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Excitation control: balancing PSD-95 function at the synapse
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Excitability of individual neurons dictates the overall excitation in specifi c brain circuits. This process is thought to be regulated 
by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also infl uenced by the amounts of 
neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-
95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, 
adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight 
mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule infl uences the retention and clustering of 
diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between 
excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.
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EXCITATORY AND INHIBITORY 
SYNAPSES IN BALANCE
Neuronal excitability relies on the summation of excitatory and inhibi-
tory signals (Li et al., 2006; Schummers, 2002; Voytenko and Galazyuk, 
2006), a process regulated by the number of excitatory vs. inhibitory (E/I) 
contacts received by a single neuron. Excitatory synaptic transmission in 
the brain is predominantly mediated by the neurotransmitter glutamate, 
while inhibitory transmission is mediated mainly by the neurotransmitter 
gamma-amino butyric acid (GABA). Synapses that contain each respective 
neurotransmitter differ in their composition and structure. The postsynap-
tic compartment of excitatory synapses is characterized by an electron-
dense region, referred to as the postsynaptic density (PSD), attributable to 
the high density of neurotransmitter receptors and associated molecules 
at these sites. Although inhibitory postsynaptic sites lack PSDs, they also 
consist of complex protein matrices. Differences in the morphology of 
excitatory and inhibitory synapses also exist (Boeckers, 2006; Craig et al., 
2006). The majority of glutamatergic synapses are found on bulbous pro-
trusions known as spines, whereas most GABAergic synapses are formed 
on the dendritic shaft, as well as on the soma and proximal axonal regions 
(Fujiyama et al., 2002; Hafi di and Hillman, 1997; Knott et al., 2002).

The level of excitation in the brain is kept in check through inhibi-
tory control exerted by GABA neurons (Gulledge et al., 2005). In this 
manner the neurons strike a “balance” that allows for neurons to 
become  activated and convey discrete synaptic signals, while pre-
venting  excessive excitation. Yet this balance can be disturbed by 
even small changes in the level of inhibition, resulting in epileptiform 

 activity (Chagnac-Amitai and Connors, 1989). The relative contribution 
of  molecular and cellular  components to E/I balance of each brain region 
may vary. For example, high levels of intrinsic inhibition in cerebellar 
circuits are balanced by mainly excitatory afferents from various brain 
regions (Bower, 2002), whereas intrinsic excitatory feedback loops in 
the hippocampus are modulated by interneurons to avoid hypersynchro-
nicity and epileptiform activity (Levinson and El-Husseini, 2005a; Mann 
et al., 2005). Additionally, astrocytes have been implicated in modulating 
the excitation of both glutamatergic and GABAergic neuronal cells by 
sequestering and releasing glutamate (Schousboe, 2003).

HOMEOSTATIC MECHANISMS 
THAT BALANCE NEURONAL EXCITATION 
AND INHIBITION
Homeostasis is a form of regulation of neuronal excitability that main-
tains system function at a set point, maintaining a constant output 
while exposed to changing inputs. Homeostatic control has been sug-
gested to regulate neuronal function by modulating synaptic effi cacy, 
synaptic strength, and membrane excitability (Baines, 2005; Corner 
and Ramakers, 1992; Davis and Goodman, 1998; Leslie et al., 2001; 
Mee et al., 2004; Ramakers et al., 1990, 1994; Turrigiano and Nelson, 
2004; Turrigiano et al., 1998; Van Den Pol et al., 1996). This compensa-
tory process occurs over a time scale of 2–3 days, ensuring that dis-
crete synaptic events are not lost, but rather the system “set point” is 
 readjusted. The strength of individual synapses is modulated to com-
pensate for changes in other synapses, on the same neuron, that would 
otherwise alter overall cellular activity. These changes refl ect a scaling 
up or down of synaptic activity, and as a result, homeostasis is often 
referred to as “synaptic scaling” (Figure 1). By modifying multiple syn-
apses to the same extent, relative differences in individual synapses 
produced by long lasting changes in synaptic plasticity, such as long 
term potentiation (LTP) or long term depression (LTD), can be maintained 
(for review see Turrigiano and Nelson, 2004).

Homeostatic mechanisms can infl uence both excitatory (Turrigiano 
et al., 1998) and inhibitory synaptic transmission (Kilman et al., 2002; 
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Maffei et al., 2006; Marty et al., 1996; Rutherford et al., 1997). For 
instance, blocking neuronal activity by treating cultured cortical  neurons 
with TTX for 48 hours produces an increase in the amplitude of miniature 
excitatory postsynaptic currents, likely caused by homeostatic increase in 
postsynaptic sensitivity to glutamate (Turrigiano et al., 1998). Treatments 
with AMPAkines, compounds that modulates AMPA receptor activity, 
upregulate AMPA receptor function during short treatment  periods, but 
neurons display homeostatic adaptations following longer treatments, 
manifested by a decrease in AMPA receptor subunit expression as well 
as a decrease in the scaffolding proteins SAP 97 and GRIP1 (Jourdi et al., 
2005). Conversely, chronic exposure to ethanol potentiates GABAA recep-
tors causing reduced neuronal activity and resulting in a heterosynaptic 
homeostatic increase in NMDA receptor density to compensate for the 
decrease in excitation. In addition, there is a corresponding increase 
in PSD-95 expression and dendritic spine size under these conditions 
(Carpenter-Hyland and Chandler, 2006). Global changes in the amounts 

of multiple postsynaptic proteins following chronic activation or inhibition 
of neuronal activity have also been reported (Colledge et al., 2003; 
Ehlers, 2003; El-Husseini Ael et al., 2002; Sala et al., 2003). Changes 
in synaptic activity produce a coordinated change in PSD composition 
including changes in the levels of receptors, scaffolding proteins, and sig-
naling proteins. Thus, it is likely that a compensatory increase in synaptic 
activity is modulated by removal of glutamate receptors and associated 
proteins to control overall neuronal excitability.

Thus, homeostatic regulation of synaptic effi cacy is a mechanism to 
maintain appropriate E/I balance. However, altered expression of spe-
cifi c molecules that control synapse maturation and strength have been 
recently proposed to infl uence the E/I synaptic balance in the brain. This 
review will focus on the contribution of PSD-95 to excitation, examin-
ing how it interacts with additional molecular components that infl u-
ence excitatory and inhibitory synapse maturation, and ultimately how 
it affects various mechanisms for regulating this process. Finally, we will 

Figure 1. Balancing excitation and inhibition. The majority of excitatory neurotransmitter receptors are presented on bulbous structures known as spines 
whereas inhibitory neurotransmitter receptors are usually present on postsynaptic sites formed on the dendritic shaft. (A) Homeostatic mechanisms maintain 
balance. In this example of synaptic scaling an increase in synaptic input results in a decrease in the number of neurotransmitter receptors present at par-
ticular synapses to balance changes in synaptic strength. (B) Scaffolding molecules regulate retention of cell adhesion molecules at excitatory vs. inhibitory 
contacts. Scaffolding molecules retain specifi c adhesion molecules at either excitatory or inhibitory synapses. An example illustrating a loss of a scaffolding 
molecule that controls retention of adhesion molecules at an inhibitory synapses may cause a reduction in the number of adhesion molecules retained at 
this site, and a corresponding shift of these adhesion molecules to excitatory synapses. This results in a shift in the E/I balance towards enhanced excitation. 
(C) PSD-95 regulates retention of AMPA-type glutamate receptors at excitatory synapses. AMPA receptors directly associate with stargazin molecules, which 
in turn associate with PSD-95. Reduction in PSD-95 levels at the synapse reduces AMPA receptor retention. This results in a shift in the E/I balance towards 
decreased excitation, or increased inhibition.
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discuss implications of altered E/I ratio in cognitive disorders including 
autism, epilepsy, and schizophrenia.

PSD-95, A MAJOR SCAFFOLDING 
MOLECULE ENRICHED AT 
GLUTAMATERGIC SYNAPSES
The clustering of scaffolding molecules at contact sites is thought to play 
a role in the retention of specifi c neurotransmitter receptors at a particular 
synapse type. At the PSD, there are multiple families of proteins that serve 
as scaffolds upon which the assembly of neurotransmitter receptors, sig-
nal transduction components, and adhesion molecules occurs. A major 
scaffolding molecule localized at the PSD of excitatory  glutamatergic syn-
apses is the postsynaptic density protein PSD-95 (Figure 2). PSD-95 is a 
member of the membrane-associated guanylate kinase (MAGUK) family, 
which contains 3 PDZ domains (domain fi rst  discovered in PSD-95/Dlg/
ZO1 proteins), a Src-homology-3 (SH3) domain or WW motif (two con-
served tryptophan residues), and a region homologous to yeast guanylate 
kinase (GK region) (Cho et al., 1992; Kim and Sheng, 2004). In yeast, gua-
nylate kinase is involved in protein phosphorylation, but in the MAGUKs 
this region is catalytically inactive (Olsen and Bredt, 2003). PSD-93, syn-
apse associated protein (SAP)-102, and SAP-97 are other MAGUKs that 
exist at excitatory synaptic sites (Kim and Sheng, 2004).

Several other PDZ domain-containing proteins localized at the syn-
apse have been identifi ed that share some functional aspects with 
MAGUKs, being involved in protein assembly at the synapse. PICK1, a 
single PDZ domain molecule (Staudinger et al., 1997), and GRIP/ABP, 
which contains multiple PDZ domains (Dong et al., 1997), modulate traf-
fi cking of the AMPA-type glutamate receptor subunit GluR2. With multiple 
PDZ domains, in conjunction with additional protein interaction domains, 
MAGUK proteins are capable of forming a complex network of proteins 
localized to particular cellular regions. PDZ domains typically mediate 
interactions with the C-termini of various proteins typically detected at 
regions of cell-cell contact (Cho et al., 1992; Craven and Bredt, 1998; Kim 
and Sheng, 2004). This localization in neurons suggests an important role 
for these PDZ proteins in forming and modulating synaptic contacts. The 
SH3 and GK domains also mediate interactions of PSD-95 with several 
other scaffolding molecules. For instance, the GK domain interacts with 
GKAP (Kim et al., 1997; Takeuchi et al., 1997), AKAP 79/150 (Colledge 
et al., 2000), and microtubule-associated protein 1A (Brenman et al., 
1998), whereas the SH3 domain associates with the tyrosine kinase Pyk2 
(Seabold et al., 2003), and is also involved in intramolecular interaction 
with the GK domain of PSD-95 (McGee and Bredt, 1999).

Interestingly, a different set of scaffold molecules seems to regu-
late receptor clustering at inhibitory synapses. A key component of the 
postsynaptic structure of inhibitory synapses is the scaffolding protein 
gephyrin. Gephyrin is not a neuron-specifi c protein (Feng et al., 1998), but 
nevertheless plays a signifi cant role in the development and functioning 
of both GABA and glycine synapses in neurons. At glycinergic synapses, 
gephyrin binds to both glycine receptors and to the cytoskeletal protein 
tubulin. In its capacity as a scaffolding protein, gephyrin is necessary 
for clustering of glycine receptors (Kirsch et al., 1993; Levi et al., 2004). 
GABAA receptors, particularly the gamma2 and gamma3 subunits, are 
important for postsynaptic clustering of gephryin and for synapse sta-
bilization (Baer et al., 1999, 2000; Dumoulin et al., 2000; Essrich et al., 
1998; Fischer et al., 2000; Meier and Grantyn, 2004; Schweizer et al., 
2003). While gephyrin is not necessary for the formation of GABA syn-
apses (Dahan et al., 2003), overexpression of a specifi c gephryin mutant 
induces inhibitory synapse formation, while reducing the formation 
of excitatory synapses, thus reducing the E/I ratio (Lardi-Studler et al., 
2007). Thus, differential recruitments of PDZ proteins at excitatory syn-
apses and gephyrin to inhibitory contacts are potentially critical steps in 
modulating neurotransmitter receptor clustering and stability at contact 
sites, and in turn synaptic strength.

MOLECULAR MECHANISMS THAT 
MODULATE PSD-95 TRAFFICKING 
AND CLUSTERING AT THE SYNAPSE
Numerous studies hint at an important role for PSD-95  multimerization 
in regulation of protein traffi cking and ion channel clustering. PSD-95 
homomultimerizes through its N-terminal region allowing for an 
expanded scaffolding region in the PSD (Hsueh et al., 1997). This mul-
timerization is dependant on two N-terminal cysteine residues (Hsueh 
and Sheng, 1999). Conjugation of palmitate, a 16-carbon fatty acid, 
to proteins by thioesterifi cation of cysteines provides a mechanism 
for membrane targeting. Importantly, the two N-terminal cysteines of 
PSD-95 are palmitoylated, enabling association with postsynaptic mem-
branes, protein multimeriztion, and clustering of cell surface receptors 
and ion channels (Christopherson et al., 2003; Craven et al., 1999; 
El-Husseini et al., 2000a,c; Topinka and Bredt, 1998). Palmitoylation is 
a feature particular to PSD-95 and PSD-93, but not to SAP-102 and 
SAP-97 (El-Husseini et al., 2000c). This altered palmitoylation promotes 
differential regulation of ion channel clustering and synaptic clustering 
of the MAGUK molecules.

Protein palmitoylation also controls dynamic recruitment and removal 
of PSD-95 at the synapse, a process which infl uences retention of AMPA 
receptors (El-Husseini et al., 2002). For instance, blocking palmitoyla-
tion reduces the membrane clustering of PSD-95 and AMPA receptors, 
and reduces the amplitude of AMPA receptor-mediated currents. PSD-95 
regulates retention of AMPA receptors at the synapse through coupling to 
stargazin, a transmembrane protein that associates directly with AMPA 
receptors (Figure 1C) (Bats et al., 2007; Chen et al., 2000; Chetkovich 
et al., 2002b; Dakoji et al., 2003; El-Husseini et al., 2000a, 2002; Fukata 
et al., 2005; Schnell et al., 2002; Tomita et al., 2003, 2005). By regu-
lating a dynamic pool of AMPA receptors through its interaction with 
stargazin, and palmitate-mediated recycling of PSD-95 at the synapse, 
PSD-95 has a direct role in regulating synaptic strength. Consistent with 
these fi ndings, in vivo two-photon microscopy, performed by Gray et al. 
(2006) revealed dynamic cycling of PSD-95 in the developing neocor-
tex, demonstrating that PSD-95 is localized at individual synapses for 
short periods, but becomes more stable as the animal ages. This study 
also revealed that the size, shape, and activity of neighboring synapses 
infl uence exchange of PSD-95 between synapses. An interesting impli-
cation of this observation is that synapses compete with each other 
for scaffolding proteins. This dynamic distribution provides a mecha-
nism for regulating the amount of scaffolding proteins and associated 
glutamate receptors at individual synapses. As activation of a glutama-
tergic synapse is reduced, redistribution of PSD-95 and AMPA recep-
tors provides a possible means to alter synaptic strength. However, 
the mechanism by which the exchange of PSD-95 between synapses 
is controlled remains unclear. One potential mechanism that controls 
PSD-95 exchange between synaptic sites is regulated cycling of palmitate 
on PSD-95. Candidate enzymes that mediate the transfer of palmitate to 
PSD-95 have been recently identifi ed, however the identity of enzymes 
that regulate removal of palmitate remain unknown (Fukata et al., 2004; 
Huang et al., 2004). Future studies are needed to clarify whether neu-
ronal activity may control the dynamics of PSD-95 at the synapse by 
manipulating the activity of enzymes that control addition and removal 
of palmitate.

PSD-95 function and localization is also regulated by phosphoryla-
tion at its N-terminus, mediated by cyclin-dependant kinase 5 (cdk5) 
(Morabito et al., 2004). This phosphorylation inhibits PSD-95 multimeri-
zation and PSD-95-mediated K+ channel clustering. Based on the recip-
rocal effects of phosphorylation and palmitoylation on PSD-95 function 
and localization, it is conceivable that these two forms of modifi cation 
negatively regulate each other. Additional experiments directly comparing 
the effects of these modifi cations on PSD-95 and other proteins will be 
necessary to confi rm this possibility.
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Figure 2. Macromolecular PSD-95 complex. The molecular organization of glutamatergic synapses is presented, but only major molecules associated 
with PSD-95 are shown. The various molecules portrayed regulate synapse function, morphology, traffi cking and localization of adhesion molecules and neuro-
transmitter receptors.
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Alternative splicing of MAGUKs is an additional factor infl uencing 
protein localization and function. Alternative splicing of PSD-95 at the 
N-terminus yields the PSD-95beta isoform which includes a L27 protein 
interaction motif replacing the palmitoylated motif that is expressed in 
the PSD-95alpha isoform (Chetkovich et al., 2002a). This alternative form 
does not cluster with potassium channels when expressed in heterolo-
gous cells, but it does effi ciently target to synapses in neurons. Similarly, 
alternative splicing of SAP-97 affects synaptic targeting and alters protein 
interactions. These additional amino acids spliced into the “hook” domain, 
producing the beta isoform, are necessary for SAP-97-mediated enhance-
ment of AMPA receptor recruitment and function (Rumbaugh et al., 
2003). The majority of endogenous PSD-95 is the alpha isoform and the 
 majority of endogenous SAP-97 is the beta isoform (Schluter et al., 2006). 
Interestingly, the effects of the alpha isoforms are regulated independently 
of neuronal activity, while the beta isoform actions are activity- dependent. 
Thus structural and posttranslational modifi cations signifi cantly alter 
MAGUK localization and effects on synaptic maturation, and specifi cally 
modifi cations of the N-terminal regions regulate PSD-95- and SAP-
97-mediated effects on AMPA receptor function and neuronal excitation.

PSD-95 MODULATES GLUTAMATE 
RECEPTOR CLUSTERING AND FUNCTION
PSD-95 was initially identifi ed as a binding partner of the NR2 subunit 
of NMDA-type glutamate receptors (Kornau et al., 1995), suggesting the 
involvement of PSD-95 in NMDA receptor clustering. However, recent evi-
dence points to an important role for PSD-95 in regulation of NMDA recep-
tor activity and signaling, rather than clustering at the synapse (Kornau 
et al., 1995). PSD-95 has been shown to infl uence surface expression of 
NMDA receptors and receptor desensitization (Li et al., 2003; Lin et al., 
2004, 2006; Roche et al., 2001; Sans et al., 2000). These studies sup-
port a role for NMDA receptor-PSD-95 interaction in glutamate-mediated 
signaling processes. In contrast, a role for PSD-95 in regulating AMPA 
receptor insertion and retention at the synapse has been documented by 
numerous studies. The fi rst evidence indicating a direct role for PSD-95 
in regulating AMPA receptor clustering at the synapse came from analy-
sis performed on cultured hippocampal neurons overexpressing PSD-95 
over a period of several days. In these experiments exogenous PSD-95 
was shown to enhance AMPA receptor recruitment and excitatory synap-
tic responses (El-Husseini et al., 2000b). In contrast, overexpression of 
PSD-95 did not infl uence NMDA receptor clustering in developing hippoc-
ampal neurons (El-Husseini et al., 2000b). These fi ndings were surprising 
since direct coupling of PSD-95 to AMPA receptors was not documented. 
Later, studies revealed that coupling of PSD-95 infl uences AMPA receptor 
traffi cking and clustering through association with stargazin and related 
family members known as TARPs (Chen et al., 2000, 2003; Dakoji et al., 
2003; Schnell et al., 2002). Several other studies showed that manipula-
tion of PSD-95 levels over short and long time periods also infl uences 
AMPA receptor retention and activity at the synapse (Ehrlich and Malinow, 
2004; Ehrlich et al., 2007; Nakagawa et al., 2004; Schluter et al., 2006). 
More recent studies showed that PSD-95 infl uences AMPA receptor 
retention at the synapse by restricting diffusion of the stargazin-AMPA 
receptor complex at synaptic membranes (Bats et al., 2007; Schnell 
et al., 2002). Consistent with these observations, mice lacking PSD-95 
show normal NMDA receptor clustering and function, but reduced AMPA 
receptor function (Beique et al., 2006; Ehrlich et al., 2007; Elias et al., 
2006; Migaud et al., 1998).

PSD-95-MEDIATED ASSEMBLY OF 
PROTEIN COMPLEXES THAT INFLUENCE 
EXCITATORY SYNAPSE MORPHOLOGY
In addition to modulating ion channel clustering and function, PSD-95 has 
been shown to interact with numerous molecules that modulate synapse 
morphology (Figure 2). These include synaptic Ras GTPase-activating 

protein, which regulates the Ras-extracellular signal-regulated kinase 
pathway (Kim et al., 1998), kalirin-7, a guanine nucleotide exchange fac-
tor that regulates spine morphology (Penzes et al., 2001), and the recep-
tor tyrosine kinase ErbB4 (Garcia et al., 2000). Association of PSD-95 with 
GKAP through the GK domain of PSD-95 may infl uence the recruitment 
of Shank (SH3 and ankyrin repeat-containing), a molecule coupled to the 
actin binding protein cortactin and the metabotropic glutamate recep-
tor interacting protein Homer to control spine morphology (Kim et al., 
1997; Naisbitt et al., 1999; Satoh et al., 1997; Takeuchi et al., 1997). 
Shank multimers assemble in large, sheet-like structures, and may thus 
serve as a platform foundation for many PSD structures (Baron et al., 
2006). Experiments using fl uorescence recovery after photobleaching 
techniques to determine the turnover rates of scaffolding proteins in the 
PSD demonstrate that GKAP and Shank have faster recovery rates than 
PSD-95 (Kuriu et al., 2006). This fi nding suggests that these proteins have 
differential synaptic mobility and that PSD-95 may be more stable at the 
synapse over short time periods. Additionally, this study found that dis-
ruption of PSD-95 membrane localization does not alter GKAP recovery 
dynamics in mature cultured neurons. In young neurons, PSD-95, GKAP, 
and Shank can be detected as a preformed complex delivered to both 
existing synapses and nascent neuronal contacts (Gerrow et al., 2006). 
These preformed clusters are capable of recruiting functional  presynaptic 
components. Indeed, knockdown of PSD-95 caused a corresponding 
reduction of GKAP and Shank clusters. These results further support an 
important role for PSD-95 in assembly of a postsynaptic scaffold complex 
involved in synapse maturation.

While GKAP and Shank are both abundant proteins, the level of 
PSD-95 is fi ve times greater than each of these scaffolds in the PSDs of 
rat forebrain, and 10 times more abundant than NMDA receptors (Cheng 
et al., 2006; Peng et al., 2004). This molar excess of PSD-95 is indicative 
of its interactions with a vast number of proteins. Interestingly, it was 
recently reported that PSD-95 also interacts with the MAGUK scaffold-
ing protein SAP97 (Cai et al., 2006), thereby increasing the complexity 
of PSD-95-associated scaffolding complexes in the PSD. It is quite evi-
dent that regulation of scaffolding complexes directly affects the function 
and membrane expression of glutamate receptors. Thus, in addition to 
PSD-95, associated scaffold molecules are most likely key players in reg-
ulating excitatory synapse function, and the coordinated action of these 
molecules may tightly control neuronal excitability.

MODULATION OF EXCITATORY SYNAPSE 
MATURATION BY RECRUITMENT OF 
ADHESION COMPLEXES
A new exciting development stems from studies on the signifi cance of 
coupling of PSD-95 to adhesion molecules, in particular, members of 
the neuroligin family. In rodents, there are four genes that code for neu-
roligins (1, 2, 3, 4), while in humans, fi ve genes have been identifi ed 
(1, 2, 3, 4, 4Y) (Bolliger et al., 2001; Craig and Kang, 2007; Dean and 
Dresbach, 2006; Ichtchenko et al., 1995, 1996; Irie et al., 1997; Lise and 
El-Husseini, 2006; Nguyen and Sudhof, 1997). Neuroligin-1, the proto-
type member of the neuroligin family was identifi ed as a binding part-
ner of PSD-95 and has been shown to cluster at excitatory sites. Thus 
a role for neuroligins in excitatory synapse induction and development 
was proposed (Scheiffele et al., 2000; Song et al., 1999). However, unex-
pectedly, expression of neuroligins in cultured hippocampal neurons was 
shown to infl uence maturation of both excitatory and inhibitory presynap-
tic contacts (Levinson et al., 2005; Prange et al., 2004). Consistent with 
a role for neuroligins in the maturation of both excitatory and inhibitory 
contacts, knockdown of neuroligins in cultured neurons reduces syn-
apse number and mainly reduces inhibitory synapse activity (Chih et al., 
2005). Further studies showed that neuroligins 1, 3, and 4 are predomi-
nately localized to excitatory synapses, while neuroligin 2 is enriched at 
inhibitory contacts (Chih et al., 2005; Graf et al., 2004; Levinson et al., 
2005; Prange et al., 2004; Song et al., 1999; Varoqueaux et al., 2004). 
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The ability of neuroligins and their presynaptic partners neurexins to induce 
synapses and protein assembly at both excitatory and inhibitory contacts 
suggested an attractive model for controlling the number of newly formed 
synapses (Chih et al., 2005; Graf et al., 2004). However, recent evidence 
from mice lacking neuroligins indicates that neuroligins are not necessary 
for the induction of the majority of synapses, but rather for synapse matu-
ration and activity (Varoqueaux et al., 2006). This suggests that additional 
adhesion molecules may have compensated for the loss of neuroligins, 
or that neuroligins are involved primarily in certain aspects of synaptic 
development other than synapse induction. Although the precise role of 
neuroligins in vivo remains unclear, studies on mice lacking neuroligin 1–3 
hints to altered E/I ratio, particularly in the region that controls respiratory 
function. Additional examinations reveal that the infl uence of neuroligins 
on synapse maturation is an activity- dependant process (Chubykin et al., 
2007). Furthermore, this activity- dependence specifi cally modulates neu-
roligin 1 at excitatory synapses and  neuroligin 2 at inhibitory synapses, in 
agreement with the endogenous localization of these molecules.

BALANCING EXCITATION AND INHIBITION 
BY PSD-95 AND NEUROLIGINS
The mechanisms that control accumulation of neuroligins at a particu-
lar synaptic site are thought to modulate synapse maturation, strength 
and plasticity. One mechanism that controls retention of neuroligins to 
particular synapse types is alternative splicing. Neuroligins have sites 
for alternative splicing at two conserved locations, referred to as sites 
A and B, in the extracellular domains (Ichtchenko et al., 1996; Lise and 
El-Husseini, 2006). The locations of the splice sites are conserved, but the 
amino acid inserts are different for each neuroligin. Studies conducted 
on  neuroligin 1 and neuroligin 2 have determined that the A site insert in 
each molecule increases neuroligin association with inhibitory synapses 
and the B site insert increases neuroligin 1 association with excitatory 
synapses (Chih et al., 2006). Emerging evidence suggest that intracel-
lular mediated interactions also infl uence retention of neuroligins at the 
synapse. The C-terminal tails of neuroligins interact with PSD-95 through 
PDZ-dependent interactions (Irie et al., 1997). Thus, PSD-95 may play a 
role in regulating the E/I synaptic ratio by modulating neuroligns’ locali-
zation and function at particular synapses (Craig and Kang, 2007; Dalva 
et al., 2007; Gerrow and El-Husseini, 2006; Levinson and El-Husseini, 
2005a,b; Lise and El-Husseini, 2006). Indeed, PSD-95 overexpression 
enriches neuroligin 1, with the B site exon, at excitatory synapses and 
also results in a shift in the localization of neuroligin 2, containing the 
A site exon, from inhibitory to excitatory synapse (Levinson et al., 2005; 
Prange et al., 2004). Manipulation of neuroligins localization at the 
expense of inhibitory contacts suggests that PSD-95 may infl uence the E/I 
synaptic ratio (Figure 1B). Indeed, an increase in the E/I synaptic current 
was observed in neurons overexpressing PSD-95, whereas knockdown of 
PSD-95 reduced the E/I ratio (Levinson et al., 2005; Prange et al., 2004). 
These fi ndings suggest that the stoichiometry of PSD-95 and neuroligin 
family members regulates the strength of synapses, directly affecting E/I 
balance (Levinson and El-Husseini, 2005a,b). Similar experiments per-
formed with scaffolding proteins typically localized at inhibitory synapses 
will be instrumental in testing this model. Furthermore, assessment of 
neuroligin distributions in mice lacking PSD-95 will be important to clarify 
whether similar changes in the redistribution of neuroligins occur in vivo.

Additional evidence exists to suggest that synapses may compete for 
adhesion molecule complexes to regulate the type and strength of syn-
apses formed. For instance, when GABA innervation is absent in isolated 
hippocampal pyramidal neurons, gephyrin mistargets to glutamatergic 
synapses (Rao et al., 2000), possibly due to a lack of appropriate inhibi-
tory synapse adhesion molecules and scaffolding proteins. Furthermore, 
overexpression of gephyrin increases GABA receptor clustering while 
reducing the number of PSD-95 clusters (Lardi-Studler et al., 2007). 
Candidate molecules that potentially compete with PSD-95 to regulate 
adhesion molecule retention at the synapse include synaptic  scaffolding 

molecule (S-SCAM) which has a structure similar to PSD-95, and inter-
acts with neuroligins at both excitatory and inhibitory synapses (Iida 
et al., 2004; Sumita et al., 2007). Recent studies focusing on S-SCAM 
reveal that neuroligin, S-SCAM, and PSD-95 form a ternary complex, 
and suggest that S-SCAM is anchored at the synapse by beta-catenin, 
thus infl uencing accumulation of neuroligins and PSD-95 at synapses. 
Since S-SCAM is localized at both excitatory and inhibitory synapses, it 
is possible that this scaffolding molecule is a competitor of PSD-95 for 
neuroligin 2 binding. In this way it could sequester neuroligin 2 at inhibi-
tory synapses in physiologically “balanced” situations. Additional studies 
are needed to clarify the developmental recruitment patterns of these 
proteins and whether they indeed compete for retention of these adhe-
sion molecules at the synapse.

Neuroligins bind through their extracellular N-termini to neurexins, 
neuron-specifi c cell adhesion molecules present at presynaptic termi-
nals. Neurexins bind directly to CASK, a PDZ domain-containing protein 
homologous to PSD-95. Through this interaction, it is thought that neu-
rexins are coupled to the vesicle fusion machinery via the tripartite com-
plex containing CASK, Mint-1 and Veli (Biederer and Sudhof, 2000; Borg 
et al., 1998; Butz et al., 1998; Hata et al., 1996). Thus the interaction of 
neuroligins with neurexins may activate an array of molecular responses 
leading to structural reorganization of the presynaptic compartment. 
Surprisingly, a recent discovery by Taniguchi et al. (2007) demonstrates 
that neurexins are also expressed at postsynaptic sites. Similar to presy-
naptic forms, these postsynaptic neurexins interact with neuroligins, but 
this cis interaction inhibits the transsynaptic association of neuroligin 
with presynaptic neurexins, subsequently reducing synaptic density. The 
interplay between neurexins, neuroligins, PSD-95, and glutamate recep-
tors may provide an interesting mechanism to direct synapse-specifi c 
functional and structural alterations.

Additional adhesion molecules associated with PSD-95 are emerg-
ing as potential modulators of E/I balance. Netrin-G CAMs are a family 
of adhesion molecules expressed preferentially in the CNS. A Netrin-G 
ligand (NGL) has recently been reported, the binding of which to Netrin G 
CAM is important for axon outgrowth (Lin et al., 2003). Recently, NGL-2 
has been shown to directly associate with the fi rst two PDZ domains of 
PSD-95 (Kim et al., 2006), inducing presynaptic differentiation and clus-
tering of excitatory postsynaptic proteins, and increasing the number of 
excitatory synapses. Thus NGL-2 may work synergistically with neuroli-
gins to affect the E/I ratio. Another recently discovered family of adhesion 
molecules that associate with PSD-95 and NMDA receptors consists of 
the synaptic adhesion-like molecule (SALM) (Wang et al., 2006). SALM1 
expression recruits PSD-95 and NMDA receptors to synapses through 
PDZ-dependant mechanisms and increases the number of excitatory syn-
apses. Accordingly, knockdown reduces the number of spines as well as 
the frequency of spontaneous miniature excitatory postsynaptic  currents 
(Ko et al., 2006). Considering the existence of several families of adhe-
sion molecules with redundant function at the synapse, it is likely that 
crosstalk between these complexes is important for controlling  synaptic 
balance in vivo. The cell adhesion molecule ADAM22 (A Disintegrin And 
Metalloprotease) also interacts with PSD-95 through a PDZ-mediated 
mechanism forming a complex with stargazin (Fukata et al., 2006). The 
soluble, secreted ligand of ADAM22, LGI1, increases AMPA receptor-
mediated currents through postsynaptic mechanisms. It is not yet known 
if ADAM22 affects synapse formation and maturation. Further overex-
pression and knockdown studies are necessary to determine the effect of 
ADAM22 on synapse type, number, and ultimately the E/I balance.

MODULATION OF SYNAPTIC 
PLASTICITY BY PSD-95
As discussed earlier, altered expression of PSD-95 infl uences recruit-
ment of AMPA receptors at the synapse, thereby modulating synaptic 
strength (El-Husseini et al., 2000b; Schnell et al., 2002). These results 
suggest that PSD-95, through modulation of AMPA receptor retention at 
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the synapse, may also regulate synaptic plasticity. Indeed, PSD-95 over-
expression occludes LTP, possibly due to saturation of receptor signal-
ing, and enhances LTD, perhaps as a result of increasing the number of 
AMPA receptors available for internalization (Ehrlich and Malinow, 2004; 
Stein et al., 2003). Complementary to these fi ndings, mice that do not 
express PSD-95 show decreased AMPA receptor currents and enhanced 
LTP (Beique et al., 2006; Ehrlich et al., 2007; Elias et al., 2006). Thus, the 
levels of PSD-95, as well as its association with AMPA receptors, not only 
modulate neuronal excitation, but also synaptic plasticity.

It is well established that alterations in synaptic plasticity, such as LTP 
and LTD, also require phosphorylation and dephosphorylation of AMPA 
receptor subunits (Barria et al., 1997; Kameyama et al., 1998; Lee et al., 
2000; McDonald et al., 2001). The SH3 and GK domains of PSD-95 bind to 
AKAP 79/150, a scaffold molecule coupled to the protein kinases PKA and 
PKC, as well as the Ca2+-dependant protein phosphatase calcineurin at 
the synapse (Carr et al., 1992). Thus, it appears that AKAP 79/150 brings 
many of these kinases and phosphatases necessary for mediating these 
changes into proximity of AMPA receptors, producing compartmentalized 
regulatory complexes. It has recently been discovered that during LTD, not 
only are AMPA receptors dephosphorylated, but also that AKAP 79/150 
is redistributed to the cytoplasm, segregating it from the membrane 
(Smith et al., 2006). This change in localization suggests that, via its abil-
ity to serve as a scaffold for enzymes necessary for modulating synaptic 
strength and neuronal excitation, controlling the anchoring of AKAP 79/150 
itself serves a potential regulatory role in modulating these processes. In 
conjunction with this, induction of NMDA receptor- dependent LTD causes 
ubiquitin-mediated removal of PSD-95 from the synapse. Mutations that 
prevent ubiquitination of PSD-95 inhibit AMPA receptor internalization fol-
lowing NMDA receptor activation (Colledge et al., 2003). This regulation of 
PSD-95 by protein degradation provides a mechanism to disassemble the 
large scaffolding complex present at the PSD, and to indirectly modulate 
glutamate receptors, thus altering synaptic strength. A direct comparison 
between the time courses for PSD-95 and AKAP 79/150 activity-depend-
ant removal from synaptic membranes would be useful to determine the 
precise sequence of events, and to determine if the removal of one type of 
scaffold is necessary for removal of the other.

LTD-induced alterations in AMPA receptor membrane expression 
require actin depolymerization (Morishita et al., 2005). Conversely, LTP-
induced alterations in synaptic composition require actin polymerization 
(Krucker et al., 2000; Lin et al., 2005). Changes in the recruitment and/
or assembly of PSD-95/GKAP/Shank/cortactin complex may provide a 
mechanism for mediating the structural changes associated with changes 
in synaptic plasticity. Lisman and Raghavachari (2006) recently proposed 
an interesting model to account for synaptic changes associated with 
LTP. They suggest that during LTP, “hyperslots” of postsynaptic proteins 
are inserted into the synapse. Since these hyperslots are capable of bind-
ing AMPA receptors, it is intriguing to consider PSD-95 and stargazin 
as components of the hyperslot complex. This model also predicts that 
presynaptic changes in neurotransmitter release result from retrograde 
signaling, possibly through adhesion molecules, from the newly incorpo-
rated hyperslots. Indeed, PSD-95- neuroligin- neurexin association fulfi lls 
this role as a retrograde signal to increase the probability of neurotrans-
mitter release (Futai et al., 2007), providing an additional mechanism for 
PSD-95 to affect cellular excitation.

SYNAPTIC IMBALANCE IN NEUROLOGICAL 
AND PSYCHIATRIC DISORDERS
The imbalances between excitation and inhibition observed in the brains 
of patients with many neurological disorders demonstrate the importance 
of mechanisms involved in maintaining proper E/I balance in normal brain 
function. An increase in the E/I synaptic ratio may result in enhanced 
neuronal excitability, associated with increased seizure susceptibility. 
Epilepsy is a heterogeneous disorder with multiple moluculare causes, 
characterized by repetitive occurrence of pathological patterns of syn-

chronous neuronal activity (Behrens et al., 2007; Stafstrom, 2006; Stief 
et al., 2007). In a simplifi ed model, seizure activity can be triggered by an 
increase in excitation, or a decrease in inhibition that causes an overall 
increase in excitatory activation of the brain (Brenner, 2004; Clancy and 
Kass, 2004; McCormick and Contreras, 2001; Stafstrom, 2006; Ziburkus 
et al., 2006). PSD-95 has been implicated in modulating seizure activ-
ity, as many epileptic patients show increased levels of PSD-95-NMDA 
receptor complexes (Ying et al., 2004).

Schizophrenia is another complex neuropsychiatric disorder that could 
be affected by altered E/I synaptic ratio (Konradi and Heckers, 2003; 
Krystal et al., 1994; Lewis and Levitt, 2002; Lewis and Moghaddam, 
2006; Moghaddam, 2003). Enhanced PSD-95-ErbB4 coupling has been 
detected in patients with schizophrenia (Hahn et al., 2006). In other cases 
of schizophrenia, reduction in GABA production and signaling in the pre-
frontal cortex has been observed, leading to a reduction in the inhibitory 
tone imposed on glutamatergic neurons in this region. However, it is not 
clear whether this is a cause or an effect of schizophrenia (Lewis and 
Moghaddam, 2006; Lewis et al., 2005; Sawaguchi et al., 1988, 1989; 
Wassef et al., 2003). Changes in PSD-95 levels have also been associated 
with Fragile X syndrome, an inherited form of mental retardation (Tsiouris 
and Brown, 2004). This disease is caused by silencing of a single gene 
(FMR1) that codes for the Fragile X mental retardation protein (FMRP), a 
protein involved in mRNA translation, and for which expression is normally 
induced by mGluR activation (Feng et al., 1997; Li et al., 2001; Pieretti 
et al., 1991; Weiler et al., 1997). Evidence suggests that FMRP is involved 
in mGluR-mediated synaptic plasticity (Huber et al., 2002; Laggerbauer 
et al., 2001; Weiler et al., 1997), and activation of mGluR increases trans-
lation of PSD-95 through an FMRP-mediated mechanism (Todd and Malter, 
2002; Todd et al., 2003). Mice mutant for FMRP display brain-region spe-
cifi c imbalances of multiple excitatory and inhibitory neurotransmitters 
(Gruss and Braun, 2004), and are prone to auditory-induced seizures that 
are not caused by generally enhanced excitation (Chen and Toth, 2001). 
Fragile X therefore represents a disease state that can result from altered 
E/I balance, but is not exclusive to glutamate and GABA circuitry.

Autism, a pervasive developmental disorder with a strong genetic link, 
is another disorder that can be induced by altered E/I balance (Deonna 
and Roulet, 2006; Polleux and Lauder, 2004; Trevathan, 2004). A recent 
model of autism suggests that altered neuronal excitability, resulting from 
synaptic imbalance, underlies this disorder (Andres, 2002; Rubenstein 
and Merzenich, 2003). Although specifi c genes implicated in autism 
have not been fi rmly identifi ed, mutations in two members of the neu-
roligin family of cell adhesion molecules have been identifi ed in multiple 
patients (Chih et al., 2004; Chubykin et al., 2005; Comoletti et al., 2004; 
Jamain et al., 2003; Laumonnier et al., 2004). However, since recent 
genetic screens suggest that mutations in NLGs are rather rare in autis-
tic patients (Gauthier et al., 2005; Yan et al., 2005), it is more likely that 
autism may result from abnormal expression of a diverse set of genes 
encoding synaptic proteins with related functions in synaptic develop-
ment and activity. In support of this possibility, mutations in the scaffold-
ing protein Shank (Durand et al., 2007), as well as neurexin (Feng et al., 
2006), have recently been associated with autism. Interestingly, a mouse 
model that expresses the neuroligin 3 mutation associated with some 
cases of autism has recently been developed (Tabuchi et al., 2007). This 
model presents a gain of function mutation that results in enhanced inhi-
bition, supporting the hypothesis that perturbing the function of neuroli-
gins can produce an imbalance in the E/I ratio. In addition to the previously 
mentioned disorders, Rett syndrome, Parkinson’s disease, and Tourette’s 
syndrome are also characterized by alterations in E/I balance, and are 
caused by various alterations in molecular, cellular, and neuronal circuitry. 
Recent fi ndings indicate that deletion of the scaffolding molecule SAP90/
PSD95-associated protein 3 (SAPAP3) produces behaviors characteristic 
of obsessive-compulsive disorder, including compulsive grooming and 
increased anxiety (Welch et al., 2007). Thus disruption of multiple  proteins 
in the PSD network can  produce various neuro/psychological phenomena. 
The wide-ranging disorders mentioned here have a signifi cant impact on 
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affected individuals, families, and society, and as such, greater under-
standing of the role of E/I balance in these illnesses is necessary for effec-
tive  treatment possibilities.

PSD-95 is also implicated in behavioral and synaptic plasticity asso-
ciated with psychostimulant drug addiction. For example, animal mod-
els of chronic psychostimulant abuse display reduced levels of PSD-95 
(Yao et al., 2004). Recent studies reveal a direct interaction between the 
N-terminal region of PSD-95 and the dopamine D1 receptor (Zhang et al., 
2007). This interaction reduces the amount of D1 receptor on the surface, 
reducing dopamine-mediated excitation of medium spiny neurons and 
cortical pyramidal neurons. Furthermore, PSD-95 knockout animals dem-
onstrate enhanced D1-mediated responses. The authors hypothesize that 
interactions between D1 receptors, PSD-95, and NMDA receptors provide 
a mechanism for simultaneous regulation of surface expression, and also 
prevents excessive positive feedback generated between the two recep-
tors. Taken together, these fi ndings suggest that psychostimulants can 
alter the balance between dopaminergic and glutamatergic signaling at 
individual spines by altering receptor/scaffold complexes.

CONCLUSION
Recent research into the role of PSD-95 in recruitment of glutamate recep-
tors and adhesion molecules at the synapse has brought much insight into 
the basic principles governing assembly of protein complexes at glutama-
tergic synapses. It is evident from recent studies that  scaffolding molecules 
such as PSD-95 play prominent roles in the assembly of ion channels and 
associated proteins at excitatory synaptic sites. Recent in vitro data also 
revealed that PSD-95 may infl uence the retention of particular adhesion 
molecules at excitatory contacts at the expense of inhibitory synapses. 
Thus it is attractive to propose that these molecules act as the molecular 
sensors that control the balance between excitation and inhibition.

In conclusion, the progress that has been made during the last few 
years will lead to a more complete understanding of synaptic balance in 
the years to come. However, considering the existence of numerous mol-
ecules that regulate this process, future studies are needed to address 
mechanisms that control cross-talk between various scaffold molecules 
and adhesive systems to defi ne the contribution of each system in the 
control of E/I synaptic strength and brain function. Further understanding 
of the mechanisms that govern assembly of proteins at other types of 
neuronal contacts, such as GABAergic, dopaminergic and serotonergic 
synapses, may help uncover other mechanisms that infl uence cross talk 
between adhesion and scaffolding molecules at a particular synapse type 
and in turn E/I synapse number and strength. Manipulation of the expres-
sion of several of the newly discovered proteins at early stages of neu-
ronal development may help us uncover how alteration in the expression 
of these molecules infl uence the E/I ratio and how this might lead to the 
development of neuropsyhiatric illness.
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