B and clastered on C) are seen at
the base of both examples (red) along with ATP synthase (green)
and MCU (blue). Possibly the larger spine on C is assocoated with
higher concentrations of ATP synthase and MCU.

6.2 Regulation of ATP levels by ongoing
synaptic activity

In Figure 7, the general trends in postsynaptic Ca?*
distribution and the associated ATP concentrations are illustrated.
In the excitatory synapses, AMPARs depolarize the membrane after
binding to the excitatory transmitter, presynaptic glutamate which
allows NMDAR activation, dependent on both ligand binding and
membrane potential. NMDAR efficiently conducts Ca?*, which
can be taken up by the sarcoplasmic/endoplasmic reticulum Ca?*-
ATPase (SERCA) pump and moved to the local compartment
of the ER or to the stand-alone SA. In addition, sufficient
depolarization of the plasma membrane transmits excitation to
the voltage-gated sodium channels (VGSC). The entry of Na™
ions involves the voltage-gated calcium channels (VGCC). The
following influx of Ca?T is also absorbed into the depot and
calreticulin (CRT) internal buffer protein. MAM-localized RyRs
open due to interaction with elevated cytosolic Ca?" via the
calcium-induced calcium release (CICR) mechanism, after which
calcium is released towards MT. This is also facilitated by PSEN1/2
modulating RyRs and/or serving as leak channels, as well as by
the o-1 receptor. From the MAM, where [Ca?T], can reach 20-
40 pM (Hajnéczky et al, 2000), Ca®T penetrates through the
OMM via VDAC and into and through the IMM via the MCU
uniporter. In the internal environment of the MT, Ca** may
directly facilitate the Krebs cycle and ATP synthesis, leading to
increased ATP production from ADP, which is transported across
the IMM via ANT. The released ATP diffuses into the postsynaptic
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zone, where its increased concentration (“High ATP”) is formed,
for example, to maintain short-term plasticity/long-term plasticity
mechanisms associated with the buffer protein calmodulin (CaM)
and Ca’*/calmodulin-dependent protein kinase II (CaMKII).
Following heavy Ca’?* influx into MT Na®/Ca’* exchanger
plays a key role in Ca?T extrusion (Rodrigues et al., 2022), but
the mechanism depends on Na™ cytosolic and mitochondrial
concentration (Boyman et al., 2013).

Metabotropic receptors, which are coupled to a G-protein,
for instance, mGluR 1/5 can activate phospholipase C (PLC).
Activated PLC cleaves the phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP,) into lipophilic diacylglycerol (DAG) and
hydrophilic IP3. DAG can interact with protein kinase C (PKC),
triggering long-term plasticity chains. IP3 interacts with IP3R,
another calcium depot receptor that creates a local calcium release.
This released Ca?* enters MT in significantly smaller quantities
via the pathway described above, creating a zone of moderate
ATP increase in the cytosol (“Elevated ATP”) (see Table 2 for
half-activation constants).

Finally, the interaction of the inhibitory transmitter GABA
with the jonotropic GABA, or metabotropic GABAp receptors
conducts CI~ anions into the cytosol or removes KT from it via
GIRK, thereby hyperpolarizing the membrane without creating an
influx of Ca?*. The only source of depot replenishment in this
case remains the store-operated calcium entry (SOCE) mechanism
via the plasma channel Orai and the associated depot Ca™ sensor
STIM. In this case, Ca®T is immediately pumped into the depot by
the SERCA pump located nearby, without entering the cytosol (see
Basnayake et al., 2022). The absence of an increased Ca>* and IP;
in the cytosol does not cause ion release from the depot, since RyR

TABLE 2 Half-activation Ca2* concentration of calcium
regulatory proteins.

Receptor Half-activation Source
type Ca?t
concentration*
SERCA <0.4 uM Pancreatic B-cells (Fridlyand
et al.,, 2003)
RyR Activated by low Cardyomyocites (Laver and
concentrations (1-10 Curtis, 1996; Laver, 2007;
M) Seidlmayer et al., 2016)
VDAC Ca?* permeabolity in Rat liver (Tan and
open state 20 ions/s (1 Colombini, 2007)
wM), in closed state 80
ions/s (4 wM)
MCU 10 uM Isolated MT (Graier et al.,
2007)
IP;R 150 nM Cardyomyocites (Ju et al.,
2012)
Brain cells (Verkhratsky,
2005)
NCLX 20 — 40 pM Bacteria (Besserer et al., 2012)
IF1+CaM 5uM Cardiac myocytes
(Saucerman and Bers, 2012)
DRP1 + 1uM Brain cells (Klee et al., 1979)
Calcineurin DRP1 dependent on
calcineurin (Lai et al., 2023)

*All values are mean or approximate.
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and IP3R remain closed. In this case, the ATP level remains at the
basal level (“Basal ATP”).

The relationship between postsynaptic ~ Ca?*
concentrations and ATP production or delivery remains unclear,

local

as no precise data is available in literature. Fink et al. (2017)
reported that in skeletal muscle, Ca?* levels above basal (up to
450 nM) effectively enhanced mitochondrial respiration. With
further increases, ATP production slowed down, and after 10
WM, it began to decline. Similar or close values were obtained
in mathematical modeling of mitochondrial respiration (Tarraf
et al., 2021). In addition, Kushnireva et al. (2022) showed that
mitochondrial clusters in the postsynaptic zone effectively regulate
local Ca?*t levels and strictly limit their spreading along the
dendritic axis to 3-5 pwm. In this context, tight local control over
Ca?* not only modulates ATP production but also finely tunes
mitochondrial dynamics.

Thus, the emergence of significant calcium gradients extending
beyond the postsynaptic compartment is possible only with massive
synaptic potentiation. Under resting conditions, [Ca?*]. levels
in dendrites typically remain low (approximately 50-100 nM;
Verma et al., 2022), and although backpropagating action potentials
(bAPs) can evoke global calcium transients reaching 30-90 uM
(Sterratt et al., 2012), these supraphysiological concentrations do
not appear to affect mitochondrial mobility (Silva et al.,, 2021).
In sharp contrast, local synaptic activation produces modest yet
highly localized Ca?*t elevations often in the range from 100
to 200 nM (Gunter and Sheu, 2009) to only up to 10 pm
inside dendritic spines during activation (Verma et al, 2022)
which are sufficient to reduces the movement of dendritic MT
and leads to the grouping of them at the base of the spines
and even entry into them (Seager et al., 2020) by the EF-hand
domains of the MT adaptor protein Miro, leading to uncoupling
of motor proteins and promoting MT arrest near active synapses.
Meanwhile, higher concentrations of Ca?t can further disrupt
MT-microtubule interactions. Thus, a concentration of 50 uM
free Ca?* has been shown to cause a 50% reduction in MT
binding to microtubules (Wang and Schwarz, 2009). Consequently,
mitochondria undock from microtubules and move directly to local
Ca?t spike areas (Figure 4A; Sheng, 2014; Alberti et al., 2022;
Zaninello and Bean, 2023), triggered, for example, by NMDAR
activity (Duarte et al., 2023; Kuijpers et al., 2024).

Moreover, pathological conditions associated with Ca?*
dysregulation can profoundly disturb mitochondrial transport.
In particular, mutations in presenilin-encoding genes—which
underlie many familial Alzheimers disease cases—result in
aberrant Ca’" release from ER, initiating their physiological
imbalance (Sarasija et al., 2018)

These dysfunctional dynamics are believed to disrupt synaptic
homeostasis and have been linked not only to Alzheimer’s
disease but also to other neurodegenerative conditions such as
Parkinson’s disease and amyotrophic lateral sclerosis (Sheng and
Cai, 2012; Zaninello and Bean, 2023), in which imbalances in Ca%*
homeostasis exacerbate synaptic dysfunction and neuronal loss.

Thus, while modest local Ca?t elevations (in the range of
100-200 nM) appear to fine-tune mitochondrial positioning for
optimal ATP delivery at synaptic sites, excessive Ca>* —whether
due to intense synaptic activity or pathological mutations—can
instead derail mitochondrial trafficking, thereby contributing to
neurodegenerative disease cascades.
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In fact, mitochondria are not the only source of ATP in neurons,
including their postsynaptic microdomains. It is well known that
aerobic glycolysis can serve as an important, albeit secondary,
energy pathway, especially in the soma and areas of increased
metabolism. Glycolysis is a metabolic pathway that oxidizes glucose
to pyruvate, generating ATP and NADH. Although glycolysis does
not appear to be directly dependent on calcium concentration,
this ion may act as an indicator of increased synaptic load (Diaz-
Garcia et al,, 2021). Ca** may act as a trigger for increased
glycolysis by activating pathways such as the Aralar/malate-
aspartate shuttle, indirectly affecting mitochondrial function. In
addition, increased intracellular calcium may act as a signal for
activation of the glycolytic pathway. Thus, some G-protein coupled
metabotropic receptors can activate PKC protein kinase via PLC-
DAG-IP; pathway with following release of Ca?* from stores
(Figure 7). In addition, some PKC isoforms are Ca?™-dependent.
It has been established that in astrocytes, PKC regulates glycolysis
by phosphorylation of the glycolytic enzyme pyruvate kinase
(Horvat et al., 2021).

7 Calcium signaling within the
mitochondria

7.1 Regulation of mitochondrial
membrane potential by calcium ions

Ca?t can permeate the mitochondrial matrix via the MCU,
driven by its steep electrochemical gradient, and is regulated by the
significant electric potential across the IMM (AW ¢ ~ —150 mV)
(Guetal., 1994; Walters and Usachev, 2023). Early studies reported
that during physiological [Ca?*]. signaling, [Ca®t],, uptake
modulates the amplitude and duration of Ca?* signals without
significantly affecting AW (Chalmers and McCarron, 2008).
Depolarization of AW,y is expected only if [Ca®*], fluctuations
are repetitive and sustained: during AP and backpropagation AP
(bAP) (Stoler et al., 2022); no effect is anticipated during single
[Ca?t]. transients triggered by calcium influx or release from
intracellular stores (Chalmers and McCarron, 2008). However, the
occurrence of transient depolarizations of AW, during cellular
Ca?* signaling may significantly depend on the cell type. For
instance, in the study by Huang et al. (2004), distinct types of
neurons and other cell types exhibited variations in AWy the
mean AW, of fibroblasts was approximately —112 £ 2 mV, while
that of neuroblastoma SH-SY5Y cells was around —87 £ 2 mV.
The mean AW, within different neuronal structures also varied:
in primary cultured neurons, it ranged from —111 to —78 mV in
cell somata and from —113 to —84 mV in axonal growth cones.
Similarly, the mean AW of differentiated PC12 line cells ranged
from —121 to —89 mV in cell bodies and from —130 to —69 mV in
growth cones (Huang et al., 2004). However, in neurons, AW in
general (Dayal et al., 2024) and specifically dendritic (Zheng et al.,
2013) AWy, can reach higher values than those observed in the
aforementioned cell types (~ —150 to —180 mV). Moreover, it has
been shown that axonal MT exhibit significantly higher sensitivity
to Ca®* for the activation of mitochondrial Ca?* uptake compared
to non-neuronal mitochondria (Ashrafi et al., 2020). A recent study
demonstrated that APs induced by a series of synaptic stimuli
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elicit stronger [Ca?*]m responses in dendrites compared to those
triggered by a series of current pulse injections (Stoler et al., 2022).

Detection of coincident synaptic inputs and enhanced
mitochondrial Ca?* uptake accelerates the rates of NADH
production and consumption through the TCA cycle (see details
below) and the electron transport chain, respectively, increasing
ATP synthesis (Stoler et al., 2022). This positions mitochondria
as finely tuned contributors to the processes of synaptic plasticity
in neurons. Research on neurons shows that mitochondrial
calcium uptake can be triggered by an increase in [Ca?*], as
small as 200-300 nM above basal levels ([Ca?t]. &~ 50-100 nM;
[Ca?t]m &~ 100-200 nM at rest) (Gu et al., 1994; Pivovarova et al.,
2002; Stanika et al., 2012; Hu et al., 2018; Walters and Usachev,
2023; Murphy and Eisner, 2024). The rate of Ca’" efflux from
MT is significantly lower than the rate of Ca’* uptake (~23
WM/s in neurons). However, [Ca>*],, typically does not exceed
1-5 pM in neurons, even after intense stimulation, due to the
ability of incoming calcium to be buffered in the mitochondrial
matrix by forming phosphate complexes (Walters and Usachev,
2023). Thus, MT Ca* transients typically lag and persist longer
than cytosolic calcium ([Ca?*],) spikes, whether induced or
spontaneous (Lin et al., 2019; Kushnireva et al., 2022; Stoler et al.,
2022). It has been suggested that the prolonged release of buffered
calcium from MT may influence Ca>* signaling during recovery
periods following stimulation or spontaneous activity, effectively
preserving a “historical record”of prior activity (Gellerich et al,
2010; Pivovarova and Andrews, 2010).

7.2 Calcium regulation of metabolic
cycles

Fluxing into the mitochondrial matrix, Ca?t can influence
ATP synthase activity through two mechanisms: indirectly, via
the Krebs cycle, and directly, by binding to the B-subunit of
the ATP synthase F1 complex. Concerning Ca?*’s influence
on the TCA/Krebs cycle, it is important to note that some
of the dehydrogenases involved in the TCA cycle are Ca’*-
dependent (Figure 8). For example, pyruvate dehydrogenase and
a-ketoglutarate dehydrogenase exhibit Ca®* sensitivity, with a
Ca®* half-activation concentration of approximately 0.8 pM
(Walters and Usachev, 2023). Isocitrate dehydrogenase is also
Ca2+—dependent; however, its Ca?t half-activation concentration
is significantly higher, at around 40 uM (Walters and Usachev,
2023). Elevated Ca?* concentrations within the mitochondrial
matrix stimulate the enzymatic activity of these dehydrogenases,
leading to increased flux through the TCA cycle. During a single
Krebs cycle, two molecules of CO,, three molecules of NADH,
one molecule of FADH;, and one molecule of GTP are produced.
Electrons supplied by NADH and FADH, are both critical for
driving the respiratory chain, which encompasses the key stages
of oxidative phosphorylation responsible for ATP production.
Enhanced NADH generation increases the supply of electrons to
the respiratory chain, further supporting ATP synthesis during
heightened neuronal activity.

The direct influence of Ca?*t on ATP synthase function and
dynamics remains a subject of debate (Gellerich et al., 2010).
It has been suggested that the ion binds to the B-subunit of
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FIGURE 8

Ca?*-dependent dehydrogenases of the Krebs cycle (TCA, tricarboxylic acid cycle). Three Cat-dependent dehydrogenases (bold font) of Krebs
cycle are represented in the scheme. Half-activation concentration of Ca?* for pyruvate dehydrogenase and a-ketoglutarate dehydrogenase is
approximately 0.8 uM and around 40 wM for isocitrate dehydrogenase (mentioned as Kd). a-ketoglutarate dehydrogenase is included in | complex
of ETC.

the ATP synthase F1 complex directly (Hubbard and McHugh,  the energy stored in AW, to exchange ADP for ATP through
1996), inducing conformational changes in the entire ATP synthase ~ an antiport mechanism (Wescott et al., 2019). Its submolecular
(Territo et al.,, 2000; Nesci, 2022). An increase in [Ca®t],, caused  structure consists of three homologous domains. Each domain
by Ca?* influx through the MCU leads to enhanced proton intake  contains two transmembrane o-helices connected by a helical
by accelerating the c-ring rotation. However, to date, there is no  bridge. Itis hypothesized that the transporter performs a cyclic half-
conclusive evidence for such direct interaction (Territo et al., 2000;  turn in the horizontal plane, parallel to the IMM, in two opposite
Nesci et al., 2016; Wescott et al., 2019). directions. During the first half-turn, captured ADP is transferred
The highest activity of ATP synthase in eukaryotic cells is  into the mitochondrial matrix, and during the next half-turn, the
achieved when the K, for Ca?* ranges from ~200 nM (Territo  synthesized ATP is exported from the matrix to the cytosol. In
et al,, 2000) to ~600 nM in the presence of ADP (K,, ~ 20 pM)  other words, the transporter alternates between two states: one
(Wescott et al., 2019). Thus, it is arguable that the key condition =~ opens to the matrix and the other opens to the intermembrane
for maintaining energetic balance in neuronal synaptic zones is  space (Kunji et al., 2016; Ruprecht et al., 2019). Thus, ANT exports
the optimal concentration of [Ca®*],, and the efficient import — mitochondrial ATP through IMM in exchange for cytosolic ADP at
of ADP from the cytosol into the mitochondrial matrix, coupled  a 1:1 ratio (Pfaff and Klingenberg, 1968; Klingenberg, 1980).
with the rapid export of ATP from the mitochondrial matrix In brain tissue two ANT isoform are expressed: ANTI is
into the cytosol (Klingenberg, 2008; Kawamata et al., 2010). The =~ maintained at a high-expression level (Mentel et al., 2021; Mishra
effect of Ca>* might be attributed to the direct activation of the et al, 2023), while ANT4 has comparatively the low-expression
most widespread member of the IMM protein transporter family =~ one (Mishra et al, 2023). Except for ANT, phosphate carrier
involved in metabolite exchange, Adenine nucleotide translocator ~ protein is also involved in ATP transport. It catalyzes phosphate
(ANT), also known as the ADP/ATP carrier (AAC) (Territo et al.,  ion (P;) transport into mitochondrial matrix as a symporter (in
2000; Kunji et al., 2016; Wescott et al, 2019). ANT utilizes  collaboration with the proton) or as antiporter in exchange for
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hydroxyl ion. Without free access of nonorganic phosphate ATP
synthesis is not possible. For another thing, there is evidence to
suggest that P; influences Ca?" level in the mitochondria. P; can
not only stimulate Ca?" influx (Zoccarato and Nicholls, 1982) by
MCU but inhibit Ca?* efflux to enhance [Ca®*],, (Seifert et al,
2015). Another significant transporter is ATP-Mg?*/P; carrier
(short calcium-binding mitochondrial carriers (SCaMC), that is
also Ca?*-dependent transporter having EF-hand structure in its
compound to bind the Ca?* (Mentel et al., 2021; Mishra et al.,
2023). Thus, except for ADP and P; availability in mitochondrial
matrix, Ca? ™ affects ATP synthesis (Wescott et al., 2019).

The function of ANT can be modulated by cardiolipin,
a lipid also detected in neurons (Bradshaw et al, 2024). It
is proposed that cardiolipin binds ANT monomers within a
dimeric structure, thereby regulating ANT’s role as an ATP/ADP
carrier (Paradies et al., 2014). However, this hypothesis remains
unsupported (Paradies et al., 2009), as several studies describe
cardiolipin as a Ca>*-dependent molecule, whose interaction with
ANT may be unstable under certain conditions (Hwang et al,
2014; Miranda et al, 2020). Evidence also suggests that ANT is
a Ca’*-sensitive carrier, and its function may be influenced by
mitochondrial proteins such as cyclophilin D (CyD) (Cali et al,
2012; Bernardi et al., 2022).

7.3 Mitochondrial permeability transition
pore

Oxidation of cardiolipin affected by Ca?* can impair ANT’s
ATP/ADP exchange function, potentially triggering the opening of
the mitochondrial permeability transition pore (mPTP) (Paradies
et al.,, 2011, 2014; Miranda et al., 2020; Bradshaw et al., 2024).
The opening of mPTP alters the permeability of the mitochondrial
membrane (Karch et al., 2019; Figure 9).

mPTP opening results in the leakage of Ca’* from
mitochondria (Kinnally et al., 2011; Kaufman and Malhotra, 2014;

10.3389/fnmol.2025.1621070

De Marchi et al., 2014). The role of mPTP remains controversial:
while calcium release under physiological conditions primarily
occurs via the Na*/Ca?* exchanger, mPTP is thought to play a
crucial role in maintaining physiological levels of [Ca?* ] ,,, without
necessarily leading to mitochondrial dysfunction. Many studies
link mPTP opening to mitochondrial damage and cell death,
suggesting that mPTP activation occurs when [Ca** ], approaches
toxic levels. This can cause mitochondrial depolarization and a
reduction in ATP production. However, other research highlights
the reversibility of [Ca®t];m accumulation and mitochondrial
swelling (Pivovarova and Andrews, 2010). Some researchers
suggest that mPTP may consist of several components, including
ANT (Mnatsakanyan and Jonas, 2020b; Bradshaw et al., 2024), the
c-ring of ATP synthase dimers (Bernardi et al., 2022), and VDAC
(Mnatsakanyan and Jonas, 2020b). Others propose that mPTP
primarily comprises ANT and ATP synthase monomers (Bernardi
et al., 2022). The following molecular chain has been proposed:
CyD binds to OSCP (Mnatsakanyan and Jonas, 2020a), which
accelerates the dissociation of ATP synthase dimers (Bernardi
etal., 2022) and contributes to the structural disintegration of ATP
synthase (Murphy, 2022; Endlicher et al.,, 2023). These changes
facilitate the formation of mPTP.

The physiological effects of mPTP are as follows: Ca’* entering
the mitochondrial matrix triggers transient mPTP opening,
leading to short-term IMM depolarization (Mnatsakanyan and
Jonas, 2020a) and cristae remodeling (Mnatsakanyan and Jonas,
2020b; Bonora et al.,, 2022). The specific mechanisms underlying
depolarization remain unclear. In the open state, the pore
diameter is approximately 2-4 nm (Novgorodov and Gudz,
1996; Mironova and Pavlov, 2021). Prolonged mPTP opening,
however, results in mitochondrial potential dissipation, ionic
imbalance, and ROS generation (Lippe et al., 2019; Mnatsakanyan
and Jonas, 2020a). Moreover, the ROS and reactive nitrogen
species (RNS) produced in this context do not only contribute
to oxidative stress; when generated at sub-toxic levels, as
observed beneath the base of dendritic spines or near spineless

Short opening— LTP
A

Long opening— Cell death
o
P (@)

cytochrome

FIGURE 9

Mitochondrial permeability transition pore (mPTP) structure in physiolodical (A) and pathological (B) conditions. The mPTP is formed by
voltage-dependent anion channels (VDAC) on the outer mitochondrial membrane (OMM) and adenine nucleotide translocator (ANT) together with
the ATP synthase c-ring on the inner mitochondrial membrane (IMM). Ca®* enters the mitochondrial matrix via VDAC and the mitochondrial
calcium uniporter (MCU). Once inside, Ca®* with cyclophilin D (CyD) modulate the permeability of ANT and ATP synthase. Nat/Ca?+ exchanger
(NCLX) plays a key role in Ca2t maintenance within mitochondrial matrix. (A) Physiological condition where short openings of the mPTP allow a
low-level leak of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This modest release activates cyclic guanosine monophosphate
(cGMP) signaling, which contributes to long-term potentiation (LTP). (B) Pathological condition associated with prolonged mPTP opening and high
[Ca%*]y levels. In this state, a substantial leak of ROS and RNS occurs, leading to cytochrome c release and cell death.
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synapses on the dendritic shaft, they may diffuse across the
plasma membrane and stimulate guanylate cyclase or cGMP-
dependent protein kinase. This signaling feedback can modulate
neurotransmitter release and postsynaptic potentiation (Hidalgo
2007; 2011;
2016), with physiologically relevant [H,O;] typically exceeding
1 uM (Hidalgo et al, 2007). It is hypothesized that mPTP’s
physiological role is maintained as long as [Ca?T]m does
not exceed 10-40 pM, beyond which ATP production is
inhibited (Fink et al, 2017). In this state, the Krebs cycle

dehydrogenases are activated. The molecular cascade involves

et al, Massaad and Klann, Beckhauser et al.,

Ca’* binding to B-subunits, inducing conformational changes
in the ATP synthase stalks and the c-ring of the Fy complex
(Mnatsakanyan and Jonas, 2020a). Prolonged conformational
alterations in the c-ring transform it into a nonselective
channel, ultimately leading to dissociation of the ATP synthase
F1-Fg complex, OMM disruption, and cytochrome c release
(Mnatsakanyan and Jonas, 2020a).

As mentioned, the mitochondrial oxidative phosphorylation
(OXPHOS) system consists of an electron transport chain and
ATPs. In addition to ATP synthesis, OXPHOS generates ROS. This
occurs due to proton leakage with the formation of a superoxide
radical as a by-product, which is then transformed into H,O5.
It is known that ROS act as an important second messengers,
but when OXPHOS function is disrupted, ROS hyperproduction
takes on dangerous forms, leading to oxidative stress. Among
the OXPHOS regulators, IF1 attracts special attention. Its
activity is manifested in MT damage and energy metabolism
imbalance. In neurons IF1 acts by inhibiting the hydrolase and
synthetic activity of ATPase, shifting energy metabolism towards
glycolysis (Formentini et al, 2014). It may be assumed that
such shift may occur during local energy deficiency, associated
with elevated synaptic activity or with adjacent mitochondrial
dysfunctions. The role of IF1 in ROS overload is still debated
(Gore et al., 2022).

It is possible that mPTP formation can lead to wide spectrum
of pathologies development to ATP synthase dysfunction initiating
a number of neurological disorders, such as Alzheimer’s disease,
Parkinson’s disease (Coluccino et al., 2023; Baev et al., 2024),
amyotrophic lateral sclerosis, and more rarely Huntington’s
disease, Wilson’s disease and Friedreich’s ataxia (Galber et al.,
2021). In all the listed diseases, there is a disruption in ATP
synthesis, which can lead to the death of energy-dependent
neurons (Cali et al, 2012). There is evidence to suggest
that OSCP synthesis is reduced in young and old brains
in some animal models of Alzheimer’s disease as well as in
old brains without any disorders (Mnatsakanyan and Jonas,
2020b). The cellular mechanisms that inhibit Ca** binding
to the ATP synthase P-subunit are demonstrated during the
progress of the early stages of neurodegeneration (Cali et al,
2012; Pchitskaya et al., 2018; Mnatsakanyan and Jonas, 2020a;
Verma et al., 2022).
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8 Conclusion

Generalization and analysis of a large body of data related
to mitochondrial mechanisms in neurons allow us to make
several preliminary conclusions with respect to the high kinetics
of energy-intensive processes in synaptic zones associated
with neurotransmitter secretion and postsynaptic mechanisms,
including the receptor’s balance, its modulation and plasticity.
It is remarkable that all the events occur with high speeds in
the millisecond range and within an extremely limited volume
of a fraction of pm?>. These factors make calcium ions an ideal
agent in signaling transmission, accounting for their high mobility
and the difficulty of their regulation by intracellular storage
compartments, including the SA (probably a local Ca?*-store in
the necks of dendritic spines) and thin ER branches. Furthermore,
cytosolic calcium is essentially a detector of synaptic activity
and synaptic strength due to its influx through NMDAR and
other specific channels. In the cytosol, Ca’* are buffered by
numerous endogenous sensors including calmodulin. The ions
are also captured by storage through the SERCA pump and
removed from neurons by different ionic pumps and transporters.
Considering all the above-mentioned, it is not surprising that
the mitochondria located near synaptic zones, or even directly
within them, utilize calcium ions in different ways, but primarily
as universal, high precision, fast, local, and functional regulators
of ATP production.

In the present review, the potential mechanism of Ca’*
interaction with postsynaptic mitochondria in the context of the
ion’s dynamics and its influence on ATP production was described.
A few brief conclusions should be drawn:

(1) Neuronal mitochondria can be relocated from the soma to
distal parts of the cell. Their functioning requires a high
level of self-sufficiency and rapid reactions to energy requests.
Synaptic mitochondria experience considerable functional
load. This is why mitochondria requires a reliable detector for
the activation of local ATP production.

In dendrites, mitochondria form spatially fixed clusters.
Mitochondrial distribution depends on local dendritic Ca?*
spikes; in other words, the distribution occurs in the dendritic
compartments associated with a specific synapse. Because of
the energetic requirement for local plasticity, dendrites need
new mitochondria to be attracted, as well as the removal of
dysfunctional ones by mitophagy.

It is hypothesized that ATP synthase distribution and activity
depend on postsynaptic Ca?*-transients. ATP synthase
monomers form dimer or tetramer complexes, which arrange
into linear rows forming a helical structure on cristae. This
arrangement suggests the possibility of varying ATP synthase
concentrations in specific mitochondrial cluster zones.

(4) There are some, albeit currently insufficient, grounds to believe
that locally occurring Ca?* gradients stimulate not only
local but also direct ATP synthesis required for activation
maintenance in the postsynaptic area (more frequently, this is
a dendritic spine).

Entering the mitochondrial matrix through VDAC and MCU,
Ca?* could modulate ATP synthase activity. For instance,
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the ions’ indirect influence may occur through the Krebs
cycle dehydrogenases, while their direct influence could occur
through ATP synthase binding to the F1 complex B-subunit.
ATP secretion into the cytosol via the ATP/ADP carrier also
shows evidence of Ca?*-dependence.

Direct measurements of ATP levels and calcium regulation
of synthesis in MTs remain a challenging experimental task.
The limitations arise from several factors. First, mitochondrial
events typically occur in extremely small volumes, complicating
any direct measurements. Second, the inner membrane of
intact MTs is an insurmountable barrier for many water-
soluble markers. Third, proteins such as genetically encoded
calcium probes are sources of experimental artifacts during
measurement. Fourth, neurons exhibit millisecond dynamics
of electrical and ionic fluctuations, which requires high-speed
detection, while it is difficult to combine high imaging resolution
and high speed. Finally, physiological ATP levels are maintained
at 1-5 mM, making it extremely difficult to measure local
fluctuations of these molecules, which probably do not exceed
a few percent of the baseline level. A good way out may
be mathematical modeling, which does not suffer from the
listed limitations. However, there has been little progress in
this area so far.

Thus, the model by Pokhilko et al. (2006), describes the
rapid kinetics of calcium infusion into mitochondria. The
model shows that at concentrations below 140 nM, all available
Ca’? ions are accumulated in the matrix without permeability
transition pore activation, while levels above 140 nM promote
periodic or continuous pore opening and system oscillations
(see Figure 9). The model by Tarraf et al. (2021) predicts
the rate of ATP generation in accordance with homeostatic
needs. One of the important factors through which calcium
may affect ATP levels is the kinetics of the uniporter. The
model proposed by Dash et al. (2009) describes the kinetics
of Ca?t transport through the uniporter at different AW
and ion concentrations. Despite the apparent attractiveness,
the large number of partly uncertain parameters limit the
mathematical modeling of mitochondrial dynamics in the
postsynaptic area.
described
unproven and

in our review remain
further

verification. Thus, possible uneven distribution of ATPs, MCU

Many mechanisms
hypothetical, require experimental
and ANT in postsynaptic mitochondria requires the use of
super-resolution or expansion microscopy, since conventional
confocal imaging does not provide sufficient resolution. Crispr/Cas
methods, the use of transgenic animals and plasmids carrying
mutant genes can indicate whether the lack/malfunction of
a set of key proteins, such as PSEN1/2, MCU, RyR/IP3R
will affect ATP production. Functional dynamic experiments
(electrophysiology, live imaging, glutamate uncaging) along
with stimulation or suppression of local synaptic activity can
best link synapse function with ATP production. An adequate
correlate could be the measurement of mitochondrial potential
(using tetramethylrhodamine, TMRM) or intraorganellar
calcium (e.g., MT-linked CaMPs). Still, the most effective
indication seems to be the direct measurement of ATP
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postsynaptic fluctuations using recently developed genetically
encoded ATP sensors.

In conclusion, the hypothetical nature of some of our
suppositions should be emphasized, and new experimental
evidence is required to test these assumptions. Future research
focusing on the intricacies of ATP synthase distribution, local
and their
processes in the postsynaptic zone could unveil new horizons

calcium gradients, influence on mitochondrial

in understanding the mechanisms of neuronal plasticity
and energy regulation. Such knowledge will contribute to
a deeper comprehension of the foundations of cognitive
processes and the development of therapeutic approaches to

neurodegenerative diseases.
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Glossary

AAC ADP/ATP carrier

ADP Adenosine diphosphate

AMPAR a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
ANT Adenine nucleotide translocator

AP Action potential

ATP Adenosine triphosphate

ATPs ATP synthase

CaM Calmodulin

CaMKII Ca?"/calmodulin-dependent protein kinase IT
CICR Calcium-induced calcium release

CRT Calreticulin

CS central stalk of ATP synthase

CyD Cyclophilin D

DAG Diacylglycerol

DJ-1 Deglycase

Drpl GTPase Dynamin-1-like protein

eATPase Ectopic ATPase

ER Endoplasmic reticulum

ETC Electron-transport chain

IF1 ATPase Inhibitory Factor 1

IMF Intermyofibrillar

IMM Inner mitochondrial membrane

IP3R Inositol trisphosphate receptor

1P3 Inositol trisphosphate

GABABRs  Gamma-aminobutyric acid B receptor
GIRK G-protein-coupled inwardly rectifying K™ channels
Grp75 Protein glucose-regulated protein 75

GTP Guanosine triphosphatases

KIF5B Kinesin family member 5B

LTD Long-term depression

LTP Long-term potentiation

MACP Mitochondrial anion carrier proteins
MAM Mitochondria-associated membranes of ER
MCU Mitochondrial calcium uniporter

Min Mitofusin

mPTP Mitochondrial permeability transition pore
Miro 1/2 Mitochondrial Rho GTPase 1/2

MT Mitochondria

NMDAR N-methyl-D-aspartate receptor
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NO Nitric oxide

NOS Nitric oxide synthase

OSCP Oligomycin-sensitivity conferring protein
OMM Outer mitochondrial membrane

OPA1 Dynamin-like GTPase Optic Atrophy 1
OXPHOS  Mitochondrial oxidative phosphorylation
PINK PTEN-induced kinase 1

PIP, Phosphatidylinositol 4,5-bisphosphate
PLC Phospholipase C

PKC Protein kinase C

PS Peripheral stalk of ATP synthase
PSEN1/2 Presenilins 1/2

RNS Reactive nitrogen species

ROS Reactive oxygen species

RyR Ryanodine receptor

SA Spine apparatus

SCaMC Short calcium-binding mitochondrial carrier
SERCA Sarcoplasmic/endoplasmic reticulum Ca?*-ATPase
SSM Subsarcolemmal

TCA Tricarboxylic acid

TRAK Trafficking kinesin protein

UCP4 Uncoupling protein

VDAC Voltage-dependent anion channel

VGCC Voltage-gated calcium channels

VGSC Voltage-gated sodium channels

A¥mt Mitochondrial membrane potential
[Ca?t], Cytosolic calcium concentration

[Ca® ] Mitochondrial calcium concentration
olR Sigma-1 receptor
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