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The gut-brain axis is emerging as a key player in Parkinson’s disease (PD), with
growing attention on how the gut microbiome (GM) shapes microglial activity,
a central driver of neuroinflammation and dopaminergic loss. GM dysbiosis,
characterized by reduced beneficial microbes and increased proinflammatory
taxa, can compromise intestinal barrier integrity, activate systemic immunity,
and prime microglia toward a proinflammatory state, potentially facilitating a-
synuclein misfolding and propagation from gut to brain. Preclinical studies reveal
that probiotics can rebalance microbial communities, enhance short-chain fatty
acid production, reinforce intestinal barrier integrity, and modulate immune
responses, effects collectively linked to reduced microglial reactivity, lower a-
synuclein aggregation, and improved motor outcomes in PD models. Human
trials of probiotic supplementation in PD, primarily investigating gastrointestinal
and non-motor symptoms, suggest potential benefits for systemic inflammation
and neuroimmune signaling, though direct evidence of central microglial
modulation is limited. By synthesizing animal and clinical data, this review
underscores both the therapeutic promise of probiotics and identifies current
gaps in leveraging microbiota-based interventions as non-invasive, disease-
modifying strategies for PD.
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1 Introduction

The human microbiome is a dynamic ecosystem composed of tens of trillions of
microorganisms, the majority of which reside in the gastrointestinal (GI) tract, collectively
forming the gut microbiome (GM) (Bidell et al., 2022; Sender et al., 2016). Initially
recognized for metabolic and digestive roles, the GM influences additional physiological
processes such as immune system development and brain function, impacting cognition
and neural activity through the gut-brain axis (GBA) (Sanz et al., 2025; Zhang et al., 2025).

Of the GBA’s various communication pathways, one connection of increasing interest
is the influence of the GM on microglia, the brain’s resident immune cells. Microglia
are critical regulators of brain health. They sculpt neural circuitry and prune synapses
especially during development, and throughout life they continuously survey the central
nervous system (CNS) for signs of injury or infection (Augusto-Oliveira et al., 2019; Prinz
et al., 2019; Thion et al., 2018a). Importantly, microglia regulate neuroinflammation—
a CNS immune response involving glial cells, the release of inflammatory mediators,
and the synthesis of reactive oxygen species (ROS) and nitric oxide (NO) in response
to trauma, infection, or neurodegenerative disease (Adamu et al., 2024). Research has
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revealed that microglial development, maturation, and reactivity
(marked by upregulation of inflammatory markers and
morphological changes such as thicker processes and amoeboid-
shaped soma) are governed not solely by local CNS signals but
also by cues originating in the gut such as short-chain fatty acids
(SCFAs) which are vital microbial metabolites produced by gut
bacteria through the fermentation of dietary fibers (Abdel-Haq
et al,, 2019; Cao et al., 2025; Jurga et al., 2020; Mallick et al., 2024;
Silva et al., 2020).

Given their central role in neural health, microglia are
increasingly implicated in neurodegenerative diseases such as
Parkinson’s disease (PD) (Bloem et al., 2021; Gao et al.,, 2023).
PD, a progressive disorder projected to more than double by 2050,
is influenced by increasing age and sex, with men consistently
being at higher risk (Ben-Shlomo et al., 2024; Ou et al., 2021).
Characterized by both motor symptoms (bradykinesia, resting
tremor, rigidity, postural instability) and prodromal non-motor
symptoms (constipation, cognitive impairment, depression), PD
results from the pathogenic loss of dopaminergic neurons in
the midbrain (substantia nigra pars compacta) and the toxic

Abbreviations: aSyn, alpha-synuclein; ASO, alpha-synuclein overexpressing;
SN, substantia nigra; GM, gut microbiome; SCFA, short-chain fatty acid;
LPS, lipopolysaccharide; DA, dopamine; OHDA, 6-hydroxydopamine; GLP-
1, glucagon-like peptide-1; CNS, central nervous system; RCT, randomized

controlled trial; IFNy, interferon gamma; IL, interleukin.
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accumulation of misfolded alpha-synuclein (aSyn) in Lewy bodies
(Bloem et al., 2021; Bras and Outeiro, 2021). Neuroinflammation,
particularly from chronically dysregulated microglia, plays a central
role in PD progression and genome-wide association studies
further implicate microglia by identifying PD risk variants enriched
in microglial genes, such as LRRK2, HLA-DRBS5, and CD33
(Gelders et al., 2018; Guillot-Sestier and Town, 2018; Masuda et al.,
2020; Tansey and Romero-Ramos, 2019).

Probiotics, live microorganisms that can confer health benefits,
have gained interest as GBA modulators (Bi et al., 2023; Rosas-
Sanchez et al., 2025). By alleviating microbiota dysbiosis (reduced
microbial diversity and/or overgrowth of harmful bacteria) and
increasing beneficial microbial metabolites, such as SCFAs like
butyrate, probiotics may influence microglia by modulating
peripheral immune signals, blood-brain barrier (BBB) integrity,
and inflammatory microglial gene expression (Alagiakrishnan
et al., 2024; Bi et al, 2023). In animal models, specific probiotic
strains may even reduce microglial reactivity and proinflammatory
cytokines in the brain, highlighting their potential to mitigate
neuroinflammatory pathways in neurological diseases (Parra et al.,
2023; Sun et al., 2021; Tsao et al., 2024).

PD represents a compelling case to explore the probiotic-
microglia influence given its rising global incidence, prevalent
prodromal gut-related symptoms, and largely idiopathic
nature. Thus, this mini review synthesizes current evidence
linking probiotic interventions to microglial modulation in
PD, highlighting emerging therapeutic possibilities within
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the GBA. Given limited human studies in this area, findings
from mammalian models are also considered to provide a
comprehensive overview and guide future preclinical and clinical
research directions.

2 Gut-brain mechanisms of
communication

The human gut harbors an incredibly diverse community of
bacteria, fungi, parasites, viruses and protozoa that form the GM
and contribute to the synthesis of bioactive compounds such
as SCFAs, neurotransmitters, tryptophan metabolites, and select
vitamins, all essential to host physiology (Pedroza Matute and
Iyavoo, 2023; Thursby and Juge, 2017). Microbiota homeostasis
is critical for both GM and host health (Khalil et al., 2024).
While considerable inter-individual variation exists, research has
attempted to identify common microbial patterns associated with
health and disease (Pedroza Matute and Iyavoo, 2023). For
instance, physiological stress has been correlated with decreased
Lactobacilli spp., and reduced Faecalibacterium prausnitzii has
been found in patients with Crohn’s disease (Bhattarai et al,
2017; Sokol et al., 2008). Unfortunately, no universally consistent
microbial signature has been established as a reliable biomarker
for disease. This is likely due to the GM’s dynamic, complex
nature which is shaped by many factors such as diet, environment,
genetics, and lifestyle, ultimately complicating causal inferences
(Duvallet et al., 2017; Lloyd-Price et al., 2016).

The GBA is a widely studied model for understanding how
microbiota shifts influence CNS health. Communication along this
axis occurs in a multifaceted manner with three key mechanisms
mediating the GM’s impact on the brain: immune modulation
by microbial products such as SCFAs and lipopolysaccharides
(LPS), neural signaling via the vagus nerve, and direct action
of microbial metabolites (Fung et al., 2017; Sharon et al., 2016).
SCFAs, butyrate being the most well studied, modulate microglial
activity and promote anti-inflammatory states, while microbial
tryptophan metabolites influence serotonergic signaling and CNS
immune tone (Abdel-Haq et al., 2019; O’Mahony et al., 2015). LPS,
an outer membrane component of Gram-negative bacteria, can
enter systemic circulation during dysbiosis, activating peripheral
immunity and promoting neuroinflammation and microglial
priming (Banks, 2015; Zhao et al, 2017). Finally, the vagus
nerve provides a direct gut-brain conduit, with subdiaphragmatic
vagotomy eliminating behavioral and neurochemical effects of
certain probiotics in mice, underscoring its role in transmitting
microbial signals (Bravo et al., 2011; Carabotti et al., 2015; Zhang
et al.,, 2020). Notably, this communication is bidirectional: the GM
influences brain function, while neurological and psychological
states, via stress hormones and autonomic signaling, shape the gut
environment (Shekarabi et al., 2024).

Among the many CNS components influenced by gut-derived
signals, microglia act as a key interface between the gut and
the brain. Beyond synaptic remodeling, immune surveillance,
and neuroinflammatory responses, evidence from emerging
mammalian and human studies suggest that GM-derived signals
shape microglial maturation and function, in health and disease
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(Abdel-Haq et al, 2019; Thion et al, 2018b). In germ-free
(GF) mice—raised without a gut microbiota—microglia develop
abnormally, with altered morphology, gene expression, and
impaired immune responses. Interestingly, these deficits can be
partially reversed by colonization with a conventional microbiota
or supplementation with SCFAs, suggesting that gut-derived signals
are not merely permissive but actively instructive for proper
microglial function (Abdel-Haq et al., 2019; Erny et al., 2015).

3 The role of microglia across
development and adulthood

Microglia are highly specialized immune cells that enter the
CNS early in embryonic development and persist as resident cells
throughout life (Prinz et al, 2019). Originating from yolk sac
progenitors, they populate the brain prior to the formation of
the BBB and continuously survey the CNS microenvironment
(Prinz et al,, 2019; Tay et al, 2017). In addition to maintaining
homeostasis, supporting neuronal development and synaptic
pruning, microglia are dynamic integrators of peripheral signals,
including those from the GM (Wang et al., 2018). Their capacity
to respond adaptively to both endogenous and exogenous stimuli
allows microglia to maintain CNS health under physiological
conditions and mount appropriate responses to injury or disease
(D’Alessandro et al., 2022; Salter and Stevens, 2017).

Neuroinflammation is a common feature across many
neurodegenerative disorders, including PD. In this context,
microglia are considered as key orchestrators. When exposed
to stimuli such as misfolded proteins like aSyn, environmental
toxicants, systemic inflammation, or foreign microbial metabolites,
microglia can shift into a proinflammatory phenotype (Gao
et al., 2023; Perry and Teeling, 2013). This is characterized by
increased expression of surface receptors (e.g., Toll-like receptor
4 (TLR4)), production of proinflammatory cytokines (IL-1B,
TNF-a, IL-6), and generation of ROS and NO, contributing to
oxidative stress and neuronal injury (Franklin et al, 2021; Gao
et al, 2023). Although acute inflammation aids in repair and
pathogen clearance, chronic or inappropriate microglial reactivity
can exacerbate neuronal damage (Gao et al, 2023; Ransohoff,
2016).

Importantly, microglia do not operate in isolation. Their
inflammatory responses and physiological activities can be shaped
by systemic factors, including signals from the GM. As shown
in GF mice, microglia exhibit altered morphology and impaired
immune responses, effects that can be partially rescued by microbial
colonization or SCFA supplementation, supporting the critical
role of the GM in neuroimmune homeostasis (Caetano-Silva
et al., 2023; Dalile et al., 2019; Erny et al, 2015). Human and
translational studies further link gut microbial alterations with
changes in neuroinflammatory tone and microglial reactivity across
neurological disorders (Morais et al., 2021).

The responsiveness of microglia to microbial signals positions
them as a cellular interface of the GBA, allowing gut-derived factors
to influence CNS inflammation (Diaz Heijtz, 2016; Sampson and
Mazmanian, 2015). In diseases like PD, where chronic microglial
reactivity and neuroinflammation are prominent, understanding
upstream modulators of microglial function, including the GM,
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may offer new therapeutic avenues (Wang et al., 2018). As such,
microglia represent not only a pathological hallmark but also a
potentially modifiable target within the GBA, especially through
interventions like probiotics that aim to correct gut dysbiosis and
reduce neuroinflammatory signaling (Zhu et al., 2024).

4 Consequences of gut dysbiosis in
Parkinson'’s disease

4.1 Gut dysbiosis, barrier dysfunction, and
microglial reactivity in Parkinson’s disease

GI dysfunction, particularly constipation, is common in the
prodromal phase of PD, suggesting a role for the gut in disease
onset. In PD, proinflammatory microbial imbalances are thought
to compromise gut barrier integrity, alter metabolite production,
and disrupt immune signaling, with downstream consequences
for CNS function (Cryan et al, 2019; Nie and Ge, 2023).
Evidence from animal models supports this link: transplants from
PD patients into GE aSyn-overexpressing (ASO) mice worsen
motor deficits and drive microglia toward a proinflammatory
state (Cryan et al,, 2019; Sampson et al., 2016). In humans,
sequencing and metagenomic studies in patients with PD revealed
decreased abundance of SCFA-producing genera and increases in
proinflammatory taxa (Boktor et al., 2023; Pavan et al, 2023).
Across geographically diverse cohorts, these shifts point toward
a reproducible dysbiotic signature that may actively contribute
to PD pathogenesis, potentially through microglial priming and
promoting neuroinflammation.

A key consequence of gut dysbiosis is impaired intestinal
barrier integrity. Loss of SCFA-producing microbes, particularly
butyrate-producers, can weaken the mucus layer via decreased
mucin production—glycoproteins that form the mucus layer to
protect intestinal epithelium—and impair tight junction assembly
via downregulation of key proteins such as zonula occludens-
1 (ZO-1), occludin, and claudin-1 (Di Vincenzo et al., 2024;
Kang et al., 2022; Peng et al, 2009; Pérez-Reytor et al., 2021;
Wang et al., 2012). This allows for the translocation of microbial
metabolites and pathogen-associated molecular patterns (PAMPs)
such as LPS into the lamina propria and systemic circulation. There,
these molecules engage pattern recognition receptors (PRRs) like
TLR4, driving release of proinflammatory cytokines (TNF-a, IL-
1B, IL-6) (Di Vincenzo et al., 2024). Resulting peripheral immune
activation can prime microglia, lowering their ‘activation’ threshold
and increasing susceptibility to neuroinflammatory cascades in PD
(Chenetal., 2021; Dogra et al., 2021). Supporting this, patients with
PD exhibited increased intestinal permeability, reduced colonic
ZO-1 expression, elevated mucosal TLR4+ cells, and decreased
butyrate-producing bacteria (Perez-Pardo et al, 2019). Further,
in a rotenone-induced PD mouse model, TLR4-knockout mice
were protected against phagocytic, proinflammatory microglial
activity, dopaminergic neuronal loss, and motor impairments,
reinforcing the link between gut barrier dysfunction, microglial
activity, and neuroinflammation in PD (Perez-Pardo et al,
2019).

Peripheral inflammation affects the brain both directly
and indirectly. Circulating cytokines and LPS can cross and
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potentially disrupt the BBB, altering endothelial and astrocytic
modulation and increasing cerebral prostaglandin E, (Gryka-
Marton et al., 2025; Varatharaj and Galea, 2017). Similarly,
peripheral cytokines enhance BBB permeability and promote
endothelial
milieu (Varatharaj and Galea, 2017). Microglia are exquisitely

activation, establishing a neuroinflammatory
sensitive to such inflaimmatory cues, particularly LPS and
TNF-a, which can act on microglia via TLR4, leading to the
production of IL-1f, IL-6, TNF-a, and ROS (Walker et al., 2014;
Woodburn et al., 2021). This chronically reactive state enhances
phagocytosis, antigen presentation, and upregulates CD86 (T-cell
co-stimulation) and CD68 (phagolysosomal activity), ultimately
promoting dopaminergic neurotoxicity and impaired homeostatic
surveillance (Fornari Laurindo et al., 2023). Preclinical studies have
demonstrated that peripheral LPS induces microglial reactivity
and accelerates dopaminergic cell loss across various PD models
while TLR4 inhibition reduces microglial proinflammatory
activity and neurodegeneration (Garcia-Dominguez et al., 2018;
Perez-Pardo et al., 2019; Xie et al, 2023; Zhang et al., 2022).
Further, GF mice, which display immature microglia, regain
normal inflammatory responsiveness after colonization with a
conventional microbiota or SCFA supplementation, reinforcing
the importance of microbial signals in microglial homeostasis
(Erny et al., 2015).

4.2 o-Synuclein pathology and gut-brain
propagation

Alongside neuroinflammation, PD is defined by the
aggregation of aSyn into Lewy bodies and neurites (Tansey
and Romero-Ramos, 2019; Xiang, 2025). Growing evidence
suggests that aSyn misfolding may begin in the gut, having been
detected in GI tract and brain of patients with PD prior to onset
of motor symptoms (Brds and Outeiro, 2021; Chen and Lin, 2022;
de Lataillade et al., 2020; Nie and Ge, 2023). It is hypothesized the
GM dysbiosis may drive this process: the loss of anti-inflammatory
and SCFA-producing bacteria stresses enteric neurons, inducing
aSyn expression, misfolding, and aggregation (Chen and Lin, 2022;
Claudino dos Santos et al., 2023). Supporting this, in a rotenone
PD model, bacterial endotoxins activated signaling pathways that
promoted aSyn aggregation, an effect reversed by antibiotics or
fecal transplants from healthy donors (Fang et al., 2024). Notably,
LPS may further accelerate this process by binding directly to
aSyn and facilitating amyloid fibril formation (Bhattacharyya et al.,
2019).

Preclinical and clinical studies provide further support for gut-
to-brain spread. Following duodenal human aSyn injections, aSyn
fibrils were detected in regions of the vagus nerve connected to
the gut in transgenic rats, a process prevented by vagotomy (Kim
et al,, 2019; Van Den Berge et al., 2019). In human patients, two
independent studies of vagotomised patients suggested a reduced
PD risk, though long-term follow-up indicated this protection may
not be absolute (Liu et al, 2017; Svensson et al., 2015; Tysnes
et al., 2015). Together, this research suggests that GM imbalances
not only foster aSyn misfolding locally but set the stage for its
propagation to the brain.
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4.3 Clinical implications and therapeutic
potential

Recognition of the GBA in PD opens new avenues for clinical
intervention, shifting attention toward earlier diagnosis, disease
modification, and even, potential prevention. GI aSyn pathology,
barrier dysfunction, and gut dysbiosis offer a window into the
prodromal phase of PD, sparking interest in identifying early
biomarkers of GBA dysfunction, such as altered SCFA levels,
increased fecal zonulin (intestinal permeability marker), or loss of
butyrate-producing bacteria, that could stratify PD risk or monitor
therapeutic response. However, biomarker standardization is
lacking and their predictive power for PD progression remains
uncertain (Aho et al., 2021; Nie et al., 2022).

Therapeutically, direct manipulation of the GM is under
investigation. ~ Beyond  current  dopaminergic
that
interventions may reduce systemic inflammation, microglial

symptom

management, mounting evidence suggests gut-level
phenotypic transformation, and aSyn pathology (Alam et al,
2024; Bloem et al., 2021). Probiotics thus offer an attractive
approach due to their non-invasive, relatively low-risk, modifiable
nature, and potential to reshape microbial ecology and host
immune responses. Preclinical and small human studies suggest

they may:

e Restore gut barrier function by upregulating expression of
tight junction proteins like occludin and ZO-1;

e Reduce systemic and neuroinflimmation by modulating
cytokine production and microglial reactivity;

e Suppress oSyn misfolding and propagation via SCFA-
mediated effects on protein homeostasis and enteric neuronal
stress (Ahn et al., 2022; Lorente-picén and Laguna, 2021; Zhu
et al., 2022).

However, large-scale human trials are needed to determine
whether probiotic use can meaningfully alter the trajectory of PD
beyond merely GI symptom relief (Leta et al., 2021).

5 Probiotics as modulators of
microglia in Parkinson'’s disease

A healthy GM is essential for numerous biological processes,
including proper microglial development and function (Erny
et al., 2015). In PD, where microglial dysfunction contributes
to dopaminergic neurodegeneration, targeting microglia via
the GM has gained increasing interest (Alam et al, 2024;
Salim et al., 2023). Probiotics offer a promising, non-invasive
approach to restoring microbial balance, enhancing gut barrier
integrity, and modulating immune and microglial responses,
mechanisms thought to affect both the prodromal and symptomatic
stages of PD (Leta et al, 2021). Although several clinical
trials have evaluated probiotics in PD, most have not directly
assessed microglial activity, limiting insight into their central
immunomodulatory effects (Magistrelli et al., 2024; Yang et al,
2023; Zali et al., 2024). Consequently, much of our understanding
arises from preclinical research. This section highlights key
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evidence from human and animal studies on probiotics in PD,
focusing on how restoring a balanced GM may ameliorate
disease symptoms by promoting microglial homeostasis and
dampening neuroinflammation.

Animal studies provide compelling evidence that probiotics
modulate microglial function and attenuate neuroinflammation
in PD models. In ASO mice, prebiotics (non-digestible fibers
promoting beneficial bacterial growth) and probiotics reduced
microglial reactivity, normalized neuroimmune signaling, and
improved motor outcomes (Abdel-Haq et al., 2022; Parra et al,
2023). Abdel-Haq et al. demonstrated that a prebiotic-enriched
diet restored microglial homeostasis, reduced aSyn aggregation in
the substantia nigra, and improved motor function, effects further
negated by microglial depletion, confirming their central role in
neuroprotection (Abdel-Haq et al,, 2022). In an inflammatory
PD rat model (intra-striatal LPS injection), Parra et al. reported
that Microbiot® (Lactobacillus rhamnosus GG and Bifidobacterium
animalis lactis) reduced proinflammatory microglial responses,
although dopaminergic neuron degeneration persisted (Parra

et al, 2023). Similarly, Symprove™

, a commercial probiotic
formulation, decreased proinflammatory microglial markers,
circulating proinflammatory cytokines and LPS, and dopaminergic
neuron loss in an early-stage neurotoxin-induced rat model
(Sancandi et al., 2023). Sun et al. demonstrated that Clostridium
butyricum supplementation in MPTP (1-methyl-4-phenyl-1, 2,
3, 6-tetrahydropyridine)-induced PD mice decreased motor
deficits and reversed proinflammatory microglial phenotypes
and neuroinflammation through GM modulation and enhancing
glucagon-like peptide-1 (GLP-1) signaling (Sun et al., 2021).
Collectively, these studies indicate that probiotics act via the
GBA to shape microglial activity and confer neuroprotection
in PD.

Translating preclinical findings to humans remains a challenge,
but emerging trials suggest clinical relevance with several
reporting improvements in motor symptoms, inflammatory
markers, and gut barrier integrity. A randomized controlled
trial (RCT) of 128 patients with PD found that Lacticaseibacillus
paracasei strain Shirota significantly improved constipation
and non-motor symptoms without causing major shifts in
GM composition (Yang et al., 2023). Notably, fecal L-tyrosine
decreased while plasma L-tyrosine increased, suggesting enhanced
absorption and potential support for neurotransmitter synthesis
(Yang et al., 2023). Another RCT of 40 patients reported that
a Bifidobacterium cocktail improved motor and non-motor
symptoms and reduced plasma proinflammatory cytokines
(Magistrelli et al., 2024). Further, a cohort study of 46 patients
with PD also found that probiotic supplementation with
vitamin D lowered levels of proinflammatory cytokines while
improving GI and cognitive symptoms, suggesting a systemic,
anti-inflammatory effect of probiotics via the GM (Zali et al,
2024).

Together, these clinical and preclinical findings summarized
in Table 1 support the hypothesis that probiotics influence central
immune responses through peripheral microbial modulation.
While further studies, especially in human populations, are needed,
current evidence suggests that targeting microglial dysregulation
through the GBA may represent a novel therapeutic strategy
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TABLE 1 Overview of preclinical and clinical studies examining probiotics supplementation in Parkinson’s disease, with a focus on gut—microglia
interactions and neuroinflammatory outcomes.

Intervention

GBA relevance

Preclinical studies

Key outcomes

Microglia outcome

aSyn-overexpressing
(ASO) male mice

High-fiber
prebiotic-enriched diet

Improved motor
function; | aSyn
aggregation in SN

| Microglial proinflammatory
activity; benefits abolished
with microglial depletion

Restored microglial
homeostasis via GM;
increased major SCFAs

Abdel-Hagq et al.,
2022

LPS-induced PD male
Wistar rat model

Microbiot® (L.
rhamnosus GG + B.
animalis ssp. lactis)

| Striatal microgliosis;
no prevention of DA
neuron loss

1 Proportion of homeostatic
microglia

Suggests
anti-inflammatory effects
via GM modulation

Parra et al., 2023

Early-stage 6-OHDA PD
male Wistar rat model

Symprove™

(multi-strain probiotic)

| Motor deficits; |,
systemic LPS; |
dopaminergic neuron
loss

| Reactive microglial
morphology; |
proinflammatory plasma
cytokines

Enhanced gut barrier
and systemic
inflammation control;
prevented SCFA decrease

Sancandi et al., 2023

MPTP-induced PD male
C57BL/6 mouse model

Clostridium butyricum

Improved motor
function; |
dopaminergic neuron
loss; 1 GLP-1 signaling

| Microglial proinflammatory
responses; .
neuroinflammation

Demonstrates
GM-GLP-1 pathway in
CNS immune regulation

Sun et al., 2021

Clinical studies

probiotic cocktail

symptoms; |

neuroimmune

128 PD patient RCT Lacticaseibacillus Improved constipation Not investigated Potential support for Yang et al., 2023
paracasei strain Shirota and non-motor neurotransmitter
fermented milk symptoms synthesis via GM

40 PD patient RCT Bifidobacterium | Motor and non-motor Not investigated Potential influence on Magistrelli et al.,

2024

proinflammatory serum
cytokines (IFNy, IL-6)

interactions via GBA

Probiotic cocktail +
vitamin D

46 PD patients (Iranian
cohort)

| disease severity,
non-motor symptoms; |,
proinflammatory serum
cytokines (IFNy, IL-6,
IL-1B); 1
anti-inflammatory serum
cytokine (IL-10)

Not investigated Modulates gut-immune Zali et al., 2024
signaling; reduces
systemic inflammation
and enhances
gut-mediated immune

responses via GBA

to slow neuroinflammation and modify disease progression
in PD.

6 Discussion

Growing evidence supports the existence of a bidirectional GBA
in PD, with gut dysbiosis contributing to or potentially even driving
microglial dysfunction and neurodegeneration (Pfaffinger et al.,
2025; Xiang, 2025). Preclinical studies demonstrate that probiotics
have potential to restore GI eubiosis (a balanced, healthy gut
microbiota) and dampen microglial-mediated neuroinflammation,
improving motor outcomes and reduced a-synuclein aggregation,
a hallmark of PD. However, translating these findings to the clinic
remains complex.

Alack of standardization in probiotics research regarding strain
specificity, dosage, treatment duration, and outcome measures
limits reproducibility, cross-study comparisons and strain-specific
effects (Rosas-Sdnchez et al., 2025; Smolinska et al, 2025).
More studies comparing different types of probiotics are needed
to determine which strains ameliorate PD symptoms and to
clarify their mechanisms of action on the GBA. Additionally,
most clinical trials focus on symptomatic improvements and
peripheral immune markers, with few directly assessing microglial
activity or central inflammation. Techniques such as positron
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emission tomography (PET) using TSPO-targeting radioligands
(translocator protein notably upregulated in reactive microglia)
and emerging radioligands, or magnetic resonance imaging
(MRI) sensitive to microglial morphology and neuroinflammatory
signatures, could assess microglia-specific changes in vivo (Garcia-
Hernandez et al., 2022; Guilarte, 2019; Lavisse et al., 2021).
Currently, this gap hinders the mechanistic validation of probiotics’
neuroimmune benefits in humans, even as peripheral changes
suggest indirect support for such effects.

While targeting microglia with probiotics is promising,
further high-quality, mechanistically informed trials are needed.
Future research should identify reliable, non-invasive biomarkers
such as SCFA levels, fecal calprotectin (a marker of intestinal
inflammation), or gut permeability markers to detect early GBA
dysfunction and monitor therapeutic response (Chai et al., 2025).
Emerging neuroimaging techniques and cerebrospinal fluid-based
assays may allow researchers to assess microglial activity more
directly in vivo. Integrative approaches combining probiotics with
prebiotics, dietary modulation, or agents like GLP-1 agonists, which
enhance gut barrier function and reduce neuroinflammation, may
yield synergistic benefits for both gut and brain health (Loh et al.,
2024; Menozzi et al.,, 2025). With appropriate clinical tools and
biomarkers, probiotics may one day complement conventional PD
therapies by targeting both motor and non-motor symptoms at
their neuroimmune root.
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