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Neuropathic pain (NP) is a chronic condition caused by nerve injury or disease. It 
remains a therapeutic challenge because conventional drugs have limited efficacy 
and cause adverse effects. Exosomes, with the ability to cross the blood-brain barrier, 
low immunogenicity, and tissue-homing capacity, have emerged as promising 
nanovehicles for precise microRNA (miRNA) delivery to modulate key NP pathologies 
such as neuroinflammation, neuronal hyperexcitability, mechanical allodynia, and 
thermal hyperalgesia. In this review, we highlight recent advances in exosome-
mediated miRNA therapy for NP. We also elucidate the molecular mechanisms 
and unique advantages of exosomes as both delivery platforms and intrinsic 
therapeutic agents. We synthesize evidence from preclinical models and initial 
clinical-stage studies, addressing translational challenges in scalable production and 
targeted delivery. Through sustained innovation and multidisciplinary collaboration, 
exosome-based miRNA delivery systems demonstrate transformative potential 
to overcome current therapeutic limitations, enabling novel NP management 
strategies.
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1 Introduction

Neuropathic pain (NP) constitutes a debilitating chronic condition originating from 
lesions or diseases affecting the somatosensory nervous system (Finnerup et  al., 2021). 
Afflicting approximately 7% of the global population, it imposes substantial clinical, economic, 
and societal burdens (Savelieff et  al., 2025). Patients typically experience characteristic 
manifestations including spontaneous burning sensations, electric shock-like pain, and 
mechanically evoked allodynia—paradoxical pain perception in response to non-noxious 
stimuli such as light touch. The pathophysiology involves multifaceted mechanisms 
encompassing peripheral and central sensitization (e.g., dysregulated ion channels, NMDA 
receptor activation), neuroinflammation (e.g., TLR4/NF-κB signaling in glial cells), and 
impaired neural repair (Vranken, 2012; Zhang et al., 2023; Kaye et al., 2024).

Current NP management primarily relies on pharmacological interventions (e.g., 
antidepressants, calcium channel modulators, topical anesthetics) (Alcántara-Montero and 
Pacheco-de Vasconcelos, 2022; Bayer et al., 2004; Moisset et al., 2022) and neuromodulation 
techniques [e.g., transcutaneous electrical nerve stimulation (TENS), spinal cord stimulation 
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(SCS)] (da Silva et  al., 2024; Leung et  al., 2020). However, these 
approaches face critical limitations: systemic adverse effects (sedation, 
anticholinergic effects), insufficient efficacy in subsets of patients, and 
inability to concurrently target multiple NP mechanisms. 
Compromised central nervous system bioavailability due to the blood-
brain barrier (BBB) further restricts therapeutic effectiveness 
(Amescua-Garcia et al., 2018; Ardeleanu et al., 2020). Consequently, 
NP remains inadequately managed in many patients, underscoring the 
urgent need for novel multitargeted therapeutic strategies with 
enhanced central nervous system (CNS) delivery capabilities.

MicroRNAs (miRNAs), serving as pivotal post-transcriptional 
regulators in NP pathogenesis, modulate neuroinflammation, 
neuronal hyperexcitability, and nerve repair (Wang et al., 2024). Their 
capacity to concurrently fine-tune multiple target gene networks offers 
significant therapeutic advantages over single-target drugs (Chang 
et al., 2017; Peng et al., 2017). Nevertheless, clinical translation of 
miRNA therapies is hindered by rapid degradation, poor cellular 
uptake, and inefficient BBB penetration (Shityakov et  al., 2022). 
Exosomes—natural nanoscale extracellular vesicles—provide a 
promising solution to these delivery challenges. They inherently 
protect cargo molecules (e.g., miRNAs) from degradation, exhibit low 
immunogenicity, possess intrinsic homing capacity toward injured 
tissues, and critically, traverse the BBB (Liu et  al., 2024). Recent 
advances in exosome engineering further enhance their delivery 
potential (Nouri et al., 2024). Exosome-mediated miRNA delivery 
thus represents a transformative strategy to overcome limitations of 
conventional NP treatments through precision modulation of multiple 
pathological mechanisms. This review focuses on the emerging 
paradigm of exosome-mediated miRNA delivery for NP management. 
We outline the therapeutic rationale for miRNAs in NP pathogenesis 
and exosomes’ unique advantages as delivery vehicles, evaluate 
preclinical and clinical evidence for exosomal miRNA efficacy, and 
discuss clinical translation challenges and future directions.

2 Methods

This narrative review synthesizes literature retrieved from 
electronic databases including PubMed and ClinicalTrials.gov using 
core search terms: “exosomes,” “microRNA,” “neuropathic pain,” and 
“miRNA pain therapy” with their English equivalents. Included 
studies fulfilled these criteria: (1) mechanistic validation in animal or 
cellular models, and (2) documented evidence of exosome-mediated 
miRNA delivery. Exclusion criteria comprised case reports and 
non-English publications.

2.1 miRNAs in NP pathogenesis

2.1.1 Expression profiles and therapeutic potential
MicroRNAs (miRNAs) are endogenous small non-coding RNAs 

(approximately 22 nucleotides) that regulate gene expression by 
binding to the 3′ untranslated region (3′ UTR) of target mRNAs. This 
interaction, primarily mediated by a 6–8 nucleotide seed sequence, 
induces mRNA degradation or translational repression (Liu et al., 
2025; Sun et  al., 2017; Yang X. et  al., 2023). Through this post-
transcriptional regulation, miRNAs orchestrate critical cellular 
processes in NP pathogenesis, including neuroinflammation, neuronal 

hyperexcitability, and impaired nerve repair (Wilkerson et al., 2020). 
miRNA-mRNA network analysis identified multiple dysregulated 
miRNAs (e.g., miR-30c-5p, miR-16-5p) and their target genes 
(Rnase4, Egr2), revealing inflammation-associated regulatory 
mechanisms in NP (Cai et al., 2020). These findings support their 
potential as diagnostic biomarkers and therapeutic targets. 
Widespread miRNA alterations occur at key pain-processing sites 
[dorsal root ganglia (DRG) and spinal cord] across NP models [spared 
nerve injury (SNI), spinal nerve ligation (SNL), chronic constriction 
injury (CCI), and diabetic neuropathy]. Specific miRNAs including 
miR-21, miR-124, and miR-146a demonstrate significant dysregulation 
following nerve injury (Zhong et al., 2019; Zhang et al., 2019; Lv et al., 
2017). Consistent with these observations, clinical studies report 
abnormal expression of miR-21, miR-146a, and miR-155  in sural 
nerves, skin biopsies, and circulating leukocytes from patients with 
painful peripheral neuropathy (Leinders et al., 2017). Mechanistically, 
these dysregulated miRNAs converge on three core pathways: 
neuroinflammatory signaling modulation (TLR4/NF-κB, NLRP3 
inflammasome, cytokine release via TRAF6/IRAK1/STAT3 targeting), 
ion channel regulation (Nav1.7, TRPV1, Kv channels), and mediation 
of neuroimmune interactions and neural repair processes (Yan et al., 
2017; Sun et al., 2021).

The extensive dysregulation of miRNAs establishes them as potent 
therapeutic targets for NP, offering three primary advantages:

 (1) Multi-target potential: Individual miRNAs regulate gene 
networks governing NP mechanisms (e.g., neuroinflammation, 
excitability), surpassing single-target drugs.

 (2) Mechanism-driven efficacy: Functional restoration of specific 
miRNAs (e.g., miR-146a-5p) using agomirs/antagomirs 
alleviates pain hypersensitivity and neuroinflammation in 
preclinical models (Wang et al., 2018).

 (3) Diagnostic and predictive biomarkers: Distinct miRNA 
expression patterns in biofluids or tissues (e.g., elevated serum 
hsa-miR-19a-3p and hsa-miR-19b-3p) enable NP subtype 
stratification, informing personalized therapies (Tavares-
Ferreira et al., 2019).

2.1.2 Core regulatory mechanisms

2.1.2.1 Regulation of inflammatory cascades
Within NP pathology, miRNAs exert precise control over 

neuroimmune interactions by targeting critical signaling nodes: 
During inflammation initiation, Toll-like receptor (TLR) family 
members including TLR4 recognize damage-associated molecular 
patterns (DAMPs), activating the IRAK1/TRAF6 complex through 
MyD88-dependent pathways. This drives NF-κB/MAPK activation 
and progressive release of pro-inflammatory cytokines including 
TNF-α and IL-1β (Zarezadeh Mehrabadi et  al., 2022). During 
inflammation amplification, miR-23a inhibits IL-1β maturation in 
microglia by dual-targeting CXCR4 (immune cell chemokine 
receptor) and TXNIP (key NLRP3 activation factor) (Pan et al., 2018). 
Concurrently, the CXCL12/CXCR4 axis recruits immune cells such as 
macrophages to infiltrate injury sites, exacerbating neuroinflammation 
(Liu et al., 2019), whereas miR-144 and miR-140 suppress this pathway 
(Li et  al., 2021; Zhang et  al., 2020a). Through negative feedback 
regulation, miR-146a-5p binds the 3′ UTR of TRAF6/IRAK1 mRNAs, 
establishing self-limiting control of NF-κB activation (Hou et  al., 
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2021). Additionally, miRNAs modulate inflammatory cascades by 
targeting transcription factors: miR-136 and miR-128-3p inhibit 
ZEB1, blocking pro-inflammatory gene transcription (Bao et al., 2018; 
Shen et al., 2019; Yan et al., 2018; Zhang et al., 2020b). miR-363-5p 
targets SERPING1 (regulated by SP5), conferring dual analgesic/anti-
inflammatory effects that SERPING1 overexpression negates (Wu 
et al., 2025). Collectively, miRNAs orchestrate multi-layered regulation 
of neuroinflammation, establishing them as potential therapeutic 
targets for NP.

2.1.2.2 Regulation of ion channel homeostasis
Neuronal hyperexcitability constitutes a core feature of NP, 

primarily driven by dysfunctional ion channel expression and activity. 
Exosome-mediated miRNA delivery enables novel therapeutic 
strategies for targeting channelopathies in voltage-gated sodium 
(Nav), potassium (Kv), calcium (Cav), and transient receptor potential 
(TRP) channels. Abnormal Nav isoform activation including Nav1.3, 
Nav1.7, and Nav1.8 can be selectively regulated through miRNAs: 
miR-30b directly targets SCN3A mRNA (Su et al., 2017); miR-182 
inhibits SCN9A translation (Cai et  al., 2018); and miR-7a 
downregulates β2 subunit (SCN2B) expression (Sakai et al., 2013), 
collectively reducing ectopic discharges in DRG. In contrast, 
miR-3584-5p exacerbates chronic constriction injury pain through 
Nav1.8 current suppression (Yang R. et  al., 2023). Voltage-gated 
potassium channels critically control neuronal excitability by 
governing action potential generation, firing frequency, and 
neurotransmitter release (Manville et al., 2018; Kim and Nimigean, 
2016). The miR-17-92 cluster maintains mechanical hypersensitivity 
post-injury through coordinated Kv regulation. This cluster contains 
six members—miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and 
miR-92a-that remain persistently upregulated in injured sensory 
neurons (Sakai et  al., 2017). Dysregulation mechanisms include 
miR-19a-mediated Kv4.2/4.3 mRNA targeting that reduces A-type 
potassium currents, and miR-137-induced Kcna2 inhibition that 
decreases Kv1.2 expression, both elevating neuronal excitability and 
pain perception. miR-137 inhibition restores Kv1.2 expression, 
normalizes neuronal excitability, and alleviates pain (Zhang et al., 
2021). In calcium channel regulation, miR-103 targets CACNB1/
CACNA2D1 (Cav1.2 auxiliary subunits) (Favereaux et al., 2011) while 
miR-32-5p silences Cav3.2 through histone methylation (Qi et al., 
2022), both reducing calcium influx to block nociceptive sensitization. 
TRP channel modulation involves miR-375 and miR-455 suppressing 
TRPV1 expression (Li Z. et al., 2022), whereas miR-141-5p alleviates 
oxaliplatin-induced NP by inhibiting TRPA1 expression, thereby 
reducing Ca2+ influx and neuronal excitability (Zhang and 
Chen, 2021).

2.1.2.3 Neural regeneration and repair
Persistent NP following nerve injury may cause cellular damage 

or neuronal death in spinal cord and peripheral nerve tissues 
(Cohen et al., 2021). Recent studies reveal that injured peripheral 
neurons release endogenous neurotrophic factors including brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and 
nerve growth factor (NGF), promoting neuronal survival and 
axonal regeneration (Keefe et al., 2017; Han and Xu, 2020). The 
bidirectional regulatory capacity of exosomal miRNAs offers 
unique therapeutic value for neural repair. Excessive glial scar 
formation impedes axonal regeneration. miRNAs balance 

pro-inflammatory and repair processes by targeting glial activation 
states: miR-503-5p alleviates NP in type 2 diabetes mellitus 
(T2DM) mice through suppressing SEPT9 expression in astrocytes, 
while miR-204 enhances sensory functional recovery by 
upregulating glial cell-derived neurotrophic factor (GDNF) in 
microglia (Guo et  al., 2024; Shen et  al., 2020). Concurrently, 
miRNAs directly regulate neuronal regeneration: miR-155 
deficiency promotes axonal regeneration through enhanced 
SPRR1A expression (Gaudet et al., 2016), whereas miR-135a and 
miR-135b counteract regenerative inhibition by suppressing 
Kruppel-like factor 4 (KLF4) (van Battum et al., 2018). miR-210 
inhibits apoptosis via ephrin-A3 (EFNA3) to support neuronal 
survival (Hu et al., 2016). Notably, certain miRNAs exhibit dual 
regulatory properties. For example, miR-21 promotes Schwann 
cell-mediated axonal regeneration by inhibiting EPHA4/TIMP3 
(Ning et  al., 2020), yet activates the epidermal growth factor 
receptor (EGFR) pathway to exacerbate glial scarring (Kar et al., 
2021). Across various neural injury models, miR-21 demonstrates 
functional versatility by modulating multiple signaling pathways to 
promote neural repair (Ning et  al., 2020; Kar et  al., 2021; Li 
et al., 2018).

These findings demonstrate that miRNAs therapeutically target 
core NP mechanisms (Table 1). However, clinical translation faces 
challenges including nuclease-mediated degradation and inadequate 
targeting specificity (Pedder et  al., 2025; Wang and Wu, 2024). 
Developing stable delivery systems for miRNA mimics/inhibitors 
remains a critical unmet need (Zhang et al., 2017).

2.2 Overview of exosomes

2.2.1 Biological properties
Exosomes represent a subtype of extracellular vesicles (EVs) 

ranging from 50–150 nm in diameter. They are distinguishable from 
microvesicles (100–1,000 nm) by surface markers CD63/CD9 
(Meldolesi, 2018). These vesicles form through bilayer invagination 
of cellular membranes and are subsequently released from 
multivesicular bodies (MVBs) (Yang et al., 2024). Though initially 
considered cellular waste disposal machinery, exosomes secreted by 
all cell types—including immune cells and neurons—are now 
recognized as crucial mediators of intercellular and intracellular 
communication. MVBs reside within cell bodies of DRG sensory 
neurons, which may release EVs (including exosomes) under 
appropriate conditions. Exosomes contain functionally diverse 
proteins essential for cell adhesion, membrane fusion, metabolism, 
and signal transduction. Beyond proteins, they carry multiple nucleic 
acids including miRNAs, messenger RNAs (mRNAs), DNA 
fragments, and long non-coding RNAs. These constituents mediate 
intercellular signaling in biological processes such as immune 
modulation and neural transmission (Bahram Sangani et al., 2021). 
Notably, exosomes are widely present in bodily fluids and transmit 
molecular signals via paracrine, autocrine, or endocrine pathways 
(Chen et al., 2019). Their biogenesis occurs in virtually all cell types 
(Habib et al., 2023), with particularly active production observed in 
tumor cells (Graner, 2019), immune cells, and neural cells. Emerging 
evidence indicates cellular origin critically determines both exosomal 
cargo composition and biological functionality (Yang et al., 2025). 
Substantial differences in contents, surface markers, and functions 
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exist among exosomes derived from distinct cell types, suggesting 
specialized roles in biological processes.

2.2.2 Biogenesis and secretion processes
Though several mechanisms of exosome biosynthesis and secretion 

have been identified, many aspects remain incompletely understood. 
Exosome formation constitutes a complex multistep process involving 
membrane budding, invagination, multivesicular body (MVB) 
formation, and ultimate secretion (Ren et  al., 2024). Recent studies 
demonstrate that exosome generation primarily relies on the 
intraluminal vesicle (ILV) formation pathway (Ghosh et  al., 2024), 

comprising both ESCRT-dependent and ESCRT-independent 
mechanisms (Bavafa et  al., 2025). The ESCRT (endosomal sorting 
complexes required for transport) complexes drive ILV generation 
through membrane remodeling and cargo sorting (Larios et al., 2020). 
Specifically, the ESCRT-0 complex recognizes and recruits cargo 
proteins, while ESCRT-I and ESCRT-II collectively promote membrane 
invagination, and ESCRT-III mediates vesicle fission and release (Ju 
et al., 2021). Precise regulation of the ESCRT machinery is critical not 
only for ILV formation but also for exosome secretion (Horbay et al., 
2022). Beyond ESCRT-dependent pathways, exosome biogenesis 
involves alternative mechanisms (Yang et al., 2024). Lipid molecules 

TABLE 1 Core mechanisms of miRNA targeted intervention in neuropathic pain.

Mechanism miRNA Model Target Effect Objective References

Neuroinflammation

miR-23a↑ pSNL
CXCR4/TXNIP/

NLRP3↓
Ameliorates mechanical allodynia C57BL/6 mice Pan et al. (2018)

miR-140↑ CCI S1PR1↓ Ameliorates mechanical allodynia SD rats Li et al. (2021)

miR-144↑ CCI RASA1↓ Alleviates mechanical allodynia C57BL/6 mice Zhang et al. (2020a)

miR-146a-5p↑ CCI IRAK1/TRAF6↓
Suppresses mechanical allodynia and 

thermal hyperalgesia
SD rats Hou et al. (2021)

miR-136↑ CCI ZEB1↓ Ameliorates mechanical allodynia SD rats Shen et al. (2019)

miR-128-3p↑ CCI ZEB1↓
Suppresses mechanical allodynia and 

thermal hyperalgesia
SD rats Zhang et al. (2020b)

miR-363-5p↑ CCI SERPING1↓
Suppresses mechanical allodynia and 

thermal hyperalgesia
SD rats Wu et al. (2025)

Neuronal ion 

channels

miR-30b↑ SNL SCN3A (Nav1.3)↓ Attenuates NP SD rats Su et al. (2017)

miR-182↑ SNI SCN9A (Nav1.7)↓ Attenuates NP SD rats Cai et al. (2018)

miR-7a↑ CCI/SNL β2 subunit (SCN2B)↓ Attenuates NP SD rats Sakai et al. (2013)

miR-3584-5p↑ CCI ERK5/CREB (Nav1.8)↓ Aggravates NP; promotes apoptosis SD rats Yang R. et al. (2023)

miR-17-92↓ SNL
Multiple voltage-gated 

K+ channels↑
Alleviate NP SD rats Sakai et al. (2017)

miR-137↓ CCI Kcna2 (Kv1.2)↑
Reduces tactile sensitivity; increases 

thermal sensitivity
SD rats Zhang et al. (2021)

miR-103↑ SNL Cav1.2-LTC↓ Attenuates NP Wistar rats
Favereaux et al. 

(2011)

miR-32-5p↑ CCI-ION Cav3.2↓ Attenuates NP SD rats Qi et al. (2022)

miR-141-5p↑
Oxaliplatin 

(OXA)
TRPA1↓ Attenuates NP SD rats

Zhang and Chen 

(2021)

Neural repair

miR-503-5p↑ DPN SEPT9↓
Reduces astrocyte activation and 

ameliorates NP
db/db mice Guo et al. (2024)

miR-155↓ SCI SPRR1A↑

Reduces inflammatory signaling; 

promotes neuronal survival and neurite 

growth

C57BL/6 mice Gaudet et al. (2016)

miR-135a/b↑ ONI KLF4↓ Promotes axon regeneration C57BL/6 mice
van Battum et al. 

(2018)

miR-21↑ SNL
TGFβI/TIMP3/

EPHA4↓

Facilitates SC proliferation and axon 

regeneration
SD rats Ning et al. (2020)

miR-21↑ ONC EGFR↑ Facilitates axon regeneration SD rats Li et al. (2018)

miR-21↑ SNI PTEN↓ Facilitates axon regeneration SD rats Kar et al. (2021)

pSNL, partial sciatic nerve ligation; CCI, chronic constriction injury; SNL, spinal nerve ligation; SNI, spared nerve injury; SCI, spinal cord injury; DPN, diabetic peripheral neuropathy; ONI, 
optic nerve injury; CCI-ION, chronic constriction injury of infraorbital nerve; OXA, oxaliplatin (chemotherapy-induced neuropathy model); ↑, denotes miRNA overexpression intervention; 
↓, indicates miRNA suppression intervention; Arrows (↑/↓), signify direction of target expression changes (e.g., NLRP3↓ = inflammasome suppression).
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including ceramide play pivotal roles by altering membrane lipid 
composition, enhancing fluidity, and facilitating ILV generation 
(Yanagawa et al., 2024). Furthermore, phosphatidylinositol 3-kinase 
(PI3K) and its product phosphatidylinositol-3,4,5-trisphosphate (PIP3) 
significantly contribute to exosome production (Yao et  al., 2025). 
Exosome trafficking and release constitute equally complex processes 
governed by molecular regulators such as Rab GTPases (e.g., Rab27a/b) 
(Kim et al., 2024). These GTPases regulate MVB-plasma membrane 
fusion to ensure precise exosome transport and secretion. Recipient cells 
internalize exosomes primarily through endocytosis, direct membrane 
fusion, or surface receptor interactions (Vučemilović, 2024). Though 
endocytosis represents the predominant mechanism, direct fusion offers 
greater therapeutic promise for drug delivery due to enhanced 
intracellular cargo release efficiency (Hushmandi et al., 2024). These 
discoveries deepen our understanding of exosome biogenesis while 
establishing theoretical foundations for novel therapeutic strategies.

2.3 Advantages of exosomes as delivery 
vehicles

2.3.1 Natural targeting capacity
The targeting capacity of exosomes primarily depends on their 

surface characteristics and molecular cargo. Research confirms that 
multiple specific proteins on exosomal surfaces mediate interactions 
with target cells. Notably, lysosome-associated membrane glycoprotein 
2B (LAMP2B) enhances exosomal binding to neurons and their 
subsequent internalization, establishing its role as a key targeting protein 
(Qiao et al., 2023). This property provides natural targeting advantages 
for exosomal drug delivery. TGF-β1-induced human umbilical cord 
smooth muscle cell (hUCSMC)-derived exosomes exhibit effective 
targeting toward microglia, suppressing microglial hyperplasia and 
alleviating NP. Mechanistic studies reveal that urothelial cancer-
associated 1 (UCA1) directly interacts with miR-95-5p to release 
FOXO3a expression (Mou et  al., 2023). These natural targeting 
mechanisms enhance therapeutic efficacy while reducing impacts on 
non-target cells and minimizing potential side effects. Additionally, 
exosomes support targeting through neuronal communication 
functions. By binding directly to neurons and modulating their 
physiological states, exosomes influence pain perception and processing 
(Frühbeis et al., 2013). Following peripheral axonal injury, DRG sensory 
neurons release exosomes enriched with upregulated miR-21-5p. These 
exosomes are readily phagocytosed by macrophages, promoting 
pro-inflammatory polarization and inflammatory factor release. 
Intrathecal administration of miR-21 inhibitors prevents macrophage 
infiltration and NP development (Simeoli et al., 2017). Thus, tissue-
specific exosome delivery circumvents detrimental neuron-macrophage 
communication, offering novel therapeutic opportunities for NP.

2.3.2 Ability to cross the blood-brain barrier
BBB comprises tight junctions between endothelial cells in brain 

capillaries, primarily protecting the CNS from harmful substances 
(Lerussi et al., 2025). However, this barrier also restricts entry of many 
therapeutics, complicating neurological disorder treatment (Gong 
et al., 2025). Consequently, identifying carriers capable of crossing the 
BBB has become a research priority. Exosomes emerge as ideal 
candidates due to their natural biocompatibility and low 
immunogenicity. Exosomes can traverse the BBB bidirectionally 

between bloodstream and brain, though specific mechanisms for 
peripheral-to-brain migration remain incompletely elucidated (Banks 
et  al., 2020). Exosomes primarily cross the BBB via transcytosis-
transporting through intracellular compartments similarly to immune 
cells and pathogens-rather than paracellular routes through 
extracellular spaces. Post-crossing, two functional possibilities exist: 
complete traversal of the endothelial barrier for global brain effects 
(Khan et al., 2022), or sequestration within brain endothelial cells 
influencing these cells and triggering specific transport mechanisms 
(Saeedi et al., 2019; Console et al., 2019). This transmigration capability 
extends beyond neural stem cell (NSC)-derived exosomes. Other 
exosomes, including those from bone marrow mesenchymal stem cells 
(MSCs) and placental tissue, demonstrate similar BBB-crossing 
capacities. Clinically, exosomes’ penetrative ability positions them as 
novel neurological therapeutics. MSC-derived exosomes alleviate NP 
in chronic models by suppressing microglial activation and reducing 
neuroinflammation (Gao et al., 2023b). Moreover, exosomes show 
potential for delivering therapeutic molecules including miRNAs and 
proteins that modulate pain-processing and inflammatory pathways 
(Kang and Guo, 2022; Di Ianni et al., 2025).

2.3.3 Low immunogenicity and high stability
Exosomal biocompatibility enables prolonged systemic circulation 

without immune recognition or clearance. This property permits 
effective therapeutic molecule delivery, enhancing efficacy while 
minimizing side effects. The membrane structure protects encapsulated 
bioactive components, maintaining stability in vivo and in vitro (Tang 
et al., 2021). Studies confirm prolonged exosomal circulation effectively 
avoids clearance by the reticuloendothelial system (Patil et al., 2020). 
Compared to traditional drug delivery systems, exosomes better 
preserve therapeutic activity and achieve higher concentrations in 
target tissues. Notably, surface molecules including CD47, CD24, 
CD44, and CD31 function as anti-phagocytic signals, helping exosomes 
evade phagocytic clearance by macrophages. This enhances systemic 
stability and bioavailability (Parada et al., 2021). As naturally derived 
carriers, exosomes show minimal long-term accumulation in organs 
compared to viral vectors, resulting in negligible systemic toxicity 
(Yang et al., 2015). Recent research reveals exosomes provide protection 
during thermal stress by transferring thermotolerance signals that help 
cells maintain viability under extreme conditions (Logan et al., 2024).

Exosomes constitute highly efficient miRNA delivery vehicles due 
to their biocompatibility, low immunogenicity, and rapid membrane 
fusion capacity (Bian et  al., 2025). To systematically compare 
advantages, Table  2 details exosome-based delivery versus 
conventional therapies across targeting specificity, blood-brain barrier 
penetration, and side effects.

2.4 Exosome-mediated miRNA therapy: 
evidence and mechanisms

2.4.1 Preclinical model evidence: validation of 
efficacy and mechanism

2.4.1.1 Exosome-delivered miRNA targeting 
neuroinflammation: mechanisms underlying analgesia

Exosomal miRNAs exhibit high stability and amplification 
potential due to their lipid bilayer structure, enabling traversal across 
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blood-brain or blood-spinal cord barriers to mediate analgesia in 
chronic pain models (Huh et al., 2017; Ding et al., 2019). In CCI rat 
models, miR-181c-5p expression is significantly downregulated, while 
intrathecal delivery of exosomal miR-181c-5p alleviates NP and 
neuroinflammatory responses (Zhang et al., 2022). Exosomal miRNAs 
operate through autocrine secretion and transport to target sites, acting 
on macrophages, microglia, neurons, or other tissue cells to regulate 
inflammatory factor secretion and oxidative stress, thereby modulating 
NP pathogenesis. In diabetic nephropathy (DN) mouse models, 
macrophage-derived EVs enriched with miR-21-5p enhance pyroptosis 
by upregulating A20 (a negative regulator of the NF-κB pathway). 
Correspondingly, intrathecal administration of anti-miR-21-5p 
antibodies reduces dorsal root ganglion DRG hyperalgesia and 

macrophage recruitment (Ding et  al., 2021). Similarly, human 
umbilical cord mesenchymal stem cell (huc-MSC)-derived exosomes 
regulate microglial pyroptosis and autophagy through the 
miR-146a-5p/TRAF6 axis (Hua et  al., 2022). Certain exosomal 
miRNAs alleviate neuroinflammation by inhibiting pro-inflammatory 
cytokine production or promoting anti-inflammatory cytokine release. 
For instance, human umbilical cord MSC-derived exosomes upregulate 
autophagy proteins LC3-II and beclin1 while blocking NLRP3 
inflammasome activation via miR-146a-5p/TRAF6 signaling in the 
spinal dorsal horn (Hua et al., 2022). Bone marrow mesenchymal stem 
cell-derived extracellular vesicles (BMSC-EVs) enriched with miR-23b 
regulate TLR4/NF-κB signaling, attenuating inflammation and 
improving pathological status in SCI rats (Nie and Jiang, 2021). 

FIGURE 1

Exosomal miRNA treatment for neuropathic pain. Schematic illustration of exosomal miRNA-based therapeutic strategies for neuropathic pain. 
Neuropathic pain models (e.g., CCI, SCI, DN) are subjected to exosomal miRNAs sourced from multiple cellular origins: nerve-resident cells (Schwann 
cells, microglia, neurons), mesenchymal stem cells (huc-MSCs, BMSCs, ADSCs), and immune/other lineages (macrophages, T cells, skin precursor 
cells). These exosomal miRNAs modulate neuropathic pain pathophysiology through dual-pronged mechanisms: ① anti-inflammatory actions 
(reducing neuroinflammation, promoting M2 polarization, decreasing pain sensitization); ② neuroregenerative effects (enhancing axon regeneration, 
suppressing neuron apoptosis, restoring motor function).

TABLE 2 Comparison of exosome-based delivery systems vs. conventional therapies.

Comparison 
criteria

Exosome-based delivery systems Conventional therapies (e.g., opioids, 
anticonvulsants)

References

Targeting specificity

Achieves tissue/cell-specific delivery via surface 

modifications (e.g., CD47, antibodies), minimizing 

off-target effects

Non-specific systemic distribution, relying on passive 

diffusion driven by physicochemical properties (e.g., 

lipophilicity)

Parada et al. (2021) and Yang 

et al. (2015)

Blood-brain barrier 

penetration

Naturally excels in crossing the BBB or via intranasal 

administration for direct CNS delivery

Limited penetration for most drugs, requiring high doses 

with increased side effects

Zhao et al. (2025) and Zhou 

et al. (2023)

Side effects
Low immunogenicity (autologous sources), no risk of 

addiction or respiratory depression

High side-effect burden (e.g., opioid addiction, 

anticonvulsant-induced sedation)

Arthur et al. (2025) and Leão 

Nunes Filho et al. (2024)

Immunomodulatory 

effects

Carries anti-inflammatory miRNAs to suppress 

microglial activation and synergistically alleviate 

neuroinflammation

Lacks direct immunomodulatory function; may exacerbate 

inflammation (e.g., chronic opioid use)

Kaye et al. (2024) and Hua 

et al. (2022)

miRNA regulatory 

network

Capable of delivering multiple miRNAs to 

synergistically suppress inflammation and ion 

channel activation

Single-target action, unable to modulate complex 

regulatory networks

Lv et al. (2017) and Su et al. 

(2017)
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Additionally, BMSC-derived exosomes promote miR-145-5p 
expression to inhibit TLR4/NF-κB pathway activation, demonstrating 
significant anti-inflammatory and pathway regulatory effects in both 
SCI rats and PC12 cells (Jiang and Zhang, 2021). These findings 
highlight the therapeutic value of exosomal miRNAs in controlling 
neuroinflammatory signaling and ameliorating neural damage.

2.4.1.2 Synergistic protective mechanism of 
exosome-mediated miRNA in nerve regeneration and 
anti-apoptosis

Exosomes derived from Schwann cells, macrophages, and 
mesenchymal stem cells (MSCs) promote peripheral nerve 
regeneration (Sanchez et  al., 2017; Marofi et  al., 2017; Mead and 
Tomarev, 2017). Studies confirm exosomes facilitate regeneration of 
damaged nerves and improve motor function recovery in regenerated 
nerves in rat sciatic nerve compression models (Bucan et al., 2019). 
Exosomes enriched with the miR-17-92 cluster activate the PI3K/Akt/
mTOR/GSK-3β signaling pathway by targeting PTEN, increasing 
neural plasticity and functional recovery (Xin et al., 2017). Specifically, 
skin precursor-derived Schwann cell extracellular vesicles 
(SKP-SC-EVs) containing miR-21-5p enhance DRG sensory neuron 
growth and survival through the PTEN-PI3K pathway (Cong et al., 
2021). Simultaneously, miR-23b-3p promotes axonal regeneration by 
directly targeting Nrf1 mRNA (Xia et  al., 2020). Regarding SCI 
models, intrathecal injection of MSC-derived exosomes significantly 
upregulates miR-99b-3p expression while activating microglial 
autophagy and alleviating mechanically induced allodynia caused by 
microglial activation (Gao et al., 2023a). Concurrently, exosomes from 
miR-126-modified MSCs reduce neuronal apoptosis while promoting 
functional regeneration (Huang et al., 2020), and exosomes derived 
from both MSCs and human neuroepithelial stem cells—enriched 
with miR-29b—downregulate PTEN and caspase-3 to inhibit neuronal 
apoptosis and confer therapeutic efficacy for SCI (Yu et al., 2019). 
Exosomal miR-499a-5p plays a neuroprotective role in SCI by 
targeting the JNK3/c-jun apoptotic pathway, reducing nerve cell 
apoptosis post-injury while decreasing cavity formation in lesioned 
areas. This mechanism promotes functional hindlimb recovery in rats 
through adipose-derived mesenchymal stem cell exosomes (ADSC-
EXs) carrying miR-499a-5p, which reduce JNK3 expression and 
diminish nerve cell death after SCI (Liang et  al., 2022). Adipose-
derived mesenchymal stem cells (ADSCs) contain abundant 
neurotrophic factors, immunomodulatory factors, and angiogenic 
factors associated with neuronal differentiation and nerve regeneration 
(Harrell et al., 2022). Through miRNA transport, exosomes enhance 
neuronal cell activity and reduce apoptosis during early stages, thereby 
promoting functional recovery (see Figure 1).

Thus, exosome-mediated miRNA transfer represents an effective 
therapeutic approach for NP (Table 3).

2.4.2 Clinical investigations
We identified clinical trials evaluating exosomes as therapeutic 

agents for NP (Table 4), including one published clinical trial and one 
ongoing registered trial (data current through June 2025). These 
investigations provide foundational insights into the complex 
mechanistic actions of exosomal miRNAs.

The completed Phase I  trial IRCT20200502047277N1 
(Akhlaghpasand et al., 2024) adopted a single-center design focused on 
safety assessment rather than efficacy evaluation. Although preliminary 

improvements demonstrate clinical relevance, natural disease progression 
complicates definitive efficacy determination. Observed sensory-motor 
functional enhancements in certain patients may derive from either 
exosomal therapeutic effects or spontaneous disease resolution. This 
reflects methodological constraints in current efficacy evaluation 
approaches, necessitating larger multicenter randomized Phase II/III 
trials to validate outcomes and establish the definitive therapeutic role of 
exosome therapy in NP. Safety monitoring revealed no severe adverse 
events. However, long-term biological consequences of exosomes in vivo 
remain undetermined. Potential concerns include sustained biological 
activity, immune response induction, and interference with normal 
cellular functions. Notably, engineered exosomal products warrant 
particularly rigorous risk assessment due to greater uncertainty.

Regrettably, current clinical data demonstrate: limited study 
accessibility, data incompleteness (e.g., pending NCT05152368 
results), and recurrent methodological limitations: small cohorts, 
abbreviated follow-up periods, and non-blinded designs lacking 
placebo controls. These constraints impede comprehensive 
scientific assessment.

2.5 Evolving paradigms in exosome 
delivery: administration routes and 
biomaterial innovations

2.5.1 Comparative analysis of exosome delivery 
routes

Delivery routes critically influence therapeutic efficacy due to 
their significant impacts on exosome distribution, absorption, and 
functional outcomes. Different administration methods—including 
intrathecal injection and intranasal instillation—distinctly affect 
exosome biodynamics. Intrathecal injection achieves targeted 
delivery to injury sites, maximizing local effects while minimizing 
systemic side effects. Epidural injection specifically targets spinal 
cord tissue with reduced complication rates. Intravenous 
administration remains the predominant preclinical delivery route 
(Hassanzadeh et  al., 2021), offering systemic distribution with 
technical simplicity and lower complication risks via caudal 
vein injection.

Two registered clinical studies utilize intrathecal injection and 
intranasal instillation. Intranasal administration leverages olfactory 
and trigeminal axonal pathways to bypass the blood–brain barrier, 
enabling direct therapeutic delivery to brain tissue. Compared to 
invasive approaches (intrathecal or parenchymal delivery) with 
infection risks, this non-invasive technique offers significant 
advantages. Multiple preclinical studies confirm intranasally 
administered exosomes effectively prevent neuronal apoptosis and 
improve neurological recovery (Gotoh et al., 2025).

2.5.2 Engineering strategies for enhanced 
targeting

Exosomes exhibit unique advantages as natural drug carriers, but 
their clinical translation is limited by insufficient targeting specificity. 
For example, intravenous administration leads to rapid clearance by 
phagocytic organs such as the liver and spleen, significantly reducing 
target organ enrichment efficiency. This not only diminishes 
therapeutic efficacy but also raises risks of off-target toxicity. Novel 
exosome engineering techniques enhance delivery precision through 
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customized miRNA loading and surface modifications (Del Pozo-
Acebo et al., 2021). Research has developed genetically engineered 
exosomes carrying miR-21 combined with collagen-I (Col-I) scaffolds 
to repair SCI, demonstrating improved stability, delivery efficiency, 
and targeting (Liu et al., 2022).

Additionally, researchers encapsulated adipose tissue-derived 
mesenchymal stem cell exosomes (AD-MSC-EXs) within collagen 
and fibrin hydrogels (Afsartala et  al., 2023), extending active 
retention at injury sites in SCI rat models. Gelatin sponge (Gelfoam)-
loaded human umbilical cord mesenchymal stem cell exosomes 
(HucMSC-EXs) achieve precise delivery to SCI sites while promoting 
neural regeneration (Poongodi et al., 2024). Innovative tetrahedral 
DNA nanostructure (TDN)-based delivery systems incorporate 
RNase H-sensitive DNA–RNA hybrid sequences as bioswitches. 
Upon reaching target cells (e.g., in inflammatory or tumor 
microenvironments), RNase H specifically cleaves hybrid strands to 
trigger precise miRNA release (Li et al., 2025).

These engineering strategies can overcome biological barriers 
including phagocytic clearance and short half-life through surface 
functionalization, hydrogel sustained-release systems, and responsive 
nanoswitch designs, significantly enhancing spatiotemporal 
delivery precision.

2.6 Clinical translation: potential and 
challenges

2.6.1 Key challenges
How to address miRNA target gene complexity and functional 

validation bottlenecks?
How to predict exosomal miRNA therapeutic efficacy in 

individual patients?
What defines long-term in vivo distribution and safety profiles of 

therapeutic exosomes?
How to establish GMP-compliant large-scale exosome production?
How to optimize storage conditions to improve clinical feasibility?
How to reduce exosomal immunogenicity to enhance 

biological safety?

2.6.2 Complexity of miRNA target genes and 
challenges in functional validation

Neuropathic pain (NP) pathogenesis involves diverse cellular 
and molecular mechanisms. Different NP subtypes-including 
chemotherapy-induced, diabetic, and traumatic NP-exhibit 
distinct miRNA expression profiles and functional pathways. NP 
models demonstrate 2,776 differentially expressed RNA molecules 

TABLE 3 Exosomal miRNAs in preclinical models of neuropathic pain: therapeutic efficacy and mechanisms.

miRNA Model Exosome 
source

Delivery 
method

Target Effect Study 
type

Objective References

miR-146a-

5p↑
CIP huc-MSCs

Intrathecal 

injection

TRAF6/

NLRP3↓

Mechanical allodynia 

and thermal 

hyperalgesia; reduces 

neuroinflammation

In vitro + 

in vivo
C57BL/6 mice Hua et al. (2022)

miR-181c-

5p↑
CCI BMSC-EVs

Intrathecal 

injection

IL-6/IL-1β/

TNF-α↓

Attenuates NP and 

neuroinflammation

In vivo + 

in vitro
SD rats Zhang et al. (2022)

miR-21-5p↓ DN
Macrophage-

derived

Tail vein 

injection

A20/NF-

κB↓
Attenuates NP

In vivo + 

in vitro
C57BL/6 mice Ding et al. (2021)

miR-23b↑ SCI BMSC-EVs
Tail vein 

injection

TLR4/NF-

κB↓

Reduces 

inflammation; 

improves spinal injury 

recovery

In vitro + 

in vivo
SD rats

Nie and Jiang 

(2021)

miR-21-5p↑ PNI SKP-SCs
In vitro 

treatment

PTEN/

PI3K↓

Improves neurite 

growth in DRG 

sensory neurons

In vitro SD rats Cong et al. (2021)

miR-99b-3p↑ CCI hUC-MSCs
Intrathecal 

injection

PI3K/AKT/

mTOR↓

Promotes autophagy; 

alleviates pain

In vivo + 

in vitro
SD rats Gao et al. (2023a)

miR-126↑ SCI huc-MSCs
Tail vein 

injection

SPRED1/

PIK3R2↓

Promotes 

neurogenesis; 

alleviates pain

In vivo + 

in vitro
SD rats Huang et al. (2020)

miR-29b↑ SCI BMSCs
Tail vein 

injection

NF200/

GAP-43↑

Promotes neural 

regeneration; alleviates 

pain

In vivo + 

in vitro
SD rats Yu et al. (2019)

miR-499a-

5p↑
SCI ADSCs

Tail vein 

injection
JNK3/c-jun↓

Reduces neuronal 

apoptosis; improves 

motor function 

recovery

In vivo + 

in vitro
SD rats Liang et al. (2022)

BMSC, bone marrow mesenchymal stem cells; ADSC, adipose derived stem cells; hucMSC, human umbilical cord mesenchymal stem cells; SKPSCs, skin derived precursor Schwann cells; 
CCI, chronic constriction injury; SCI, spinal cord injury; CIP, chemotherapy induced peripheral neuropathy; DN, diabetic neuropathy; PNI, peripheral nerve injury.
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comprising 219 miRNAs and 2,557 mRNAs. Crucially, miRNAs 
regulate multiple target genes simultaneously, frequently through 
indirect mechanisms, significantly complicating target 
identification (Li et  al., 2019; Golmakani et  al., 2024). Current 
bioinformatics tools predict potential targets but lack experimental 
validation, undermining prediction reliability. These regulatory 
interactions are further complicated by cell-type specificity, 
microenvironmental influences, and competitive binding with 
non-coding RNAs (e.g., lncRNAs and circRNAs) (Mukherjee et al., 
2025). miRNA regulatory networks exhibit dynamic complexity, 
with target specificity varying across physiological and pathological 
states. For instance, while miR-133a-3p overexpression attenuates 
microglial activation and neuroinflammation in CCI models (Jia 
et al., 2021; Gao et al., 2024), its upregulation conversely promotes 
neuroinflammation and pain development in diabetic NP (DNP) 
models through TRAF6 and PIAS3 protein modulation (Chang 
et  al., 2020). Accurately interpreting miRNA functions in 
neuropathology requires integrated analysis of both multi-target 
characteristics and cell-contextual functionality. Emerging 
technologies-particularly single-cell RNA sequencing, NGS, and 
machine learning algorithms (Picchio et  al., 2025)-will likely 
advance miRNA-target identification, accelerating NP 
therapeutic development.

2.6.3 Scale-up: preparation, purification and 
quality control challenges

Exosome isolation employs diverse methods including 
ultracentrifugation, ultrafiltration, polymer precipitation, and 
immunoaffinity techniques. However, while ultracentrifugation 
remains the most common isolation technology, it demands 
specialized equipment and technical expertise while often 
causing damage to exosomes and functional loss (Baruah et al., 
2024). Furthermore, exosome isolation is frequently 
contaminated by coexisting extracellular vesicles (such as 
microvesicles and apoptotic bodies), complicating purification 
processes and compromising analytical accuracy (Marjani et al., 
2024). Exosomes contain diverse components including proteins, 
lipids, and RNAs, with biological activity closely linked to 
compositional integrity. Therefore, ensuring quality during 
preparation—particularly evaluating purity and bioactivity—
represents an urgent challenge (Zhang F. et al., 2024). Currently, 
no standardized criteria exist to assess exosomal quality, 
hindering clinical translation (Sen et al., 2023; Fan et al., 2024). 
The International Society for Extracellular Vesicles (ISEV) aims 
to address these issues through its 2023 guidelines, providing 
technical guidance for documenting specific functional activities 
and procedural steps (Théry et  al., 2018). Researchers are 
developing new technologies and standards: Microfluidics-based 
approaches enable improved isolation efficiency with reduced 
exosomal damage (Xing et  al., 2025), while combined high-
throughput analytical techniques and biological functional 
testing allow more comprehensive evaluation of exosomal quality 
and bioactivity (Zhang J. et  al., 2024; Ishii and Tateno, 2025). 
These measures will enhance production consistency while 
ensuring clinical safety and efficacy. Future research should focus 
on developing efficient isolation technologies and rigorous 
quality control systems to achieve clinical translation of exosome-
based therapies.T
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2.6.4 Stability and biosafety of delivery systems
Delivery system stability critically determines therapeutic 

duration and effects in  vivo. Multiple studies demonstrate that 
exosomes exhibit optimal stability when stored at −80°C (Levy et al., 
2023), though this condition proves impractical for routine clinical 
application. Optimizing storage conditions is essential to ensure 
reliability and effectiveness in clinical settings. Current research 
lacks sufficient data regarding the shelf life and in vivo stability of 
exosomal preparations (Palakurthi et  al., 2024), limiting their 
clinical translation. Substantial technical challenges remain 
unresolved, including controversial issues surrounding 
administration routes, injection rates, and dosage standardization 
(Wang et  al., 2023; Batrakova and Kim, 2015). Notably, in  vivo 
studies show no significant positive correlation between exosome 
dosage levels and neuroregenerative outcomes, with higher doses 
failing to enhance therapeutic efficacy (Zhao et al., 2020). Certain 
delivery systems may activate immune responses, inducing 
inflammation or other adverse effects that compromise treatment 
effectiveness (Brain et al., 2021). Some researchers have utilized cell-
targeted delivery systems (CDSEMs) constructed from edible 
materials (Li X. et al., 2022) and delivery systems fabricated using 
polymer matrices and other materials, which demonstrate 
outstanding performance in maintaining miRNA bioactivity and 
reducing immune responses in  vivo, significantly enhancing 
biosafety (Poongodi et  al., 2024). The biosafety of exosomes is 
significantly influenced by their cellular origin and purification 
processes. While exosomes derived from healthy cells demonstrate 
favorable safety profiles in vivo, those originating from pathological 
conditions may cause adverse reactions (Sohrabi et  al., 2022; 
Yamayoshi et  al., 2020). Comprehensive assessment of in  vivo 
immune responses and potential side effects is mandatory before 
clinical application. Strict compliance with GMP (good 
manufacturing practice) standards during manufacturing processes 
is essential to mitigate patient risks. Metabolomics can identify 
off-target effects and adverse drug events by detecting early signs of 
drug-induced liver injury, cardiotoxicity, and other complications 
through metabolic profile analysis (Shaman, 2024; Røikjer et al., 
2024). The incomplete functional characterization of exosomes 
hinders accurate prediction of their long-term safety and efficacy. 
Although surface modification with targeting peptides significantly 
enhances exosomal targeting capability, potential immunogenicity 
of these peptides raises concerns about immune responses in 
humans. Developing secure and effective methods for anchoring 
targeting peptides to exosomes thus remains a challenging pursuit.

3 Future directions

 (1) Integrating multi-omics technologies—including 
transcriptomics, proteomics, and metabolomics—will enable 
systematic elucidation exosomal miRNA mechanisms in 
NP. Researchers integrating genome-wide association studies 
(GWAS) with multi-omics data have revealed significant 
overlap in gene co-expression modules between NP and 
inflammatory pain (IP). Furthermore, integrated multi-omics 
analyses have identified specific miRNAs critically regulating 
neuroinflammation and neuronal excitability, while uncovering 
novel miRNA targets and signaling pathways (Ye et al., 2022). 

Leveraging omics technologies to select optimal donors and 
optimize exosome composition may consequently improve 
therapeutic outcomes (Lotfy et al., 2023).

 (2) Engineering exosomes through surface modifications (aptamers, 
antibodies, peptides) can enhance targeting precision to injured 
spinal cord regions and specific cell types, improving both 
delivery accuracy and therapeutic efficacy (Ye et  al., 2023). 
Integrating exosomes with nanomedicine, materials science, and 
bioengineering could augment their therapeutic potential as 
delivery vehicles (Haroon et al., 2024). For instance, the RNAi-
Tim3-Exo@SF hydrogel system delivers siRNA-Tim3-modified 
exosomes to precisely regulate Tim3 expression. This system 
stabilizes microtubules, promotes axonal regeneration, stimulates 
angiogenesis, modulates inflammatory microenvironments, and 
significantly improves motor function in spinal cord injury 
models. The key reparative mechanisms likely involve miR-155-5p 
within RNAi-Tim3-Exo (Dong et  al., 2025). Such integrated 
strategies combining immunomodulation with tissue engineering 
may represent effective approaches for future clinical applications.

 (3) Current NP research minimally addresses large-animal 
models (pigs, non-human primates) in the literature. These 
species demonstrate greater neurological similarity to humans 
in axonal diameter, myelination patterns, and glial responses, 
enabling superior modeling of human pathological changes 
and pain behavior following neural injury (Karri et al., 2022). 
Consequently, the field urgently requires transitioning from 
exclusive rodent models to incorporating large-animal 
paradigms (e.g., porcine sciatic nerve injury models, 
non-human primate spinal nerve root compression models) 
(Ding et  al., 2017). Such models better replicate human 
neuroanatomy and pain responses while enhancing preclinical 
pharmacodynamic predictability, providing robust platforms 
for developing targeted therapies.

 (4) Future exosome research should prioritize engineering 
exosomes specifically for drug delivery and clinical efficacy 
validation. Large-scale, multi-center studies with sufficient 
sample diversity and extended follow-up durations are essential 
to substantiate therapeutic efficacy and biosafety profiles 
(Figure 2).

4 Conclusion

Neuropathic pain (NP) is a refractory disorder involving 
multiple pathological mechanisms. It presents new therapeutic 
opportunities through the regulatory efficacy of miRNAs. 
Exosomes serve as ideal miRNA carriers due to their endogenous 
stability and targeted delivery advantages. Preclinical evidence 
confirms exosome-mediated miRNA delivery effectively alleviates 
NP by modulating core signaling pathways. However, clinical 
translation faces persistent challenges including exosomal 
heterogeneity, delivery efficiency bottlenecks, and complexity of 
personalized treatments. Addressing these requires 
multidisciplinary convergence of exosome engineering, 
biomaterials science, and clinical validation to accelerate reliable 
therapeutic solutions. Although current clinical implementation 
remains nascent, ongoing research strongly supports their 
translational potential.
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FIGURE 2

Exosome-mediated miRNA delivery for neuropathic pain: design challenges and clinical pathways. Schematic of exosome design for neuropathic pain 
therapy, with challenges as the core. It maps hurdles across target gene complexity, production inefficiencies, delivery barriers, and clinical translation 
gaps to solutions (multi-omics, engineered targeting, regulatory pathways), illustrating how overcoming these accelerates exosome-mediated miRNA 
delivery to reshape NP treatment outcomes.
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Glossary

Key terminology

miRNA - microRNA

NP - Neuropathic pain

Cells & exosomes

ADSC-EXs - Adipose-derived mesenchymal stem cell exosomes

BMSC-EVs - Bone marrow mesenchymal stem cell-derived 
extracellular vesicles

DRG - Dorsal root ganglion

EVs - Extracellular vesicles

huc-MSCs - Human umbilical cord mesenchymal stem cells

MSC - Mesenchymal stem cell

SKP-SCs - Skin-derived precursor Schwann cells

Clinical terms

AEs - Adverse events

ASIA - American Spinal Injury Association

BBB - Blood-brain barrier

CNS - Central nervous system

GMP - Good manufacturing practice

MCID - Minimal clinically important difference

Disease models

CCI - Chronic constriction injury

CIP - Chemotherapy-induced peripheral neuropathy

DPN - Diabetic peripheral neuropathy

ONI - Optic nerve injury

OXA - Oxaliplatin

pSNL - Partial sciatic nerve ligation

SCI - Spinal cord injury

SNI - Spared nerve injury

SNL - Spinal nerve ligation

TN - Trigeminal neuralgia

Molecular pathways

Akt - Protein kinase B

BDNF - Brain-derived neurotrophic factor

EFNA3 - Ephrin-A3

GDNF - Glial cell-derived neurotrophic factor

GAP-43 - Growth-associated protein 43

IRAK1 - Interleukin-1 receptor-associated kinase 1

JNK3 - c-Jun N-terminal kinase 3

KLF4 - Krüppel-like factor 4

LAMP2B - Lysosome-associated membrane protein 2B

MAPK - Mitogen-activated protein kinase

mTOR - Mechanistic target of rapamycin

NF-κB - Nuclear factor kappa-light-chain-enhancer of  
activated B cells

NGF - Nerve growth factor

NLRP3 - NLR Family pyrin domain containing 3

NMDA - N-Methyl-D-aspartate receptor

NT-3 - Neurotrophin-3

PI3K - Phosphoinositide 3-kinase

PTEN - Phosphatase and tensin homolog

Rab27a/b - Ras-related protein Rab-27A/B

SEPT9 - Septin 9

STAT3 - Signal transducer and activator of transcription 3

TGF-β1 - Transforming growth factor beta 1

TLR4 - Toll-like receptor 4

TRAF6 - TNF receptor-associated factor 6

TRPA1 - Transient receptor potential ankyrin 1
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TRPV1 - Transient receptor potential vanilloid 1

TXNIP - Thioredoxin-interacting protein

ZEB1 - Zinc Finger E-box binding homeobox 1

Other key terminology

DAMPs - Damage-associated molecular patterns

lncRNA - Long non-coding rna

TDN - Tetrahedral DNA nanostructure

UCA1 - Urothelial cancer-associated 1

Technical methods

ESCRT - Endosomal sorting complexes required for transport

GWAS - Genome-wide association study

ISEV - International Society for Extracellular Vesicles

MISEV - Minimal information for EV studies

NGS - Next-generation sequencing

SCS - Spinal cord stimulation

TENS - Transcutaneous electrical nerve stimulation
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