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Major depressive disorder (MDD) is one of the most prevalent mental disorders,
posing a significant socioeconomic burden worldwide. Its development involves
both genetic and environmental factors, among which chronic stress is considered
a major contributor. The amygdala, a key brain region for emotional regulation,
is critically implicated in MDD pathophysiology. Given its complex subnuclear
architecture, it is essential to characterize stress-induced molecular changes at
the level of individual subnuclei. To investigate subnucleus-specific molecular
adaptations to chronic stress, we performed RNA sequencing on fluorescence-
guided micropunch samples from five amygdala-related subnuclei in mice exposed
to chronic corticosterone (CORT): the basolateral amygdala (BLA), the lateral and
medial central amygdala (CeL, CeM), and the oval and fusiform bed nuclei of the
stria terminalis (BNSTov, BNSTfu). Comparative transcriptomic analysis revealed
highly divergent and subnucleus-resolved gene expression responses to chronic
CORT exposure. Each subregion exhibited unique profiles of differentially expressed
genes, implicating alterations in excitatory—inhibitory synaptic balance, glial functions
involving oligodendrocytes or astrocytes, and neuropeptide signaling. Our results
uncover the molecular heterogeneity of subnucleus-specific responses within
the amygdala. These findings highlight the importance of anatomically resolved
analyses in elucidating the biological basis of stress-related mental disorders
such as MDD, thereby paving the way for more targeted therapeutic strategies.
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1 Introduction

Major depressive disorder (MDD) is a highly prevalent psychiatric
condition characterized by persistent low mood, loss of interest or
pleasure, reduced energy, cognitive impairments, and dysregulation
of emotional processing (Otte et al., 2016; Marx et al., 2023). Despite
its significant socioeconomic burden worldwide, the underlying
pathophysiological mechanisms of MDD remain incompletely
understood. Accumulating evidence suggests that dysfunction in
stress-related neural circuits and neuroendocrine regulation—
particularly hyperactivation of the hypothalamic-pituitary—adrenal
(HPA) axis and elevated circulating glucocorticoid levels—plays a
central role in the pathogenesis of the disorder (Carroll et al., 19765
Bao et al,, 2008; Holsen et al., 2013; Zajkowska et al., 2022; Guo
etal., 2025).

Among the brain regions implicated in MDD, the amygdala is
critically involved in emotional regulation and stress responsiveness.
Functional and structural abnormalities in the amygdala have been
consistently reported in patients with MDD, including specific
alterations in substructures such as the central nucleus of the amygdala
(CeA) and the bed nucleus of the stria terminalis (BNST), collectively
referred to as the extended amygdala (Weniger et al., 2006; Hamilton
et al., 2008; Young et al., 2014; Qiao et al., 2020; Wang et al., 2020;
Frank et al,, 2021; Roddy et al., 2021; Dhaher et al., 2022; Liu et al.,
2024). These subregions are intricately involved in processing sensory
and emotional stimuli, integrating experience-dependent emotional
memories, and coordinating behavioral and physiological responses
to stress (Walker et al., 2003; Phelps and LeDoux, 2005; Roozendaal
et al., 2009; Fox et al,, 2015; Janak and Tye, 2015; Shackman and
Fox, 2016).

Importantly, the amygdala is not a homogenous structure but is
composed of multiple subnuclei with distinct cellular compositions
and circuit connectivity. These subnuclei form dense intra- and inter-
subnuclear networks and function in a cooperative or complementary
manner to mediate diverse emotional and stress-related responses
(Dong et al., 2001a; Calhoon and Tye, 2015; Fox et al., 2015; Lebow
and Chen, 2016; Zhang et al., 2021; Sun et al., 2023). Recent studies
have demonstrated that specific neuronal populations within
individual amygdala subnuclei exhibit differential activation and
plasticity in response to stress or emotional stimuli (Tovote et al., 2015;
Ge et al.,, 2022; Hochgerner et al,, 2023). However, the molecular
adaptations occurring at the subnuclear level under chronic stress
conditions remain poorly characterized, partly due to technical
limitations in achieving anatomically precise molecular analysis.

Rodent models of chronic stress provide a powerful platform for
investigating the neurobiological basis of depression-like phenotypes.
While several models are available, including chronic social defeat
stress, unpredictable chronic mild stress, and chronic pain models,
chronic corticosterone (CORT) administration offers a highly
controllable and reproducible method that recapitulates the endocrine
consequences of sustained HPA axis activation (Wang et al., 2017;
Planchez et al., 2019). This model reliably induces depression-like
behaviors and facilitates the study of glucocorticoid-driven molecular
and cellular changes in the brain.

In the present study, we employed a chronic CORT administration
model in mice and utilized a fluorescence-guided microdissection
system to precisely isolate five amygdala-related subnuclei: the
basolateral amygdala (BLA), the lateral and medial divisions of the
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CeA (CeL and CeM), and the oval and fusiform nuclei of the BNST
(BNSTov and BNSTfu). We conducted comparative transcriptomic
analyses using RNA sequencing (RNA-seq) to identify subnucleus-
specific transcriptional responses to chronic CORT exposure. Notably,
these responses exhibited an unexpectedly high degree of diversity
across different subnuclei. This study will advance our understanding
of the transcriptional changes underlying stress-induced molecular
and circuit-level adaptations in the amygdala, and to contribute to the
development of novel diagnostic and therapeutic strategies for stress-
related psychiatric disorders, including MDD.

2 Materials and methods

2.1 Mice

All experiments were conducted in accordance with the Nagoya
University Regulations on Animal Care and Use in Research and were
approved by the Institutional Animal Care and Use Committee,
Nagoya University (approval number R23026). Mice were group-
housed and kept under 12-h light/dark cycle (lights on at 8:00) with
food and water provided ad libitum unless otherwise noted. Wild-type
C57BL/6] mice were purchased from SLC Japan. Prkcd-cre mice
{Tg(Prkcd-glc-1/CFP,-cre)EH124Gsat; stock #011559-UCD} and
Ail4 mice {B6. Cg-Gt(ROSA)26Sor tm14(CAG-tdTomato)Hze/J;
stock #007914} were obtained from the Mutant Mouse Resource &
Research Center and the Jackson Laboratory, respectively, and were
bred on a C57BL/6] genetic background. Only male mice were used
in this study.

2.2 CORT administration

Corticosterone (27840; Sigma-Aldrich) were suspended in
corn oil (8001-30-7; Nacalai Tesque) to a concentration of 20 mg/
mL, thoroughly sonicated, and administered subcutaneously at a
dose of 40 mg/kg once daily between 10:00 and 12:00, starting at
9-10 weeks of age, according to the schedule shown in
Figure 1A. Mice treated with vehicle (VEH, corn oil) on the same
schedule were used as controls. Plasma corticosterone levels were
measured using the AssayMax Corticosterone ELISA Kit
(EC3001-1; AssayPro) according to the instructions provided.
Blood samples were collected through the inferior vena cava under
deep anesthesia with isoflurane at the time points for measurement,
and anticoagulated with sodium citrate. Subsequently, the blood
was centrifuged at 3,000 x g at 4°C for 10 min, and the supernatant
was collected as plasma.

2.3 Behavioral tests

2.3.1 Sucrose preference test (SPT)

After the last administration of corticosterone, each mouse was
single-housed and acclimated to two bottles with stainless steel sipper
tubes (SN-950H; Shinano manufacturing Co.), one containing water
and the other containing 1% sucrose solution (on day 24). Following
14 h of water deprivation, each mouse was allowed to drink freely
from two bottles, one with water and the other with 1% sucrose
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FIGURE 1
Chronic CORT administered mice exhibit depression-like symptoms. (A) Experimental timeline of chronic CORT administration, behavioral testing, and
sampling. (B) Body weight changes during chronic CORT administration (two-way RM analysis of variance, Fieracion 3. 63] = 11.87, p < 0.001; Sidak’s
post hoc tests, ***p < 0.001 at day 7 and 14, *p = 0.013 at day 21). (C) Percentage of sucrose preference in the SPT (unpaired t-test, *p = 0.049).
(D) Total moving distance during the OFT (unpaired t-test, *p = 0.029). (E) Percentage of duration in open arm during the EPM test (unpaired t-test,
p = 0421). (F) Total immobility time during the FST (unpaired t-test, *p = 0.039). (G) Plasma corticosterone level at the experimental day 30 (unpaired
t-test, p = 0419). VEH, n = 11; CORT, n = 12.

solution, from 10:00 to 12:00 (on day 26), and the weight of liquid
consumed was measured. Sucrose preference was calculated using the
following formula: Sucrose preference (%)= Weight of sucrose
solution intake/(Weight of water intake + Weight of sucrose solution
intake) x 100.

2.3.2 Open field test (OFT)

The OFT were performed as previously described (Ueda et al.,
2021). Briefly, the OF apparatus was a light gray box with dimensions
0f 40 cm x 40 cm x 30 cm, the spontaneous locomotor activities of the
mice were recorded for 10 min, and the total moving distance was
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calculated using the automatic video tracking software TimeOFCR1
(O’Hara & Co.).

2.3.3 Elevated plus maze test (EPM)

The EPM test were performed as previously described (Ueda et al.,
2021). Briefl, EPM consisted of two opposite open arms
(25cm x 5 cm x 0.3 cm) and arms
(25 cm x 5 cm x 10 cm) elevated to a height of 50 cm above the floor,
the activities of the mice were recorded for 10 min, and the time spent

two enclosed

on each arm was analyzed using the automatic video tracking software
TimeEP1 (O’'Hara & Co.).
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2.3.4 Forced swim test (FST)

In 2,000 mL glass beakers (150 mm in diameter), approximately
1,500 mL of water at a temperature of 23 to 25°C were filled, and each
mouse was allowed to swim for 6 min, which was recorded with a
video camera. Before returning to the home cages, mice were dried
gently with paper towels and warmed with heating pad for 5 min. The
analysis was performed blindly, and the time spent floating without
swimming or struggling was measured as immobility time.

2.4 Microtissue collection, RNA
purification, and cDNA preparation for
RNA-seq

Mice were euthanized by cervical dislocation immediately after
blood collection, and the brains were isolated and immediately frozen
in crushed powder dry ice. Fresh frozen brains were coronally sliced
at a 20-pm-thick using Cryostat (CM3050S; Leica), mounted on
polyphenylene sulfide Frame Slide (11600294; Leica), and immediately
dried up by air blowing. Microtissue dissection was performed using
a 110-pm-inner diameter punching needle guided by tdTomato
fluorescence under a fluorescence microscope as previously described
(Yoda et al., 2017; Ueda et al., 2021). The isolated microtissues were
dispensed into the PCR tubes filled with 99.5% ethanol and stored at
—80°C until library preparation.

RNA-seq library preparation was performed as previously
described (Yamazaki et al., 2020). Briefly, after removing the ethanol
using a vacuum evaporator, the isolated microtissues were lysed in
5.3 pL of cell lysis mixture [PKD buffer (QIAGEN): Proteinase K
(QIAGEN) = 16:1] at 56°C for 1 h, and the poly(A) RNA was purified
with the oligo dT magnetic beads (61,005; Thermo Fisher Scientific)
according to the instruction manual. The purified mRNA were directly
processed according to the Smart-seq2 protocol (Picelli et al., 2014).
PCR products were purified with 0.8 x volume of AMPure XP beads
(A63880; Beckman Coulter).

2.5 RNA-seq and data analysis

Sequencing and data analysis were conducted as previously
described (Yoda et al., 2017). The amplified cDNA (0.25 ng) was used
for the preparation of the sequencing library, using the Nextera XT
DNA library prep kit (Illumina). The libraries were sequenced with
150-bp paired-end read on an Illumina Hiseq. Adapter sequences
were trimmed off from the Raw data (raw reads) of fastq format by
flexbar (ver. 3.4.0). The resulting reads were aligned to the Ensembl
mouse reference genome (GRCm38 ver. 92) by hisat (ver. 2.1.0) with
the default parameters. The number of reads assigned to genes was
calculated using featureCounts (ver. 1.6.4). To normalize for the
differences in sequencing depth across samples, protein coding gene
counts were rescaled to counts per million (CPM) by Trimmed Mean
of M-values normalization (TMM) from edgeR. Low-expression
genes with an average fewer than 10 CPM in all subnuclei were
excluded from analysis. Principal component analysis (PCA) was
performed using the prcomp function in R software (ver. 4.5.1) with
option scale = TRUE. Differential gene expression analysis was
performed using the R/Bioconductor package edgeR (ver. 3.32.0).
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Differentially expressed genes (DEGs) between VEH and CORT
administered mice were defined as p-value < 0.01 and [log, FC| > 1.

2.6 Protein—protein interaction (PPI)
network construction

PPI networks for sets of proteins encoded by all DEGs (including
the up and downregulated DEGs) of each subnucleus were constructed
using the Cytoscape stringApp (ver. 2.0.2) (Doncheva et al., 2019) with
the following settings: network type = full STRING network; confidence
score cutoff = 0.4. DEGs (nodes) without any interaction partners
within the network are omitted from the visualization. To extract
densely interconnected regions in the networks, we used the MCODE
plugin (ver. 2.0.3) (Bader and Hogue, 2003) to find clusters with the
following settings: include loops = true; degree cutoff = 2; haircut = false;
fluff = false; node score cutoff = 0.2, max. Depth = 5, k-core = 2.

2.7 Gene ontology (GO) enrichment
analysis

The GO enrichment analyses for sets of up or downregulated
DEGs of each subnucleus were carried out and functionally grouped
GO term networks were constructed using the ClueGO (version
2.5.10)/CluePedia (ver. 1.5.10) plugins (Bindea et al., 2009) in the
Cytoscape (ver. 3.10.1) software (Shannon et al., 2003) with the
following settings: ontology source = GO_BiologicalProcess-EBI-
UniProt-GOA-ACAP-ARAP_25.05.2022, GO_CellularComponent-
EBI-UniProt-GOA-ACAP-ARAP_25.05.2022, and GO_Molecular
unction-EBI-UniProt-GOA-ACAP-ARAP_25.05.2022; evidence
codes = All_Experimental; GO term fusion = true; statistical test
used = Enrichment (Right-sided hypergeometric test); p-value
cutoff = 0.05; GO tree interval level = 4 to 8; minimum number of
genes for GO term selection = 3; minimum % of genes for GO term
selection = 0; network connectivity Kappa score cutoft = 0.4; GO
term grouping = true.

2.8 Statistics

All values were expressed as mean + s.e.m. Two-way RM analysis of
variance followed by Sidak’s multiple comparison tests or unpaired
one-tailed t-tests were performed using the GraphPad Prism software
(ver. 10). One-tailed tests were used for behavioral comparisons because
we hypothesized that chronic CORT administration should induce
depression-like behavioral changes in a specific, predicted direction.
p-values smaller than 0.05 were considered statistically significant.

3 Results

3.1 Chronic CORT administration induces
depression-like behaviors in mice

To deepen the understanding of the pathophysiology of MDD,
various rodent models have been developed, which recapitulate the
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psychological and/or physical stress exposure or reflect the
physiological changes observed in patients with depression (Wang
et al., 2017; Planchez et al., 2019). Among these, chronic CORT
administration model mimics the elevated blood glucocorticoid
concentration resulting from HPA axis activation and has been
reported to display depressive symptoms in both rats and mice
(Gregus et al., 2005; Johnson et al., 2006; Zhao et al., 2008). We first
confirmed that a single dose of CORT significantly elevated plasma
CORT
(Supplementary Figure 1). Subsequently, as shown in Figure 1A,

levels  under our  experimental  conditions
chronic CORT administration was initiated at 9-10 weeks of age and
continued daily for 24 days, followed by an evaluation of depression-
like symptoms. During the 24-day administration period, mice treated
with vehicle (VEH) displayed a gradual increase in body weight,
whereas CORT-treated mice exhibited suppressed weight gain
(Figure 1B). In behavioral experiments, CORT-treated mice exhibited
a decrease in sucrose preference in the SPT, indicative of anhedonia,
areduction in spontaneous locomotor activity in the OFT, suggesting
reduced mobility and lethargy, and an increase in immobility time
during the FST, indicative of despair-like behavior (Figures 1C,D,F).
On the other hand, no significant differences were observed in
anxiety-related behavior in the EPM test (Figure 1E). Taken together,
these physical and behavioral alterations demonstrate that our chronic
CORT-administered mouse model exhibit the face validity as a
model of MDD.

3.2 Subnucleus-specific transcriptomic
changes following chronic CORT exposure

The amygdala is a central brain region that plays a critical role in
the emotional processing such as fear and anxiety in response to
external stimuli. It is located upstream of the paraventricular nucleus
of the hypothalamus and is involved in the activation of the HPA axis,
thus playing a significant role in the stress response (Feldman and
Weidenfeld, 1998; Herman et al., 2003; Sah et al., 2003; Roozendaal
et al., 2009; Janak and Tye, 2015). Glucocorticoids released by the
activation of the HPA axis act on both mineralocorticoid and
glucocorticoid receptors in the amygdala, providing a concentration-
dependent feedback mechanism that modulates amygdala activity
(Herman et al., 2005). Consistently, recent studies have reported
abnormalities in the activity and connectivity of the amygdala in
patients with depression, strongly suggesting a relevance between
depression symptoms and dysregulation of amygdala functions
(Drevets, 2001; Ressler and Mayberg, 2007; Price and Duman, 2019).
However, the amygdala is not a single functional unit. When the
central extended amygdala, which encompasses the CeA and the
lateral part of the BNST (BNSTL), is included, it consists of numerous
subnuclei that are further interconnected through intra- and inter-
subnuclear circuits (Fox et al., 2015; Lebow and Chen, 2016). The
molecular mechanisms underlying depression within these amygdala
subregions remain poorly understood due to this anatomical and
functional complexity.

To unravel the molecular responses occurring in the amygdala
with such complex subnuclear organization, we previously
established a microdissection punching system with a punching
needle (inner diameter of 110 pm) under a fluorescence microscope,
enabling subnucleus-targeted tissue collection and RNA extraction
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from small tissue samples. We then conducted RNA-seq analysis and
successfully captured the transcriptome profiles of each subnucleus
(Yoda et al., 2017; Yamazaki et al., 2020; Ueda et al., 2021). Using the
same approach, we analyzed gene expression profiles in five
amygdala-associated subnuclei—BLA, CeL, CeM, BNSTov, and
BNSTfu—following chronic CORT administration, using three
biological replicates per group (VEH: n=3, CORT: n=23)
(Figures 2A,B, and Supplementary Figure 2A). These subnuclei were
selected based on their known involvement in emotional processing
and stress-related circuits. For precise subnuclei-targeted tissue
collection in this method, we utilized Prkcd-cre; Ail4 mice, in which
PKCS8+ neurons were labeled with tdTomato fluorescence. This
allowed us to identify the CeL and BNSTov, where PKC8+ neurons
are abundant, and the CeM and BNSTfu, which receive abundant
axonal projections from PKC8+ neurons (Dong et al., 2001b; Ueda
et al., 2021). Similar to wild-type mice, Prkcd-cre; Ail4 mice also
exhibited suppressed body weight gain and depression-like behaviors
CORT
(Supplementary Figures 2B-D). Since tissue collection was

following chronic administration
performed 6 days after the final CORT administration, when plasma
CORT concentrations had decreased to levels comparable to or
lower than those in the VEH group (Figure 1G and
Supplementary Figure 2E), it is likely that the direct effects of CORT
on gene expression profiles were minimized at the time of sampling.
This delayed collection was intentional, as our study aimed to
investigate transcriptional changes accompanying established
depression-like phenotypes induced by chronic stress exposure,
rather than to assess transient pharmacological responses to CORT.

3.3 Each amygdala-related subnucleus
displayed distinct gene expression
responses to chronic CORT administration

Principal component analysis (PCA) of the RNA-seq data revealed
that samples from each amygdala-related subnucleus formed separate
clusters, indicating both the high precision of our subnucleus-targeted
tissue collection and the robustness of the resulting molecular
profiling (Supplementary Figure 3A). Moreover, consistent with our
previous findings (Ueda et al., 2021), PCA revealed overall molecular
similarities in gene expression profiles between CeL and BNSTov, as
well as between CeM and BNSTfu. Next, from the results of RNA-seq,
we identified differentially expressed genes (DEGs) between VEH and
CORT administered mice (defined as p-value < 0.01 and |log, FC| > 1)
in each of the five subnuclei. As a result, 154 upregulated and 123
downregulated DEGs in the BLA, 34 upregulated and 80
downregulated DEGs in the CeL, 54 upregulated and 65 downregulated
DEGs in the CeM, 17 upregulated and 66 downregulated DEGs
in the BNSTov, and 77 upregulated and 51 downregulated DEGs
in the BNSTfu were extracted,
Supplementary Figures 3B-F, and Supplementary Table 1). Further

respectively (Figure 2C,

examination of overlapping DEGs across subnuclei revealed minimal
commonalities. Only four genes were shared among upregulated
DEGs: one between the CeL and BNSTov (Egr2), two between the
CeM and BNSTov (Arsk and Nr4al), and one between the CeM and
BNSTfu (Kcnfl). Among downregulated DEGs only two genes were
shared: one between the BLA and CeL (F3), and another between the
CeL and CeM (Ttn) (Figure 2C). These findings suggest that chronic
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FIGURE 2
Overview of RNA-seq and DEGs in chronic CORT administered mice. (A) Schematic diagram of the experimental workflow, from brain sampling to
RNA-seq analysis. (B) Schematic brain atlas illustrations showing the eight collection points across five amygdala-related subnuclei obtained via
micropunching needle. (C) Venn diagram showing the overlap of upregulated and downregulated DEGs across the five amygdala-related subnuclei.
(D) Scatterplots representing the averaged CPM fold changes between VEH and CORT for DEGs exclusively in the CelL (red), exclusively in the BNSTov
(blue), shared in the Cel and the BNSTov in same direction (green), and shared in the Cel and the BNSTov in opposite direction (yellow). Numbers in
parentheses indicate the number of DEGs in each category.
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CORT administration induces specific molecular responses in each
amygdala subnucleus.

Given our previous report demonstrating the high similarity in
the basal gene expression profiles between the CeL and BNSTov, but
distinct gene expression responses following the stressful condition of
fear conditioning (Ueda et al., 2021), we hypothesized that these
regions might exhibit differential transcriptional responses to external
stimuli. We visualized the magnitude and direction of gene expression
changes induced by chronic CORT administration using scatter plots.
Interestingly, most BNSTov-specific DEGs (blue) clustered near the
line of symmetry (y = x) in the CeL plot, indicating that these genes
were not differentially expressed in the CeL under CORT treatment.
Similarly, most CeL-specific DEGs (red) also showed little variation
in the BNSTov plot. Notably, while only one gene (Egr2) showed
concordant upregulation in both regions (green), we identified four
genes (Plp1, Mal, Opalin, and Thal) that exhibited opposite regulation
between the CeL and BNSTov (yellow).

Taken together, these findings underscore the complex and
region-specific transcriptional adaptations in response to chronic
CORT exposure in the amygdala-related subnuclei. In order to gain
deeper insights into distinct biological alterations in each subnucleus,
we performed protein—protein interaction (PPI) network analysis and
gene ontology (GO) enrichment analysis on the identified DEGs in
each amygdala-related subnucleus. The detailed results for each region
are presented in the following subsections.

3.4 BLA: implications of altered excitatory—
inhibitory synaptic balance following
chronic CORT exposure

The BLA is a central hub for integrating affective, sensory, and
cognitive information by possessing reciprocal connections with
the prefrontal cortex, sensory cortices, and hippocampus. Through
these connections, the BLA contributes to the emotional learning
and stress regulation (Zhang et al., 2021). It also serves as a major
upstream nucleus to the central extended amygdala including the
CeA and BNSTL, a key output region of the amygdala involved in
emotional expression. Protein-protein interaction (PPI) network
analysis was performed on the DEGs extracted in the BLA using the
Cytoscape stringApp (Doncheva et al., 2019), and clustering
analysis was conducted with the MCODE plugin (Bader and Hogue,
2003). This analysis revealed eight distinct clusters within the
network (Supplementary Figure 4A and Supplementary Table 2).
The largest cluster (29 DEGs, nodes outlined in green) consisted
mainly of ribosomal proteins, all of which were upregulated. The
second-largest cluster (13 DEGs, nodes outlined in magenta)
comprised genes involved in the oxidative phosphorylation
pathway, with most showing increased expression. The third-largest
cluster (13 DEGs, nodes outlined in orange) contained genes
associated with synaptic function and the Ras/MAPK signaling
pathway. Notably, among the synapse-related genes, those involved
in inhibitory transmission, such as Gadl, Gad2, and Sic6al, were
downregulated, while excitatory synapse-associated genes,
including Grinl, Nrxn2, and Cacnala, were upregulated, indicating
altered excitatory-inhibitory synaptic balance. Subsequently, GO
enrichment analysis was conducted separately for the upregulated
and downregulated DEGs using the ClueGO plugin in Cytoscape
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(Bindea et al,, 2009). Consistent with the PPI findings, the
upregulated DEGs were significantly enriched for GO terms related
to ribosomal function and synaptic transmission (Figures 3A,B,
Supplementary Figure 4B, and Supplementary Table 3). In contrast,
the downregulated DEGs were significantly associated with GO
terms linked to ion transporter activity and axonal regulation
3G,D,
Supplementary Table 3). These findings suggest that chronic CORT

(Figures Supplementary Figure 4C, and
administration induces transcriptional changes in the BLA,
including upregulation of ribosomal biogenesis, mitochondrial
energy production, and synaptic remodeling, potentially shifting

the excitatory-inhibitory balance in emotional processing circuits.

3.5 CeL: implication of enhanced
oligodendrocyte differentiation and
myelination following chronic CORT
exposure

Subsequent analysis was conducted on the DEGs extracted in the
CeL. The CeL is a subdivision of the CeA and serves as a major target
of input from the BLA as well as from external and internal sensory
pathways (Gilpin et al., 2015). It plays a critical role in the expression
of emotional and stress-related responses by projecting either directly
or via the CeM to brainstem and hypothalamic regions (Moscarello
and Penzo, 2022). PPI network analysis revealed a cluster (five DEGs,
nodes outlined in green) comprising genes associated with
myelination, such as Opalin, Mal, and PipI, all of which were
upregulated (Figure 4A and Supplementary Table 2). Consistent with
this, GO analysis of the upregulated DEGs identified terms related to
myelination and glial cell differentiation (Figures 4B,C, and
Supplementary Table 3). In contrast, GO analysis of the downregulated
DEGs revealed terms related to regulation of cell fate specification
(Figures 4D,E, and Supplementary Table 3). Notably, WntI1, one of
the DEGs annotated with this GO term, is a component of the Wnt/f-
catenin signaling pathway, which is known to suppress
oligodendrocyte differentiation (Shimizu et al., 2005; Ye et al., 2009).
Taken together, these findings suggest that chronic CORT
administration promotes oligodendrocyte differentiation and myelin
formation in the CeL.

3.6 CeM: transcriptional changes
suggesting altered peptidergic signaling
following chronic CORT exposure

The CeM is another subdivision of the CeA, located medially
to the CeL, and is the main output subnucleus of the amygdala,
regulating behavioral responses to stress and fear (Gilpin et al.,
2015). Among the clusters identified through PPI analysis for
DEGs in the CeM, the second-largest cluster (five DEGs, nodes
outlined in magenta) consisted of peptide hormones and their
receptors, including Npy5r, Sst, Pdyn, Penk, and Cartpt, all of
which were upregulated (Figure 5A and Supplementary Table 2).
Consistent with this finding, GO analysis (Figure 5B-E) about the
upregulated DEGs revealed terms associated with response to
peptide hormone and G protein-coupled receptor signaling
pathway (Figures 5B,C, and Supplementary Table 3). Because the
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associated with each term, dot color indicates GeneRatio, and the x-axis shows p-values. GO terms with p < 0.01 are shown in order of significance.
The complete dot plots of GO terms with p < 0.05 are provided in Supplementary Figures 4B,C.
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CeM contains a diverse population of peptide-producing neurons,
which communicate with downstream targets through peptidergic
transmission (Wang et al., 2023), these results suggest that chronic

stress may enhance peptidergic signaling, potentially modulating

CeM output to hypothalamic and brainstem effectors involved in

emotional and neuroendocrine control.
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3.7 BNSTov: attenuation of
myelination-related gene expression
following chronic CORT exposure

The BNSTL is anatomically continuous with the CeA, and is

considered a core component of the central extended amygdala.
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Gene expression changes in the CeM of the mice subjected to chronic CORT administered. (A) PPl network of all DEGs extracted from the CeM,
visualized using the Cytoscape stringApp. Each node represents a DEG, with red indicating upregulation and blue indicating downregulation; the color
intensity reflects the magnitude of log, FC. Edge thickness represents the STRING confidence score for interactions. Nodes outlined in color indicate
clusters identified by the MCODE plugin (see Supplementary Table 2). (B—E) GO enrichment analysis of DEGs using the ClueGO plugin. Panels (B,D)
show enrichment networks for upregulated and downregulated DEGs, respectively. Large, outlineless nodes represent GO terms, where node size
corresponds to statistical significance (p-value), node color indicates GO term category, and bold labels denote the most significant term within each
category (see Supplementary Table 3). Small, black-bordered nodes represent DEGs associated with each GO term, with gene names displayed in red
italics. Panels (C,E) are dot plots summarizing GO results for (B,D), respectively. Dot size reflects the number of DEGs associated with each term, dot
color indicates GeneRatio, and the x-axis shows p-values. GO terms with p < 0.05 are shown in order of significance.
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Through dense reciprocal neural connections, the BNSTL and CeA
are thought to function in a cooperative and complementary manner
(Dong et al., 2001b; Fox et al., 2015). The BNSTov is a subdivision of
the BNSTL and is known to share similar cellular composition and
molecular properties with the CeL (Fox et al., 2015; Ueda et al., 2021).
PPI analysis of DEGs extracted from the BNSTov revealed that the
largest cluster (nine DEGs, nodes outlined in green) consisted of
various well-known myelin-related genes, including Opalin, Mag,
Cldnll, Mog, Mal, Gjc2, Mobp, Mbp, and Plp1, all of which were
downregulated (Figure 6A and Supplementary Table 2). As shown in
Figures 2D, 4A, several of these genes were also identified as
upregulated DEGs in the CeL, indicating that these genes are regulated
in the opposite direction in the two subnuclei. The second-largest
cluster (three DEGs, nodes outlined in magenta) consisted of Egr4,
JunB, and Nr4al, all classified as immediate early genes, and all of
which were upregulated. Consistent with these results, GO enrichment
analysis of the upregulated DEGs highlighted terms associated with
transcriptional regulation, while the downregulated DEGs were
enriched for terms related to myelination and oligodendrocyte
differentiation (Figures 6B-E and Supplementary Table 3). These
findings suggest that the BNSTov and CeL may undergo region-
specific and opposing transcriptional regulation in response to
chronic stress, particularly in pathways related to oligodendrocyte
differentiation and myelination.

3.8 BNSTfu: implications of enhanced
astrocyte differentiation following chronic
CORT exposure

The BNSTfu is also a subdivision of the BNSTL and receives dense
projections from the BNSTov as well as from the CeA (Dong et al.,
2001b). We have previously reported that the BNSTfu shares
molecular properties similar to those of the CeM (Ueda et al., 2021).
PPI analysis of DEGs identified in the BNSTfu revealed four clusters.
The largest cluster (six DEGs, nodes outlined in green) included
Anxa2 and Vim, known markers of reactive astrocytes, as well as
Ptprb, Mmrn2, and Eng, which are markers of vascular endothelial
cells. The fourth-largest cluster (three DEGs, nodes outlined in purple)
consisted of modifier and regulatory subunits of voltage-gated
potassium channels, including Kcngl, KenfI, and Kenabl (Figure 7A
and Supplementary Table 2). GO analysis of the upregulated DEGs
revealed significant enrichment of GO terms related to angiogenesis,
interleukin-6 (IL-6) signaling, ion transporters, and synaptic vesicle
function (Figures 7B-E and Supplementary Table 3). These findings
suggest that, in the BNSTfu, chronic CORT administration promotes
differentiation into reactive astrocytes through IL-6-mediated
mechanisms, and further imply that changes in vascular structure and
synaptic properties may also be occurring.

4 Discussion

In this study, we investigated the transcriptional alterations
induced by chronic CORT administration across distinct subnuclei of
the amygdala. By combining a high-precision 110-pm diameter size
microdissection punching system with RNA-seq, we successfully
identified subnucleus-specific transcriptional changes. Importantly,
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that each subnucleus exhibited unique

transcriptional alterations in response to chronic CORT exposure,

we demonstrated
emphasizing the molecular heterogeneity of stress response within the
amygdala and the necessity of anatomically resolved analyses to
understand the molecular pathophysiology of stress-related disorders.

To model depressive symptoms, we employed the chronic CORT
administration model, which mimics sustained activation of the HPA
axis observed in patients with MDD (Nestler et al., 2002). While other
stress-based models—such as chronic social defeat stress,
unpredictable chronic mild stress, and chronic pain—are also widely
used, these paradigms often introduce variability due to the difficulty
in controlling stress intensity uniformly. Moreover, sensory stimuli
inherent to some models (e.g., pain or physical aggression) may
directly influence brain activity independent of HPA axis activation,
making it difficult to dissociate from stress-induced effect. In contrast,
the chronic CORT model enables controlled, reproducible activation
of the HPA axis without sensory pathway interference. Notably,
CORT-treated mice in this study did not exhibit anxiety-like
behaviors, suggesting that behavioral phenotypes vary with the trait,
intensity, and duration of stress exposure. Further studies applying
similar gene expression analyses to other depression models will
be essential to clarify how molecular changes relate to behavioral
phenotypes across different stress contexts.

We chose a microdissection punching method for transcriptomic
profiling due to its ability to isolate specific amygdala subnuclei with
high anatomical precision. Our previous work demonstrated that this
approach reliably captures molecular signatures at the subnucleus level
(Yoda et al., 2017; Yamazaki et al., 2020; Ueda et al., 2021). In contrast,
gene expression analyses at the whole-brain or brain-region level may
drop subnucleus-specific changes due to signal dilution. While single-
cell transcriptomics has made great advances recently, comprehensive
gene expression profiling with preserved spatial information remains
technically challenging, especially for genes with low expression levels.
Thus, combining our high-resolution dissection-based techniques
with emerging single-cell or spatial transcriptomic approaches may
offer complementary insights across multiple scales.

In the BLA, we observed gene expression changes indicative of a
shift in the excitatory-inhibitory (E/I) balance, characterized by
downregulation of inhibitory synapse-associated genes and upregulation
of excitatory ones. This aligns with previous reports showing BLA
hyperactivity in both animal models of depression and human patient
studies (Drevets, 2003; Becker et al., 2023; Asim et al., 2024a). Notably,
alterations in specific inhibitory neuronal populations within the BLA
have been implicated in the emergence of depression- and anxiety-like
behaviors (Asim et al., 2024b). These findings support the notion that
the transcriptional alterations we observed—particularly those
indicating reduced inhibitory synaptic components—may contribute to
circuit-level E/I imbalance, leading to behavioral changes. Moreover,
increased expression of ribosomal protein genes may reflect enhanced
protein synthesis necessary for dendritic and synaptic remodeling,
which has been observed in the BLA under chronic stress. Genes
involved in oxidative phosphorylation were also upregulated, potentially
representing an adaptive response to heightened metabolic demands
accompanying elevated neural activity and protein synthesis (Hall et al.,
2012; Rumpf et al., 2023). Although these findings suggest functional
changes such as altered synaptic plasticity and increased metabolic
activity, it is important to note that these interpretations are predictions
based on transcriptomic data. Future studies incorporating functional
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FIGURE 6
Gene expression changes in the BNSTov of the mice subjected to chronic CORT administered. (A) PPl network of all DEGs extracted from the BNSTov,
visualized using the Cytoscape stringApp. Each node represents a DEG, with red indicating upregulation and blue indicating downregulation; the color
intensity reflects the magnitude of log, FC. Edge thickness represents the STRING confidence score for interactions. Nodes outlined in color indicate
clusters identified by the MCODE plugin (see Supplementary Table 2). (B—E) GO enrichment analysis of DEGs using the ClueGO plugin. Panels (B,D)
show enrichment networks for upregulated and downregulated DEGs, respectively. Large, outlineless nodes represent GO terms, where node size
corresponds to statistical significance (p-value), node color indicates GO term category, and bold labels denote the most significant term within each
category (see Supplementary Table 3). Small, black-bordered nodes represent DEGs associated with each GO term, with gene names displayed in red
italics. Panels (C,E) are dot plots summarizing GO results for (B,D), respectively. Dot size reflects the number of DEGs associated with each term, dot
color indicates GeneRatio, and the x-axis shows p-values. GO terms with p < 0.05 are shown in order of significance.
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intensity reflects the magnitude of log, FC. Edge thickness represents the STRING confidence score for interactions. Nodes outlined in color indicate
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analyses, such as electrophysiological recordings, will be necessary to
validate whether these transcriptional changes are indeed associated
with functional alterations. Additionally, recent studies have revealed
that BLA neurons exhibit considerable genetic and spatial heterogeneity,
with their different subpopulations playing distinct roles (O'Leary et al.,
2020; Lim et al., 2024). This spatially heterogenous organization suggests
that discrete neuronal ensembles within the BLA may contribute to
specific aspects of stress-related behavior and responses. Our
subnucleus-level transcriptomic approach, while anatomically broader
than cell-type-specific profiling, provides complementary information
by capturing the aggregate molecular adaptations within each
anatomically defined subregion. Integrating such fine-scale cellular
heterogeneity with subnucleus-level gene expression changes in future
studies could yield a more comprehensive understanding of BLA
functional organization in stress-related disorders.

Interestingly, we identified distinct patterns of glial cell responses
across subnuclei. We found that myelin-related gene expression changed
in opposite directions in the CeL and BNSTov. In the CeL, chronic
CORT administration led to upregulation of genes associated with
oligodendrocyte differentiation and myelination. This finding is
consistent with our previous reports of gene expression changes in the
CeL following fear conditioning (Ueda et al., 2021), suggesting that
stress-related stimuli can promote myelination in this subnucleus. In
contrast, the BNSTov, which shares similar constitutive molecular
profiles with the CeL at the basal level (Ueda et al., 2021), exhibited
downregulation of the same myelin-related genes. These opposing
patterns suggest that these subnuclei are differentially engaged in the
response to chronic stress, and that myelin regulation may be circuit-
selective, potentially modulating specific input/output pathways in a
regionally targeted manner. Again, these interpretations are predictive
based on molecular signatures, and functional consequences should
be confirmed experimentally. Supporting evidence from previous
literature, however, suggests that activity-dependent myelination is a
plausible downstream effect of the observed gene expression changes
(Lee and Fields, 2009; Bonetto et al., 2021). Future investigations are
needed to determine which circuits are selectively myelinated or
demyelinated in response to chronic stress.

Furthermore, in the BNSTfu, we found increased expression of
genes associated with reactive astrocytes and vascular remodeling.
Reactive astrocytes are known to contribute to neuroprotection,
synaptic remodeling, and inflammatory responses (Chung et al., 2015;
Becerra-Calixto and Cardona-Goémez, 2017; Ding et al., 2021; Lawrence
etal, 2023; Zhao et al., 2024). Together with the observed changes in
oligodendrocyte/myelin-related genes in the CeL and BNSTov, our data
suggest that diverse glial cell responses occur in a subnucleus-specific
manner across the central extended amygdala. Such glial plasticity may
contribute to circuit-level adaptations under chronic stress and could
represent novel targets for diagnostic and therapeutic interventions.

Several limitations of this study should be noted. Although
we achieved high-precision spatial transcriptome profiling at the
subnucleus scale across anatomically defined regions, we did not
directly assess corresponding functional or morphological changes,
such as synaptic activity, circuit connectivity, or glial types and
morphology. Validation of transcriptomic findings using RT-qPCR, in
situ hybridization, or protein expression analysis is important but was
not performed in this study. Follow-up research to validate expression
changes of key DEGs and to assess their functional consequences
remains to be conducted in future studies. Additionally, sex differences
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were not explored in this study but are known to influence both HPA
axis function and stress susceptibility. Expanding this work to include
female animals and to various stress models will be essential for a more
comprehensive understanding of stress-related brain pathophysiology.
Furthermore, although minimal overlap was observed in DEGs across
subnuclei, chronic CORT exposure may affect coordinated
transcriptional networks that are not detectable by differential
expression analysis alone. While this study focused on subregion-
specific DEGs, future investigations employing coexpression-based
approaches could provide additional insight into shared or interacting
molecular programs across the amygdala subregions.

In conclusion, our study highlights the importance of anatomically
resolved molecular analyses in uncovering the subnucleus-specific
responses to chronic stress. By integrating region-specific
transcriptomics with behavioral phenotyping, we advance toward
identifying the molecular substrates underlying stress-induced
behavioral alterations with refined resolution, which may inform

future strategies for the diagnosis and treatment of affective disorders.
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