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Charcot–Marie–Tooth (CMT) disease is one of the most common inherited 

neuromuscular disorders, characterized by progressive peripheral nerve 

degeneration, muscle weakness, and sensory loss. To date, no effective therapy 

has been developed for CMT. The extreme genetic heterogeneity of CMT, 

encompassing mutations in more than 50 genes and the involvement of diverse 

pathological mechanisms, continues to pose significant challenges for disease 

modeling and therapeutic development. To address these challenges and 

interrogate specific hypotheses with greater experimental control, researchers 

have increasingly turned to alternative model organisms that offer genetic 

tractability and in vivo functional readouts. Zebrafish models have been 

employed to study hallmark features of CMT, including motor deficits, sensory 

dysfunction, skeletal abnormalities, and auditory neuropathy. Through the use 

of forward and reverse genetic screening approaches, as well as transgenic 

lines, zebrafish have yielded some interesting insights into the functional 

roles of specific genes implicated in CMT and the effects of pathogenic 

mutations. Moreover, zebrafish serve as a versatile platform for evaluating 

potential therapeutic interventions, including pharmacological compounds and 

gene therapy strategies. This review underscores the value of zebrafish as a 

robust model for advancing our understanding of CMT pathophysiology. It 

also addresses the ongoing challenges in genetic diagnosis and highlights the 

therapeutic potential of this model in guiding future treatments for CMT. 
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1 Introduction 

Inherited peripheral neuropathies represent a broad, heterogeneous group of genetic 
disorders. They include hereditary sensory-motor conditions, also known as Charcot-
Marie-Tooth diseases (CMT), first described by Charcot (1886), distal hereditary 
motor neuropathies (dHMN), hereditary sensory autonomic neuropathies (HSAN), and 
hereditary neuropathy with pressure palsies (HNPP). These conditions share partial 
phenotypic and genetic overlap. Therefore, for the sake of clarity and consistency, the term 
“CMT” is used throughout this text to encompass the entire spectrum of hereditary motor, 
sensory, and sensorimotor neuropathies. CMT diseases are the most common inherited 
neurological condition, with an estimated global prevalence of 1 in 2,500 individuals, but 
there is substantial variation in prevalence across dierent regions (Barreto et al., 2016; 
Skre, 1974). 
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Clinical manifestations of CMT are highly variable, but 
typically include muscle weakness and atrophy, typically beginning 
in the distal muscles of the feet and hands and progressing 
proximally. Patients often present with foot drop, steppage gait, 
and decreased or absent deep tendon reflexes. Sensory deficits, 
particularly aecting pain and temperature perception, as well as 
proprioception, are also typical and contribute to gait instability 
and balance diÿculties. In some cases, autonomic symptoms such 
as orthostatic hypotension, bladder dysfunction, and sweating 
abnormalities may occur. Skeletal abnormalities, including pes 
cavus (high-arched feet), hammer toes, hand deformities, and 
scoliosis, frequently arise due to muscle imbalance and weakness 
(Cortese et al., 2019; Laurá et al., 2019). In recessive forms of the 
disease, onset typically occurs during the first decade of life. In 
contrast, dominant forms most commonly manifest in the third 
or fourth decade; however, cases with very late onset, even in the 
seventh decade, have also been reported. The age of symptom onset 
is also influenced by the specific gene involved, the type of mutation 
(e.g., missense, deletions, insertions, nonsense mutations), and the 
location of the mutation within the protein. 

Charcot-Marie-Tooth is classified according to inheritance 
patterns and the predominant type of nerve pathology. The 
major subtypes include CMT Type 1 (CMT1), CMT Type 2 
(CMT2), Intermediate CMT (DI-CMT), CMT Type 4 (CMT4), 
and X-linked CMT (CMTX). Sensory neuropathies are divided 
into eight types and sixteen subtypes from HSANI to HSANVIII, 
while motor neuropathies encompass twenty-four to over thirty 
types of dHMN depending on the classification adopted (Bird, 
1993; Pisciotta and Shy, 2023; Schwartzlow and Kazamel, 2019; 
Tazir and Nouioua, 2024). CMT1, a demyelinating form, is typically 
caused by mutations in genes encoding myelin proteins such as 
PMP22, MPZ, and GJB1. This subtype is characterized by slowed 
nerve conduction velocities due to myelin sheath abnormalities. 
CMT2, an axonal form, results from mutations in genes involved 
in axonal structure and function, such as MFN2, RAB7, HSPB1, and 
presents with normal or mildly reduced nerve conduction velocities 
but marked axonal degeneration. Intermediate CMT exhibits 
characteristics of both demyelination and axonal loss and is often 
associated with mutations in DNM2 and YARS. CMT4 comprises 
autosomal recessive forms involving various genes and clinical 
phenotypes. X-linked CMT, primarily caused by mutations in GJB1 
encoding connexin 32, typically aects males more severely. 

CMT diagnosis involves a comprehensive clinical assessment, 
family history evaluation, electrophysiological studies, and genetic 
testing. Neurological examination is critical to delineate patterns 
of weakness, atrophy, and sensory loss. Family history can provide 
essential clues regarding inheritance. Electrophysiological studies, 
including nerve conduction velocity and electromyography, 
help distinguish between demyelinating and axonal forms. 
Genetic testing using next-generation sequencing panels or 
whole-exome sequencing confirms the diagnosis and facilitates 
genetic counseling. 

Genetic characterization of hereditary neuropathies began 
in the late 20th century. However, the term “CMT genes” is 
variably defined, with classifications encompassing approximately 
50 to over 150 genes, often including other syndromes in which 
neuropathy is a major component of the phenotype. In pure 
forms of CMT, the number of associated genes is estimated to 
be between 50 and 60. However, when broader phenotypes are 

considered, such as genetic syndromes in which neuropathy is 
part of the clinical presentation, the number of implicated genes 
increases to approximately 150. This broad inclusion underscores 
the considerable genetic heterogeneity of the disorder. In classic 
sensory-motor neuropathy, over 50 genes were described. A small 
number of mutations, such as those in PMP22, MPZ, MFN2, 
and GJB1, account for over 90% of diagnosed cases (Murphy 
et al., 2012), while others, like GDAP1, are rare and often 
family-specific (Kabzi´ nska et al., 2022). A common cause of
CMT is a 1.4 Mb duplication on chromosome 17 (Lupski 
et al., 1991; Raeymaekers et al., 1992). Currently, more than 30 
genes are associated with motor neuropathies, among them some 
genes were identified as capable of causing both pure motor 
neuropathy and classic CMT, such as HSPB1, HSPB8, SORD, and 
DNAJB2 (Tazir and Nouioua, 2024). Similarly, 15 genes of sensory 
neuropathy have been described, like SPTLC1, ATL1, NTRK1, 
and SCN9A (Schwartzlow and Kazamel, 2019). The number of 
identifiable genes has progressively increased with advancements in 
next-generation sequencing (NGS)-based diagnostic technologies. 
Non-Mendelian inheritance patterns, including multilocus and 
oligogenic inheritance, have also been proposed (Bis-Brewer et al., 
2020), and some mutations can exhibit both dominant and 
recessive inheritance (Rzepnikowska and Kocha´ nski, 2018). The 
molecular diagnosis is further complicated by weak-eect sequence 
variants, structural mutations (Cutrupi et al., 2018; Gonzaga-
Jauregui et al., 2015), and the ambiguous pathogenicity of specific 
genetic alterations. 

Variants are classified into five categories: benign, likely benign, 
variant of uncertain significance (VUS), likely pathogenic, and 
pathogenic based on ACMG guidelines (Richards et al., 2015). VUS 
remain particularly problematic in poorly characterized genes such 
as WARS1, SARS1, and RAB40B (Favalli et al., 2021). Conflicting 
variant interpretations further complicate diagnostics; for example, 
GJB1 shows a 7.3% conflict rate. In GARS1, 49% of variants 
are VUS and only 8% are classified as pathogenic. Similarly, 
DNM2 mutations, linked to both myopathy and intermediate 
CMT, include 43.5% VUS and just 4.6% pathogenic variants 
(Koutsopoulos et al., 2011). For MFN2, implicated in CMT2A, less 
than 20% of variants are pathogenic, with over 50% remaining 
as VUS (Beręsewicz et al., 2018; Züchner et al., 2006). The 
inconsistency of bioinformatics tools used for pathogenicity 
prediction underscores the urgent need for improved variant 
interpretation methods. Most CMT-associated variants have not 
been functionally validated, as such analyses often lie outside the 
scope of routine diagnostics. Despite technological advances, only 
about 50% of CMT cases are genetically diagnosed (Drew et al., 
2015; Schabhüttl et al., 2014), with even lower diagnostic yields in 
HMN and HSAN subgroups (Cortese et al., 2019). 

Currently, there is no cure for CMT, and applied therapies focus 
on symptomatic treatment, maintaining mobility, and improving 
quality of life. Physical and occupational therapy, alongside assistive 
devices and customized exercise programs, can help preserve 
muscle function. Orthopedic interventions, including surgical 
correction of deformities and orthotic support, aid mobility and 
pain management. Medications such as gabapentin, pregabalin, and 
NSAIDs are used to treat neuropathic pain. Genetic counseling 
provides essential guidance on inheritance, recurrence risks, and 
reproductive options. 
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Ongoing advancements in molecular biology and genetics oer 
hope for targeted therapies. 

2 New therapeutical approaches for 
CMT diseases 

Numerous novel therapeutic strategies have been proposed 
(Okamoto and Takashima, 2023; Pisciotta et al., 2021; Stavrou 
et al., 2021), oering hope for the development of eective 
treatments. Several compounds have undergone clinical testing. 
Among those demonstrating acceptable safety profiles but limited 
or inconclusive eÿcacy are PXT3003 and epalrestat. PXT3003 is 
being developed for the treatment of CMT1A, the most prevalent 
CMT subtype, caused by a PMP22 gene duplication. It is a 
combination of baclofen, naltrexone, and sorbitol, three drugs 
approved for other indications, formulated as an oral solution. In 
preclinical studies, PXT3003 modestly reduced PMP22 expression, 
enhanced myelination, increased the number and normalized 
the size of functional neuromuscular junctions (NMJs), and 
generally improved the clinical phenotype in CMT1A transgenic 
rat models (Chumakov et al., 2014; Prukop et al., 2020). A Phase 
II clinical trial (NCT01401257) provided preliminary evidence 
of PXT3003’s eÿcacy and safety in CMT1A patients (Attarian 
et al., 2012). In the Phase III trial (NCT02579759), the high-
dose group demonstrated statistically significant improvement in 
the primary endpoint. However, concerns regarding the stability 
of the high-concentration formulation emerged (Attarian et al., 
2021), prompting the initiation of a new clinical trial in 2021 
(NCT04762758). 

Applied Therapeutics has developed a next-generation aldose 
reductase inhibitor (ARI), AT-007 (govorestat), which eectively 
inhibits the conversion of glucose to sorbitol. Preliminary results 
from the INSPIRE clinical trial (NCT05397665) in Sorbitol 
Dehydrogenase (SORD) Deficiency using AT-007 demonstrated 
a significant reduction in sorbitol levels in patients (averaging 
52%) compared to the placebo group and a statistically significant 
correlation between sorbitol level, the pre-specified CMT-FOM 
composite clinical endpoint, and the CMT Health Index (De Grado 
et al., 2025; GlobeNewswire, 2024; Zhu et al., 2023). SORD encodes 
sorbitol dehydrogenase, the second enzyme in the polyol pathway, 
where glucose is first converted into sorbitol by aldose reductase 
and then into fructose by SORD. Loss-of-function mutations in 
SORD lead to sorbitol accumulation in cells and plasma (Cortese 
et al., 2020). Another drug, epalrestat, an aldose reductase inhibitor, 
blocks the conversion of glucose to sorbitol and has significantly 
reduced sorbitol levels in fibroblasts derived from SORD-CMT 
patients (Cortese et al., 2020). Epalrestat is indicated primarily 
for the management of diabetes-related complications, particularly 
diabetic peripheral neuropathy. While it does not exert direct 
neurodegenerative eects, its ability to mitigate hyperglycemia-
induced neuronal injury allows for indirect neuroprotection and 
preservation of peripheral nerve function. The therapeutic eect 
of epalrestat is based on the inhibition of aldose reductase. Under 
hyperglycemic conditions, excessive intracellular accumulation of 
toxic sorbitol in neuronal tissue contributes to osmotic stress, 
oxidative damage, and subsequent cellular dysfunction (Li et al., 
2016; Ran et al., 2024). A similar eect has been observed in animal 

models as well as in patients with CMT caused by mutations in the 
SORD gene. By reducing sorbitol levels, epalrestat may attenuate 
or delay the progression of neuropathy and associated nerve cell 
damage (Prukop et al., 2020). It is currently approved in several 
countries for treating diabetic complications and has demonstrated 
a favorable safety profile (Grewal et al., 2016). A clinical trial 
evaluating epalrestat’s safety and eÿcacy for SORD CMT2 was 
registered in 2023, although recruitment has not yet commenced 
(NCT05777226). 

Gene therapy is among the most actively pursued therapeutic 
approaches for genetic disorders, including CMT. It encompasses 
techniques aimed at suppressing disease phenotypes by replacing, 
modifying, silencing, or repairing defective genetic material in 
patient cells. Tailored strategies may be required depending on 
the underlying genetic mechanism. For loss-of-function mutations, 
gene replacement is typically indicated, whereas dominant-negative 
or toxic gain-of-function mutations may benefit from gene 
silencing, editing, or dosage reduction (Stavrou et al., 2023). The 
majority of gene therapies for CMT are still in the preclinical 
stage of development (Stavrou et al., 2023). One therapy that has 
advanced further is VM202, a non-viral, intramuscularly delivered 
synthetic cDNA hybrid encoding human hepatocyte growth factor 
(HPHGF). This therapy aims to stimulate nerve regeneration (Ko 
et al., 2018). A Phase I/IIa clinical trial (NCT05361031) evaluated its 
safety and tolerability of in patients with CMT1A caused by PMP22 
duplication. 

A separate investigational approach involves neurotrophin-3 
(NT-3), a neurotrophic factor essential for Schwann cell survival 
and nerve regeneration (Sahenk and Ozes, 2020). Although a 
Phase I/IIa trial was initiated for CMT1A patients, it is currently 
suspended due to vector production issues (NCT03520751). In 
parallel, another early-stage clinical trial is underway to deliver 
a functional IGHMBP2 gene for treating IGHMBP2-related 
neuropathies, including CMT2S (NCT05152823). 

Another promising avenue involves the use of stem cell-based 
therapies. Mesenchymal stem cells (MSCs) oer neuroprotective 
eects and promote regeneration by secreting antioxidant, 
antiapoptotic, and immunomodulatory molecules. They have 
shown eÿcacy in remyelination processes (Yousefi et al., 2019). 
A completed Phase I study (NCT05333406) assessed the safety 
and dosing of a single intravenous administration of allogeneic 
umbilical cord-derived MSCs (EN001) in nine CMT1A patients, 
with no serious adverse reactions reported. As a follow-up, a clinical 
trial was registered for CMT1E (caused by point mutations in 
PMP22) (NCT06218134). 

Currently, recruitment is ongoing for a Phase I trial of 
CLZ-2002 in CMT1 patients. This trial will evaluate the safety 
and tolerability of intramuscular injections of allogeneic MSC-
derived neuronal regeneration-promoting cells (Schwann cell-like 
cells) (NCT05947578). 

3 Advantages and limitations of 
models used in CMT research 

Animal and cellular models have provided crucial insights 
into human disease mechanisms and therapeutic development, 
including for genetic disorders such as CMT. Numerous rodent 
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models of CMT have been successfully developed and extensively 
characterized (Bosco et al., 2021; Juneja et al., 2019). An additional 
valuable mammalian model includes dogs, in which spontaneous 
mutations have led to naturally occurring inherited neuropathies 
that resemble human CMT. Such neuropathies have been identified 
in at least 22 dog breeds (Granger, 2011). Dogs oer several 
advantages as disease models, including larger body size, longer 
lifespan, and greater physiological similarity to humans compared 
to rodents (Drögemüller et al., 2010). Moreover, as companion 
animals, they share environmental exposures with humans, adding 
ecological relevance to disease studies (Skedsmo et al., 2019). 
Despite these benefits, mammalian models are typically expensive 
and time-consuming to maintain, and their use raises ethical 
concerns. Therefore, alternative systems for CMT modeling that 
adhere to the 3Rs: principle Replacement (whenever possible to use 
other methods and models to replace the mammals), Reduction 
(to use the minimal number of animals that is needed to obtain 
statistically valid results), and Refinement (to minimize animal’s 
burden during experiment) should be employed whenever feasible. 

Beyond animal models, several cellular systems have been 
established to study CMT pathogenesis. Although yeast models 
have significant limitations, including a lack of neuronal 
complexity, absence of genes involved in myelination, and 
inability to simulate interactions between dierent cell types, 
they remain useful for investigating basic cellular mechanisms, 
screening potential therapeutic compounds (Binięda et al., 
2021; Qiu et al., 2023), and identifying candidate targets 
for intervention (Rzepnikowska et al., 2020a; Rzepnikowska 
et al., 2020b; Rzepnikowska et al., 2022). Organoids derived 
from human induced pluripotent stem cells (iPSCs) oer 
another advanced model system, capable of mimicking complex 
cellular environments. CMT1A-specific iPSC-derived organoids 
containing neurons, Schwann cells, muscle cells, endothelial, 
and glial cells have been developed (Van Lent et al., 2022). These 
models enable the study of axonal myelination and intercellular 
interactions. However, a significant limitation is the absence 
of directional cell growth, which contrasts with the in vivo 
development of the peripheral nervous system. Consequently, 
organoids may not be suitable for neuromuscular junction 
(NMJ)-focused studies (Van Lent et al., 2022). iPSCs are widely 
employed in disease modeling due to their human origin, high 
dierentiation potential, and accessibility from skin fibroblasts 
or blood cells. Both patient-derived and genetically engineered 
iPSC-derived motor neurons serve as relevant tissue models 
for investigating disease mechanisms and identifying candidate 
therapies (Feliciano et al., 2021; Perez-Siles et al., 2020; Saporta 
et al., 2015; Van Lent et al., 2021). Nevertheless, traditional 2D 
and 3D cultures cannot replicate the full cellular complexity of 
the peripheral nervous system, limiting their utility, particularly 
for modeling demyelinating CMT types. While Schwann cells 
have been generated from human iPSCs (Liu et al., 2012), they 
- like primary human Schwann cells - have failed to robustly 
myelinate iPSC-derived neurons in vitro. Notably, myelination has 
been observed in co-cultures involving iPSC-derived neurons and 
rat-derived myelinating Schwann cells (Clark et al., 2017). 

More complex yet scalable models include the nematode 
Caenorhabditis elegans and the fruit fly Drosophila melanogaster, 
both of which are advantageous for high-throughput screening and 
functional genetic studies. These invertebrates have been used to 

assess behavioral, cellular, and molecular eects of CMT-related 
mutations (Cortese et al., 2020; El Fissi et al., 2018; Kitani-Morii and 
Noto, 2020; Lin et al., 2022; López Del Amo et al., 2015; Brozkova 
et al., 2015; Soh et al., 2020). However, a significant limitation of 
these organisms is the absence of Schwann cells and myelinated 
axons, making them unsuitable for modeling demyelinating forms 
of CMT (Chung et al., 2020). In contrast, fish models such as 
zebrafish overcome all these limitations. 

4 The zebrafish model of CMT 

An ideal model organism for studying neuropathies should 
have a well-characterized and accessible nervous system, a 
conserved neuromuscular architecture, and the ability to replicate 
key aspects of human pathology, including axonal degeneration, 
demyelination, and neuromuscular dysfunction. Despite notable 
dierences in structure, complexity, and remarkable regenerative 
capacity, zebrafish fulfill these criteria (Figure 1). It shares 
significant anatomical and functional similarities with humans 
in their neuromuscular systems. Both species have a central 
nervous system (CNS) comprising the brain and spinal cord, and a 
peripheral nervous system (PNS) consisting of sensory and motor 
neurons responsible for regulating crucial processes, such as the 
strength of muscle contractions, which are impaired in CMT (Babin 
et al., 2014; Singh and Patten, 2022). Although the zebrafish PNS 
has fewer types of sensory neurons and a less complex branching 
pattern in the peripheral nerves compared to humans or other 
mammalian models of CMT, it performs similar functions. At early 
stages of development, the zebrafish PNS is highly accessible for 
live imaging, making it a valuable research tool (Chia et al., 2022; 
Xiao et al., 2015). In zebrafish, peripheral axons are myelinated, 
though the myelin sheets are thinner and begin forming only 
after functional axons are established, typically starting at 3–5 days 
post fertilization (dpf) (D’Rozario et al., 2017). Similarly, as in 
humans, zebrafish myotomes derived from somites contain three 
distinct types of muscle fibers (slow, fast, and intermediate). These 
fibers are organized into repeating units called myomeres, which 
are divided by a connective tissue (myoseptum) into structural 
and functional units. However, unlike mammals, zebrafish slow 
and fast muscles are spatially segregated - slow muscle fibers are 
located on the superficial (outer) layer of the myotome, while 
fast muscle fibers occupy the deeper (inner) layers (Daya et al., 
2020). This spatial organization provides a unique opportunity 
to investigate how specific motor neurons target dierent muscle 
fiber types, how these connections are aected by neuromuscular 
disorders like CMT, and how fiber-typespecific deficits contribute 
to motor dysfunction. Additionally, this segregation simplifies the 
assessment of fiber-type-specific regeneration or degeneration in 
response to nerve or muscle damage, enhancing the zebrafish’s 
utility as a model organism for neuromuscular research. 

In addition to their utility in studying neuromuscular 
connections, zebrafish also provide valuable insights into 
secondary complications associated with CMT, including skeletal 
abnormalities. Due to the aquatic environment and the buoyancy 
it provides, the zebrafish skeleton is not subjected to the same 
gravitational loading experienced by humans. Nevertheless, 
zebrafish can develop dierent axial deformities, including age-
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FIGURE 1 

The usefulness of zebrafish in modeling hereditary neuropathies. Zebrafish serve as a valuable model organism for studying a wide range of human 
disorders, including hereditary neuropathies. The illustration highlights various human physiological systems and the corresponding CMT disease 
symptoms that can be effectively modeled using zebrafish. 

or disease-related spine deformities and idiopathic scoliosis 
(Boswell and Ciruna, 2017). Furthermore, zebrafish can be used to 
study defects in bone mineralization, vertebral segmentation, or 
skeletal growth, providing insights into the genetic and molecular 
mechanisms underlying these conditions (Carnovali et al., 2019; 
Marí-Bea et al., 2021; Van Hul et al., 2020). 

Hearing deficits in CMT, often linked to auditory neuropathy, 
can also be eectively modeled in zebrafish (Bever and Fekete, 2002; 
Vona et al., 2020). Although zebrafish lack a cochlea, which limits 
their ability to replicate the complex auditory processes seen in 
humans, their inner ear and lateral line system share structural 
and functional similarities with mammalian auditory systems, 
including conserved stereocilia architecture, synaptic mechanisms, 
and neuronal connectivity (Kindt and Sheets, 2018; Whitfield, 
2002). Moreover, the lateral line system is externally accessible 
and exhibits robust hair cell regeneration, providing a unique 
platform for studying mechanisms of auditory damage and repair 
(Hardy et al., 2021). Ototoxic stress can be induced using drugs or 
environmental stimuli (Domarecka et al., 2020), enabling studies of 

the cellular and molecular responses to such stressors, facilitating 
the identification and evaluation of potential therapeutic targets. 

The cardiac system in zebrafish also oers valuable insights into 
CMT-related complications, such as arrhythmias and conduction 
disturbances in association with peripheral muscle atrophy. 
Although zebrafish hearts have only a single atrium and ventricle, 
they share key physiological properties, including similar heart rate 
and action potential duration, conserved ion channels, conduction 
pathways, and autonomic regulation of heart function (Tesoriero 
et al., 2023). Zebrafish are particularly well-suited for real-time 
imaging of cardiac activity, making them a powerful tool for 
studying heart function. Additionally, zebrafish models enable the 
investigation of the role of the autonomic nervous system in 
regulating heart rate and rhythm, which is often disrupted in CMT 
(Pedroni et al., 2024). 

Some authors suggest that neurogenic bladder disorders that 
result from peripheral neuropathy, which disrupts the normal 
communication between the bladder and the nervous system, 
are associated with CMT. The presence of the urinary bladder 
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TABLE 1 Charcot–Marie–Tooth-related genes investigated in zebrafish. 

Gene Zebrafish 
orthologs 

Disease 
phenotypes 

Zebrafish phenotype References 

AARS1 aars1 CMT2N Reduction in axon length Jin et al., 2022; Weterman 

et al., 2018 

ABHD12 abhd12 PHARC Aberrant axon extension, branching Gonzaga-Jauregui et al., 2015 

ATL1 atl1 HSNID Abnormal architecture of spinal motor axons Fassier et al., 2010 

CHCHD10 chchd10 dHMN-VIIB Motoneuron pathology, abnormal myofibrillar 

structure, and mobility deficits 
Brockmann et al., 2018; Petel 
Légaré et al., 2023 

DCTN1 dctn1a dctn1b dHMN7B Defects in the development of spinal cord 

motor neurons and the function of the 

neuromuscular junction 

Bercier et al., 2019 

DGAT2 dgat2 CMT2 Inhibited axonal branching Hong et al., 2016 

DNM2 dnm2a 

dnm2b 

CMT2M 

DI-CMT B 

CNM1 

MSL 

Defects in muscle morphology, defects in 

motor neuron formation, with incorrect 
branching or total absence of branching 

Bragato et al., 2016; Gibbs 
et al., 2013; Gibbs et al., 2014 

FBLN5 fbln5 CMT1H 

HNARMD 

Myelination defects Won et al., 2020 

FIG4 fig4a fig4b CMT4J Robust liver vacuolation Bao et al., 2021 

GARS1 gars1 CMT2D HMND5 Pericardial edema 

Developmental defects (unconsumed yolk and 

minor head and body axis) 

Malissovas et al., 2016 

GBF1 gbf1 CMT2GG Vascular collapse and hemorrhage Chen et al., 2017; Dutton 

et al., 2009 

GDAP1 gdap1 CMT2K CMT2H 

RI-CMTA 

CMT4A 

Reduced density of sensory neurites, decreased 

temperature–related activity 

Gonzaga-Jauregui et al., 2015 

HARS1 hars CMT2W Reduction in axon length Mullen et al., 2021; Waldron 

et al., 2017 

HOXD10 hoxd10a CMT1 Locomotor behavior, vertebral identity, and 

peripheral nervous system development 
alteration 

de la Cruz et al., 1999; 
Shrimpton et al., 2004 

HNRNPA1 hnrnpa1a hnrnpa1b HMN edema, abnormal intersegmental vessels 
branching 

Liu et al., 2017 

HSPB1 hspb1 CMT2F dHMN2B Reduction in the cross-sectional area of 
myofibers 

Gonzaga-Jauregui et al., 2015; 
Middleton and Shelden, 2013 

HSPB8 hspb8 CMT2L dHMN2A Overall reduction of the birefringence of 
muscles 
Decreased locomotor activity 

Dubi´ nska-Magiera et al., 2020; 
Mao et al., 2005 

KARS1 kars1 RI-CMTB Morphological abnormalities (heart edema, 
smaller heads, eyes, otic vesicle) 
Abnormal trunk muscle fibers failed to inflate 

the swim bladder 

Failed to respond to touch and displayed a loss 
of spatial orientation 

Reduced eye and head axial length 

Loss of locomotor activity in response to light 
or acoustic startle 

Lin et al., 2021 

KIF1A kif1aa kif1ab HSN2C Extensive locomotor activity Guo et al., 2020 

KIF1B kif1b CMT2A1 Disturbances of myelination in the nervous 
system and outgrowth of some of the longest 
axons in the peripheral and central nervous 
systems 

Lyons et al., 2009 

LAS1L las1l SMARD2 Early lethality and disruption of muscle and 

peripheral nerve architecture 

Butterfield et al., 2014 

(Continued) 
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TABLE 1 (Continued) 

Gene Zebrafish 
orthologs 

Disease 
phenotypes 

Zebrafish phenotype References 

LITAF litaf CMT1C Promotes inflammatory responses and 

activates apoptosis 
Chen et al., 2021 

LRSAM1 lrsam1 CMT2G CMT2P Variation in the severity of the phenotype 

(phenotype varied from near normal with a 

slightly smaller head, a slightly shorter body 

axis, slightly less 
pigmentation and bent tail tips to completely 

curled up and smaller embryos with bent tails 
with little pigmentation, smaller eyes, 
abnormal brain development and a less 
organized structure of the sometimes) 
Abnormal swimming behavior 

Weterman et al., 2012 

MED25 med25 CMT2B Axonal defects Gonzaga-Jauregui et al., 2015 

MFN2 mfn2 CMT2A2A 

CMT2A2B HMSN6A 

MSL 

Facial prognathism, underdeveloped eyes, 
brain ventricles enlargement, curly-tail, motor 

impairment, or completely unresponsive to 

touch 

Gonzaga-Jauregui et al., 2015; 
Vettori et al., 2011; Zhou 

et al., 2020 

MPZ mpz DI-CMTD 

CMT1B CMT2I 
CMT2J 
DSS 

CHN2 

Roussy-
Levy syndrome 

Decreased total amount of synthesized myelin 

membrane and number of myelinated axons 
Antonellis et al., 2010; Preston 

et al., 2019 

NEFL nefla neflb DI-CMTG 

CMT1F 

CMT2E 

Decreased locomotor activity Demy et al., 2020 

NRG1 nrg1 CMT-DI Decreased locomotor activity Lysko et al., 2022; Schonkeren 

et al., 2019 

PMP22 pmp22a pmp22b CMT1A 

CMT1E 

DSS 

HNPP 

Roussy-
Levy syndrome 

Reduced nerve conduction velocity Jones et al., 2012 

PMP2 fabp4b CMT1G Axonal defects Gonzaga-Jauregui et al., 2015 

PRPS1 prps1a prps1b CMTX5 Smaller eyes and reduced hair cell numbers 
Abnormal development of primary motor 

neurons, hair cell innervation, and reduced 

leukocytes 

Pei et al., 2016 

RAB40B rab40b rab40c CMT2 Defective swimming pattern of stalling with 

restricted localization and slower mobility 

Son et al., 2023 

RAB7A rab7a CMT2B Defects in sensory axon growth, branching, 
and path finding 

Ponomareva et al., 2016 

REEP1 reep1 HMND12 HMNR6 Defects in motor axon outgrowth leading to 

motor impairment, mitochondrial 
dysfunction, and reactive oxygen species 
accumulation 

Naef et al., 2023 

SARS1 sars1 NEDMAS Smaller head and eyes 
Heart edema 

(Bögershausen et al., 2022) 

SBF1 (MTMR5) sbf1 CMT4B3 Morphometric changes in head size and brain 

volume, reduced overall body size, complex set 
of defects in the trunk of the embryo 

Lindzon et al., 2025; Ho and 

Kane, 1990 

SCN9A scn1lab Erythermalgi a, primary 

Insensitivity to pain, 
congenital 
HSAN2D 

PEPD 

SNFP 

Decreased density of the small-nerve fibers 
Increase in activity induced by temperature 

change 

Eijkenboom et al., 2019a 

(Continued) 
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TABLE 1 (Continued) 

Gene Zebrafish 
orthologs 

Disease 
phenotypes 

Zebrafish phenotype References 

SLC25A1 slc25a1a MCVD Altered tail morphology 

Impairment of the escape response induced by 

touch 

Abnormal neuromuscular junction 

development, edema of the hindbrain, heart, 
yolk sac, and tail 

Chaouch et al., 2014 

SOX10 sox10 PCWH Neurogenesis alterations of olfactory sensory 

neurons 
Saxena et al., 2013 

SPTLC1 sptlc1 HNA1A Randomized epiblast cell divisions Castanon et al., 2020 

TFG tfg CMT2 Decreased locomotor activity Chen et al., 2022 

VABP kcnip1a kcnip1b SMAFK Cardiac bradycardias Silbernagel et al., 2018 

VRK1 vrk1 dHMN 

dHMN and 

pyramidal features 

Microcephaly and impaired motor function, 
Decreased cell proliferation, 
Defects in nuclear envelope formation and 

heterochromatin formation in the brain 

Carrasco Apolinario et al., 
2023 

VWA1 vwa1 HMNMYO Jaw joint, ventral cartilage, arches, Meckel’s 
and palatoquadrate abnormalities, locomotor 

behavior disturbances 

Pagnamenta et al., 2021 

WARS1 wars1 dHMN9 Smaller head and eyes 
Heart edema 

Bögershausen et al., 2022 

WNK1 wnk1a wnk1b HSAN2A Improper peripheral lateral line development Bercier et al., 2013; 
Gonzaga-Jauregui et al., 2015 

has been confirmed in some teleost fish, though its existence 
in zebrafish was previously questioned. Recent findings by the 
Catto group demonstrated that the zebrafish urinary bladder is 
present in adult zebrafish (Jubber et al., 2023) but in contrast to 
the multi-layered human urothelium, zebrafish urinary bladder 
is lined by epithelium composed of one or two cell layers, 
expressing proteins characteristic of both superficial (uroplakins) 
and basal (Cytokeratin 5 and CD44) layers of human urothelium. 
Using fluorescent dye, Jubber et al. (2023) showed that the urine 
accumulates in the zebrafish urinary bladder and is intermittently 
released via a distinct urethra. While the responses of the urinary 
bladder to various stimuli have been described in the Atlantic cod 
(Nilsson, 1970), similar studies in zebrafish are still lacking. 

Sweating abnormalities can significantly impact the quality of 
life in CMT patients. Although fish lack sweat glands and are 
therefore not suitable for studying sweating dysfunctions in the 
traditional sense, zebrafish provide a valuable model for assessing 
autonomic dysfunctions, such as impairments in temperature 
regulation and sympathetic nervous system function. For example, 
zebrafish can be tracked as they navigate through a thermal 
gradient to select their preferred environmental temperature, 
thereby achieving temperature homeostasis (López-Olmeda and 
Sánchez-Vázquez, 2011; Palieri et al., 2024). In this way, zebrafish 
oer key insights into thermal regulation and its impact on broader 
physiological processes. However, these studies have not yet been 
conducted in the context of CMT. 

To elucidate the molecular and cellular mechanisms underlying 
CMT in zebrafish and explore potential therapeutic strategies, a 
variety of experimental approaches can be employed. For example, 
mitochondrial function, axonal transport, and myelination can 

be chemically modulated (Azevedo et al., 2020; Toni et al., 
2023). In most cases, substances are directly added to the fish 
water, making this type of experiment straightforward and highly 
eÿcient in terms of time, cost, and labor. This approach is 
particularly advantageous for zebrafish embryos and larvae, which 
are typically maintained in Petri dishes or multi-well plates, 
containing relatively small volumes of liquid, thereby enabling 
eective use of limited quantities of test substances. The availability 
of diverse transgenic zebrafish lines further amplifies the utility 
of the zebrafish model by enabling the visualization of cellular 
events at high resolution. For example, Tg(hb9:MTS-Kaede) line 
was used to visualize mitochondrial dynamics in motor neurons 
and the eects of CMT2A-causing mutations on mitochondrial 
movement (Bergamin et al., 2016), and with Tg(TagRFP-caax), 
it was possible to assess the eects of CMT2b-associated 
alterations on long projection sensory neurons (Ponomareva et al., 
2016). Transgenic lines, like Tg(mbp:nfsB-egfp) in which bacterial 
nitroreductase enzyme (NTR) converting metronidazole into a 
cytotoxic compound is driven under oligodendrocyte-specific 
promoter, can be used, for e.g., selective and reversible ablation 
of oligodendrocytes and subsequent demyelination upon treatment 
with metronidazole (Chung et al., 2013). As zebrafish have an 
amazing regeneration capacity, once metronidazole is withdrawn, 
this transgenic system oers the possibility to study remyelination. 

Reverse genetic screens were also eective and facilitated 
eÿcient and rapid investigation across various genetic 
backgrounds, allowing for the precise identification of the 
roles of dierent genes and modifiers. Among the methods used 
to study gene function in model organisms, siRNA-mediated 
knockdown is generally not eective in zebrafish. In contrast, 
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FIGURE 2 

Comparative advantages and disadvantages of animal models in the study of human diseases. This figure presents a side-by-side comparison of 
commonly used animal models fruit fly, worm, zebrafish, and rodent, in biomedical research. The comparison helps illustrate the strengths and 
tradeoffs associated with each organism in the context of disease modeling. 

morpholino oligomers (MOs), which typically are ∼ 25-nucleotide 

molecules designed to block translation or alter splicing by 

binding to target mRNAs/pre-mRNAs can be used to create 

morphants – zebrafish embryos and larvae with robust but 
transient gene knockdown (Stainier et al., 2017; Vettori et al., 
2011). Although the use of MOs can be advantageous when 

studying early development in hypomorphic conditions, however, 
in other cases, the incomplete knockdown and o-target eects 
findings should be validated with methods complementary to 

MO. Since the CRISPR/Cas9 technology has revolutionized 

genome editing, both transient genetic modifications (crispants) 
and stable edits via non-homologous end joining (NHEJ) 
can be created with high eÿciency, whereas homology-
directed repair (HDR), a key genome editing mechanism in 

mammalian models like mice, remains far less eÿcient in 

zebrafish compared to NHEJ. In addition to morphants and 

crispants, dominant-negative eects of dierent genes or their 

modulators can also be assessed by injecting DNA, RNA, or 

proteins into one-cell zebrafish embryos and observing their 

impact on developing embryos (Hong et al., 2016; Mullen et al., 
2021). 

Dozens of CMT and neuropathy-related genes have been 
studied in zebrafish (Table 1), one of which is the RAB7 gene. The 
zebrafish Rab7a shares 97.6% amino acid identity with the human 
RAB7 protein, with 100% identity at the residues aected in the 
human disease, specifically L129F, K157N, N161T, and V162M. To 
study the role of rab7a in the axon growth and guidance defects 
during sensory neuron development Ponomareva and colleagues 
(Ponomareva et al., 2016) created constructs in which mutated 
rab7a was placed under control of cis-regulatory elements from 
the neurogenin 1 gene, driving expression to Rohon-Beard (RB) 
spinal sensory neurons. Transient expression was obtained by 
injecting constructs into one-cell stage embryos, allowing the 
first analysis already at 23 hours post fertilization (hpf), when 
the RB neurons start to develop. Using the same constructs and 
Tol2 transposase stable transgenic lines: Tg(-3.1ngn1:GFP-Rab7), 
Tg(-3.1ngn1:GFP-Rab7L129F), and Tg(-3.1ngn1:GFP-Rab7K157N), 
with CMT2b Rab7 mutations in spinal sensory neurons only 
were generated (Ponomareva et al., 2016). Using those tools, 
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TABLE 2 The list of transgenic lines and antibodies, and dyes used to study Charcot–Marie–Tooth in the zebrafish model. 

Transgenic lines What is labeled CMT-related work 

Tg(elavl3:EGFP) GFP in dierentiated neurons (motor and sensory) Aizawa et al., 2005 

Tg(elavl3:Kaede) Kaede in dierentiated neurons (motor and sensory) Sato et al., 2006 

Tg(hb9:eGFP) GFP in motoneurons Chen et al., 2022 

Tg(hb9-MTS-Kaede) Photoconvertible Kaede in mitochondria of motor neurons, labeling and ablations Bergamin et al., 2016 

Tg(isl2b:GFP) GFP in retinal ganglion cells Bragato et al., 2016 

Tg(kdrl:EGFP)s843 GFP in vasculature Malissovas et al., 2016 

Tg(mbp:egfp) EGFP expressed in mature oligodendrocytes in the embryonic and adult CNS Jung et al., 2010 

Tg(mbp:gal4-vp16) For ablation of oligodendrocytes Chung et al., 2013 

Tg(mnx1:mCherry) mCherry in motor neurons Mullen et al., 2021 

Tg(ngn1:GFP) GFP in sensory neurons Mullen et al., 2021 

Tg(sensory:GFP) GPF in sensory neurites Eijkenboom et al., 2019b 

Tg(so × 10:egfp) EGFP in oligodendrocyte lineage cells, including OPCs and mature 

oligodendrocytes 
Carney et al., 2006 

Tg(so × 10:gal4-vp16) Used for ablation of oligodendrocytes Chung et al., 2013 

Tg(uas: nfsB-mCherry) Used for the induction of tissue-specific cell death using a bacterial nitroreductase 

gene under UAS control 
Davison et al., 2007 

Tg(uas:egfp) Gene trap and enhancer trap Asakawa et al., 2008 

Dyes 

Acridine orange Stains apoptotic cells, 5 µg/mL Lindzon et al., 2025 

α-bungarotoxin (αBTX) Neuromuscular junction staining, Alexa 488conjugated α-BTX 1:100, Molecular 

Probes; 1:150 Invitrogen 

Lindzon et al., 2025; Ramesh et al., 
2010 

Rhodamine Phalloidin F-actin in fast muscles 1:500, Invitrogen Lindzon et al., 2025; Malissovas et al., 
2016 

Antibodies 

Anti-acetylated tubulin Mature axons, 1:200, Sigma Lindzon et al., 2025 

Anti-Vinculin Myotendinous junctions, 1:400, Sigma Malissovas et al., 2016 

Anti-α-Actinin Sarcomeric z-disks, 1:500 Malissovas et al., 2016 

Anti-GARS Endogenous Gars, 1:3000, Abcam Malissovas et al., 2016 

Anti-p-Eif2a Phosphorylated Eif2a, 1:250, Cell Signaling Technology Malissovas et al., 2016 

Total-Eif2α Endogenous Eif2a, 1:500, Cell Signaling Technology Malissovas et al., 2016 

Anti-myosin Myosin filaments, 1:10, DSHB Lindzon et al., 2025 

Anti-synaptotagmin 2 Primary motor neurons, Znp-1,1:10, DSHB Lindzon et al., 2025 

SV2 Neuromuscular junction staining, 1:50; DSHB Ramesh et al., 2010 

the authors demonstrated that, as in patients, mutations in 

rab7a caused neurodevelopmental defects. Moreover, reduced axon 

growth and branching most likely resulted from the expression 

of a constitutively active form of Rab7a. Tol2 is still used as an 

eÿcient tool for random integration of larger DNA fragments into 

the zebrafish genome, and humanized zebrafish transgenic lines like 

the Tg (DNM2WT-EGFP), which was created to study subcellular 

localization of DNM2-EGFP in skeletal muscle cells, is an example 

of this application (Zhao et al., 2019). 
Compared to other vertebrate models, zebrafish, with its easily 

available large clutches of embryos, oer unique advantages for 

cost-eective forward genetic screens that allow identification of 
new genes involved in certain processes. For example, the Tablot 
group conducted a genetic screen to identify genes that are critical 

for the development of myelinated axons in zebrafish (Pogoda et al., 
2006). In their study, the authors utilized homozygous mutants 
from the F3 generation, generated through premeiotic mutagenesis 
with the chemical mutagen ENU (N-ethyl-N-nitrosourea). Their 

approach involved analyzing the expression of myelin basic protein 

(mbp) – a robust marker of myelinating glia in the CNS and PNS. 
By screening 1859 clutches of F3 larvae from 504 F2 families, they 

identified 13 mutations aecting 10 genes that are essential for 

myelinated axon development. Of these mutations, st23 mapping in 

the linkage group 23 was pointed out as a novel gene which is likely 

to be a good model of CMT2 axonal peripheral neuropathies. Later, 
the Talbot group showed that st43 mutation aects kinesin motor 
protein (kif1b), a gene which required to localize myelin mRNA 

to oligodendrocyte processes, ensuring proper myelin sheath 
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formation around axons, and preventing the ectopic production 
of myelin-like membrane (Lyons et al., 2009). Although this study 
did not ultimately identify a new gene, the identification of kif1b 
in a forward genetic screen demonstrated the model’s relevance 
for this type of studies. Another member of kinesin proteins – 
KIF5A, which has two semi-orthologs in zebrafish - kif5Aa and 
kif5Ab, also sheds light on Kinesin complexity in CMT and 
reveals determinants of specific Kif5A functions in mitochondrial 
transport, adaptor binding, and axonal maintenance (Campbell 
et al., 2014). Similar to SPG10 patients, zebrafish kif5Aasa7168 

mutant display striking motor dysfunction. Campbell and co-
authors showed that the peripheral sensory axons from the kif5Aa 
mutant lack mitochondria and degenerate. Moreover, concurrent 
loss of the kinesin-3, kif1b, or its adaptor kbp, exacerbates axonal 
degeneration via a non-mitochondrial cargo common to Kif5Aa 
(Campbell and Marlow, 2013). The example also shows that gene 
duplication, which in CMT related genes is twice higher than the 
average for the genome (Kozol et al., 2016), does not discredit the 
usefulness of the model. Instead, it underscores the model’s capacity 
to account for genetic variations and complexities, which can be 
essential for understanding and addressing CMT. 

The zebrafish model not only enables the exploration of the 
functions of genes already associated with CMT but also serves 
as a crucial tool for investigating the eects of new variants. 
For example, a zebrafish mutant carrying a rare missense variant 
in neuregulin 1 (nrg1), provided initial evidences supporting 
the pathogenicity of a homozygous NRG1 variant identified 
in a patient with sensory and motor deficits consistent with 
mixed axonal and demyelinating peripheral neuropathy may cause 
peripheral neuropathy. These findings suggest that NRG1 should 
be further investigated in families with peripheral neuropathy 
of unknown cause (Lysko et al., 2022). The absence of the 
desired mutation in the zebrafish genome is not a limiting factor. 
Three CMT-associated substitutions (V155G, Y330C, R137Q) 
in the cytoplasmic histidyl-tRNA synthetase (hars1) on neurite 
outgrowth and peripheral nervous system development were 
also studied in the zebrafish model by injecting Y330C and 
V155G variants of human HARS1 mRNA (Mullen et al., 2021). 
Hong et al. (2016) using similar approach, showed that Y223H 
DGAT2 induced an axonal defect in the peripheral nervous 
system of zebrafish and Talbot group after identifying a rare 
R > Q missense variant in NRG1 used zebrafish model to 
provide evidence indicating that partial loss of NRG1 function 
indeed may cause peripheral neuropathy in humans (Lysko 
et al., 2022). By modeling variants of unknown significance, 
researchers can determine their functional impact, oering valuable 
information for both clinical interpretation and therapeutic 
development. 

Motor behavior, muscle morphology, and motor neuron in 
fish over-expressing the G537C mutation in the PH domain 
of human DYNAMIN-2 were also reflected in human CMT 
(Bragato et al., 2016). Notably, zebrafish can be used to 
uncover even more complex scenarios. Holloway and coauthors 
reported a story of a child with leukemia and no family history 
of neuropathy who developed severe chemotherapy-induced 
peripheral neuropathy after vincristine treatment (Holloway et al., 
2016). The child was found to have a novel loss-of-function 
mutation in GARS, suspected of predisposing a patient to 
severe CIPN. The authors successfully modeled the impact of 

the mutation in morphant and mRNA-injected zebrafish and 
obtained a similar phenotype as in the patient, both prior to 
and after the chemotherapy. Moreover, some of the vincristine-
induced neurotoxicity and axonal defects were elevated when fish 
were co-administered with microtubule stabilizing drug paclitaxel 
(vincristine is a microtubule-destabilizing drug (Holloway et al., 
2016). These findings highlight the potential of zebrafish models 
for studying disease mechanisms and identifying therapeutic 
strategies, emphasizing the value of drug combination approaches 
in mitigating chemotherapy-induced side eects. 

5 Conclusion 

CMT are complex diseases that require a multidisciplinary 
diagnostic and therapeutic approach. Ongoing research and close 
collaboration among geneticists, neurologists, and other healthcare 
professionals are essential for advancing the understanding and 
treatment of these challenging neuropathies. Various model 
organisms are used in CMT research, each oering distinct 
advantages. Among D. melanogaster, C. elegans, and mouse, 
zebrafish stand out as a particularly valuable laboratory animal due 
to their unique advantages (Figure 2). 

Zebrafish embryos provide a cost-eective and scalable 
platform for early-stage drug discovery and preclinical testing. 
Zebrafish can be employed to evaluate compounds or therapies 
that target or mitigate the eects of genetic variants. Importantly, 
the zebrafish model not only enables the exploration of genes 
already associated with CMT but also serves as a crucial tool 
for investigating the eects of novel or rare genetic variants. 
Because zebrafish muscles, nerves, visual system, auditory system, 
cardiac structures, and skeletal components develop rapidly and 
become functional within 120 hpf, they are particularly well-
suited for the rapid assessment of motor deficits, as well as visual, 
auditory, cardiac, and skeletal abnormalities. In contrast to time-
and cost-eective experiments conducted on zebrafish larvae up to 
5 dpf, studies of late-onset forms of CMT in adult zebrafish are 
more demanding but remain valuable. Adult models enable the 
assessment of disease progression and delayed responses to genetic 
or pharmacological interventions, thereby significantly advancing 
our understanding of CMT pathophysiology and therapeutic 
development. However, their advantage over mammalian models 
at this stage becomes limited. 

It should be noted that gene duplication and the high rate 
of polymorphism, both common in zebrafish, can complicate 
genetic analyses. Furthermore, inconsistent nomenclature of some 
ohnologs and their orthologs continues to cause confusion in 
comparative genetics and disease modeling (Gasanov et al., 2021). 
Despite these challenges, the continued application of zebrafish 
models is expected to substantially contribute to the development 
of novel therapeutic strategies for disorders within the CMT disease 
spectrum. A variety of tools – including transgenic lines, antibodies, 
and dyes are already available for studying CMT; examples are 
listed in Table 2. Additional resources can be found in an expertly 
curated and cross-referenced zebrafish research database of the 
Zebrafish Information Network (ZFIN)1 . 

1 https://zfin.org/action/fish/search 
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