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Neuronal migration is a key process in the developing and adult brain. Numerous factors act on 
intracellular cascades of migrating neurons and regulate the fi nal position of neurons. One robust 
migration route persists postnatally – the rostral migratory stream (RMS). To identify genes that 
govern neuronal migration in this unique structure, we isolated RMS neuroblasts by making use 
of transgenic mice that express EGFP in this cell population and performed microarray analysis 
on RNA. We compared gene expression patterns of neuroblasts obtained from two sites of 
the RMS, one closer to the site of origin, the subventricular zone, and one closer to the site of 
the fi nal destination, the olfactory bulb (OB). We identifi ed more than 400 upregulated genes, 
many of which were not known to be involved in migration. These genes were grouped into 
functional networks by bioinformatics analysis. Selecting a specifi c upregulated intracellular 
network, the cytoskeleton pathway, we confi rmed by functional in vitro and in vivo analysis that 
the identifi ed genes of this network affected RMS neuroblast migration. Based on the validity 
of this approach, we chose four new networks and tested by functional in vivo analysis their 
involvement in neuroblast migration. Thus, knockdown of Calm1, Gria1 (GluA1) and Camk4 
(calmodulin-signaling network), Hdac2 and Hsbp1 (Akt1-DNA transcription network), Vav3 and 
Ppm1a (growth factor signaling network) affected neuroblast migration to the OB.
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shown that neurogenesis in the SVZ is enhanced, contributing to 
the addition of new neurons to brain regions other than the OB 
(reviewed in Zhang et al., 2007). Thus, a detailed characterization 
of the molecular control of RMS neuroblast migration may yield 
additional insight into mechanisms determining cell motility and 
maturation under normal and pathological conditions.

Most neuronal migration studies performed so far in mammals 
were directed at the identifi cation and analysis of single factors 
involved in migration (Ayala et al., 2007; Ghashghaei et al., 2007). 
As of today, there are no studies aiming at a global in vivo gene 
analysis and identifi cation of cellular networks underlying neuronal 
migration. Here we performed a global search for molecular net-
works mediating neuronal migration in RMS neuroblasts. To this 
end we isolated pools of neuroblasts from two distinct locations 
in the RMS, one pool in the immediate vicinity of the SVZ, and 
a second pool from a more rostral position in the RMS. Thus, the 
former cell population was from a site close to its origin and the 
latter had almost reached the fi nal position of this tangential migra-
tory pathway. Using a procedure for RNA isolation from distinct in 
vivo fl uorescent cells (Khodosevich et al., 2007), we obtained RNA 
from the two neuroblast populations and analyzed the differential 
gene expression patterns. In addition to previously described genes 
expressed in migrating cells, we identifi ed numerous novel genes and 
pathways mediating migration. Based upon bioinformatics analysis, 
we selected the cytoskeleton pathway and employed in vitro and 
in vivo assays to inhibit/downregulate its constituents. The results 
provided functional evidence that upregulated genes of the cytoskel-
eton pathway indeed govern neuroblast migration and concurred 
with the microarray results. Thus, we selected four new networks – 
 calmodulin, MAPK and growth factor (GF) signaling as well as an 

INTRODUCTION
Neuronal migration is a complex, integrated process of cell receptor 
activation by external stimuli, transduction of stimuli by intracel-
lular pathways and subsequent cytoskeleton remodeling according 
to the stimuli. It plays a key role in embryonic development (Corbin 
et al., 2001; Marin and Rubenstein, 2003), but also continues in dis-
tinct areas of the adult brain (Ayala et al., 2007; Kempermann et al., 
2004; Zhao et al., 2008). Neurons migrate to their fi nal position in 
response to different signaling molecules in the microenvironment. 
However, intracellular molecular networks eventually control the 
response to the external signals and the fi nal position of the neu-
rons. Although the initial steps of the signaling cascades involved 
in migration of distinct neuronal subtypes may differ, it is likely 
that they eventually converge on common networks.

In mammals there are only two brain areas that persist in generat-
ing new neurons throughout postnatal life, the subgranular zone of 
dentate gyrus in hippocampus and the subventricular zone (SVZ) 
of the lateral ventricles (Lledo et al., 2006; Ninkovic and Gotz, 2007; 
Zhao et al., 2008). Neuroblasts originating in the SVZ migrate via the 
rostral migratory stream (RMS) to the olfactory bulb (OB) where 
they mature into distinct interneuron subtypes, namely granule and 
periglomerular cells. Such long-distance migration requires fi nely 
tuned control by many factors, including guidance molecules, repel-
lent/attractants as well as trophic factors (Ghashghaei et al., 2007). 
The RMS persists throughout adulthood (Ninkovic et al., 2007) 
and has been an attractive model for numerous in vitro and in vivo 
migration studies. Under normal conditions, new neurons are added 
to the OB, and their function is associated with learning and plastic-
ity in the olfactory system (Alonso et al., 2006; Saghatelyan et al., 
2005). Under pathological conditions, e.g., ischemia, it has been 
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Akt1-DNA transcription network – and analyzed their relevance 
for migrating neuroblasts by functional in vivo experiments. For 
three of them we identifi ed previously unknown molecules mediat-
ing intracellular cascades regulating neuroblast migration: Calm1, 
Camk4, Gria1 (calmodulin-signaling), Hdac2, Hsbp1 (Akt1-DNA 
transcription), Vav3, Ppm1a (GF signaling).

MATERIALS AND METHODS
ANIMALS
For all our experiments, except of microarray analysis and organo-
typic slice cultures, we used wild-type C57Bl/6 mice. For microar-
ray analysis and organotypic slice cultures we used 5HT3

A
-EGFP 

transgenic mice (Inta et al., 2008). All procedures with animals 
were performed according to the guidance of Heidelberg University 
Animal Care Committee.

MATERIALS AND REAGENTS
All chemicals and cell culture reagents were purchased from Sigma-
Aldrich (Germany) and Invitrogen (Germany), respectively, unless 
otherwise specifi ed. The following protein inhibitors and phos-
phatidylinositols (PIPs) were used in our experiments: Wortmannin 
and LY294002 (Alexis Biochemicals, USA); PKCζ pseudosubstrate 
inhibitor myristoylated, Rac1 inhibitor, Akt inhibitor X, Clostridium 
diffi cile Toxin A, Raf1 inhibitor and rapamycin (Calbiochem, 
Germany); phosphatidylinositol-(3,4,5)-P3 (PIP3,4,5), phosphati-
dylinositol-(3,4)-P2 (PIP3,4) and phosphatidylinositol-(4,5)-P2 
(PIP4,5) (Cayman Chemical, USA).

EGFP-N-Wave1 and pTurboFP602-C constructs were a gener-
ous gift by Dr Yair Pilpel (MPI, Heidelberg, Germany) and Evrogen 
(Moscow, Russia), respectively.

All other constructs containing cloned genes were purchased 
from Biocat (Heidelberg, Germany) or RZPD (Heidelberg, 
Germany).

The following antibodies were used in our analysis: polyclo-
nal rabbit anti-EGFP antibody, 1:10000 (Molecular Probes, USA), 
mouse anti-III class β-tubulin, Tuj1, 1:500 (Covance, USA), goat 
anti-CaM I, 1:200 (Santa Cruz, Germany), goat anti- doublecortin, 
1:500 (Santa Cruz, Germany), rabbit anti-Akt1, 1:200 (Cell Signaling, 
USA), mouse anti-Wave1, 1:1000 (Neuromab, USA), rabbit anti-
Cdc42, 1:1000 (Santa Cruz, Germany), rabbit anti-PI3K, 1:2000 
(Upstate, USA), mouse anti-Rac1 (Cytoskeleton, USA), Alexa 
488-conjugated anti-rabbit and anti-mouse secondary antibodies 
(Molecular Probes, USA), anti-mouse, anti-rabbit and anti-goat 
Cy3 coupled secondary antibodies (Jackson Immuno Research 
Laboratories, USA), anti-mouse and anti-rabbit HRP-conjugated 
secondary antibodies (Vector, USA).

OBTAINING SPECIFIC RNA FROM pRMS AND aRMS REGIONS AND 
MICROARRAY HYBRIDIZATION
The whole procedure has been described for periglomerular cells 
(Khodosevich et al., 2007). Briefl y, transgenic 5HT3

A
-EGFP mice 

(P15) were transcardially perfused by 1× PBS for 20 s (8 ml/min), 
0.5% paraformaldehyde (PFA) for 10 min (8 ml/min) and then by 
20% sucrose for 7 min (8 ml/min). After perfusion, the brains were 
rapidly removed from the skull and frozen on dry ice.

Frozen brains were embedded in Tissue Freezing Medium (Leica 
Instruments, Germany) at −20°C, and 5–8 µm-thick sagittal brain 

sections were cut on the cryostat Microm HM500 (MICROM 
International, Germany). The width of an individual section was 
smaller than the size of fl uorescent neuroblasts, and thus each sec-
tion constituted a monolayer of cells. Sections were mounted on 
membrane polyester slides (Leica Microsystems, Germany), briefl y 
thawed and dehydrated by sequential incubation in 50% ethanol 
for 20 s and n-butanol:ethanol (25:1) for 90 s, followed by 60 s of 
xylene substitution clearing, to which 1/25 volume of n-butanol had 
been added. Sections were dried and used for laser microdissection 
(LMD) on a Leica LMD6000B microscope (Leica Microsystems, 
Germany). Approximately 3,000–5,000 cells were dissected from 
15–30 sagittal brain sections of 5–8 µm from one transgenic 5HT3

A
-

EGFP mouse within 1.5–2 hours. EGFP labeling of neuroblasts in 
the RMS allowed the microdissection of ensembles of adjacently 
located fl uorescent cells that were harvested into dry 0.2 ml tube 
caps (Leica Microsystems, Germany). Also, to increase the specifi city 
only bright fl uorescent cells were dissected.

Directly following microdissection, the collected 3,000–5,000 
cells were lysed in 100 µl of lysis solution [10 mM Tris–HCl (pH 7.9), 
50 mM EDTA (pH 7.9), 0.2 M NaCl, 2.2% SDS, 0.5 U/µl AntiRNase 
(Ambion, USA) and 1,000 µg/ml proteinase K (Ambion, USA)] at 
55°C for 3 hours with vigorous shaking. The solution was adjusted 
to 600 µl by water and purifi ed by phenol, pH 4.2, followed by phe-
nol:chloroform (1:1) extraction. Nucleic acid in aqueous phase was 
ethanol-precipitated, the pellet was washed and dissolved in 26 µl 
of water, 3.5 µl of 10× DNase buffer (Ambion, USA) and 1 U of 
DNase I (Ambion, USA) followed by incubation for 15 min at 37°C 
and purifi cation by use of RNeasy MinElute Cleanup Kit (QIAGEN, 
Germany). The resulting RNA (typically 6–9 ng) was concentrated 
by Eppendorf Concentrator 5301 (Eppendorf, Germany) and ana-
lyzed by Bioanalyzer 2100 (Agilent, USA).

RNA AMPLIFICATION
Total RNA (2–3 ng) was amplifi ed using the MessageAmp II aRNA 
Amplifi cation Kit (Ambion, USA) according to manufacturer’s 
recommendations. During the T7 in vitro transcription step, the 
mixture was incubated at 37°C for 14–16 hours. After each amplifi -
cation round, the RNA was analyzed by Bioanalyzer 2100 (Agilent, 
USA). We typically obtained 200–300 ng of amplifi ed RNA after 
the fi rst, and 100–200 µg after the second amplifi cation round. 
Amplifi cations were from three posterior RMS (pRMS) and ante-
rior RMS (aRMS) RNA samples obtained from three 5HT3

A
-EGFP 

mice. For microarray hybridization, a second round of RNA ampli-
fi cation was performed with biotinylated nucleotides.

MICROARRAY DATA ANALYSIS
Target identifi cation was performed by pairwise cross compari-
son through Affymetrix GCOS1.4 software. Differently expressed 
genes were fi ltered according to Affymetrix comparison statisti-
cal algorithms (www.affymetrix.com). We chose those probesets 
that had Change Call = Increased (I) and Change p-value <0.002 
as signifi cantly increased, and those probesets that had Change 
Call = Decreased (D) and Change p-value >0.998 as signifi cantly 
decreased. Probesets had to have also Present calls in both arrays 
compared. From the chosen probesets, we fi ltered those which were 
called I or D and showed Signal Log ratio >1.0 or less than −1.0, 
respectively. Full analysis of microarray data as well as raw data can 

www.affymetrix.com


Frontiers in Molecular Neuroscience www.frontiersin.org July 2009 | Volume 2 | Article 7 | 3

Khodosevich et al. Pathways in migrating neuroblasts

be found on http://www.ebi.ac.uk/miamexpress (accession number 
is E-MEXP-1430).

Network analysis was done by Ingenuity Pathway Analysis® 
software (ingenuity.com), Bibliosphere® software of Genomatix 
(genomatix.de), PathwayArchitect® software of Stratagene (strata-
gene.com), GOstat (Beissbarth and Speed, 2004), as well as com-
mon pathway databases (KEGG and PID). For network analysis we 
used either all differentially expressed genes or only upregulated 
genes.

cDNA SYNTHESIS AND QUANTITATIVE REAL-TIME PCR
cDNA synthesis and quantitative real-time PCR (qRT-PCR) were 
done as described previously (Khodosevich et al., 2007). mRNA 
levels detected by qRT-PCR were normalized to mRNA levels for 
Gapdh.

BOYDEN CHAMBER MIGRATION ASSAY
Anterior SVZ–pRMS areas were dissected from coronal sections of 
wild-type mice, all aged P1–P3. All steps of tissue processing were 
in Dissection Media (10× DM: 100 mM MgCl

2
, 10 mM kynurenic 

acid, 100 mM HEPES in 1× Hank’s Balanced Salt Solution). 
Dissected aSVZ–pRMS areas were incubated for 5 min with 30 U 
of papain (Worthington, USA) and 0.0005% DNase solution, 
and washed by trypsin inhibitor (Sigma-Aldrich, Germany) with 
0.0005% DNase in Neurobasal Media Supplemented [500 ml of 
Neurobasal Media + 10 ml B27-Supplement + 1.25 ml 200 mM 
L-glutamate + 5 ml penicillin/streptomycin (100 U/ml)]. Cells were 
triturated through a fi ne tip, counted and plated in 100 µl volume of 
Neurobasal Media Supplemented onto gelatin-coated inserts with 
5 µm pore Transwell membranes (Corning, USA), at a density of 
50,000 cells/insert. To achieve cell migration through the pores, lower 
chambers were fi lled with Neurobasal Media Supplemented con-
taining 10% fetal bovine serum. Different chemicals were added to 
the upper chamber solution. Cells were allowed to migrate through 
the pores for 24 hours at 37°C, after which membranes were fi xed 
with 4% PFA and stained with anti-Tuj1 antibodies. From each 
membrane, fi ve areas were evaluated for Tuj1-positive cells, the cell 
numbers were summed, and the corresponding numbers were used 
for comparison. Each experiment was done in triplicate. Data from 
control and treated cells were analyzed by paired t-test.

ORGANOTYPIC CULTURES
Sagittal slices of approximately the same areas of the P3-old 5HT3

A
-

EGFP animal brains were used for control and chemically treated 
cultures. After 4 days in culture, slices were fi xed in 4% PFA and 
processed for immunostaining by anti-EGFP antibodies. Neuroblast 
migration was quantifi ed as the ratio of the EGFP-positive cell 
area surrounding the SVZ between treated and untreated control 
slices after 4 days in culture. Cell death in organotypic cultures was 
estimated by adapting a protocol from Brana et al. (2002). Image 
comparison was done by ImageJ software. At least fi ve slices were 
used for one experimental condition. Data from control and treated 
slices were analyzed by paired t-test.

INTRACELLULAR DELIVERY OF PIPs
Stock solutions of PIPs and neomycin at 1 mM concentration were 
prepared in HEPES-buffered saline. PIPs were mixed with a carrier 

(neomycin) to 10 µM each in Neurobasal Medium, incubated at 
room temperature for 10 min, followed by 10 s of bath sonication 
(SONOREX, Bandelin GmbH & Co. KG, Germany). PIP-carrier 
containing medium was applied to cells in Boyden chamber migra-
tion assay and organotypic cultures.

ShRNA PLASMID CLONING AND ANALYSIS OF shRNA SILENCING 
EFFICIENCY
The target sequences for oligos used to construct short-hairpin 
RNA (shRNA) expression plasmids as well as their sources are 
shown in Table 5 in Supplementary Material. Scrambled shRNA 
sequences were cloned from pSilencer vector (Ambion, USA). 
Complementary pairs of oligos were cloned into pSuper vector 
(Oligoengine, USA).

The effi ciency of shRNA silencing was tested using qRT-PCR 
and/or western blot by HEK cell culture transfections in triplicates. 
ShRNAs that specifi cally knocked down gene expression to 25% 
or less were selected for the in vivo silencing experiments. Results 
of qRT-PCR experiments are shown in Table 5 in Supplementary 
Material.

After virus production, shRNA knockdown effi ciency was tested 
on intrinsic gene silencing by infection of SVZ–RMS cultures 
(Table 5 in Supplementary Material).

CLONING OF VIRAL SILENCING PLASMIDS
To generate recombinant AAV vector for in vivo experiments, we 
substituted the human synapsin 1 promoter and EGFP in the AAV-
SEWB vector (Shevtsova et al., 2005) by the mouse doublecortin 
promoter and TurboRF602 (red fl uorescent marker), respectively, 
AAV-DRWB. ShRNA silencing cassettes were re-cloned from 
 pSuper vector to AAV-DRWB.

To make recombinant lentiviral plasmids for in vivo experi-
ments, we re-cloned shRNA silencing cassettes from pSuper vector 
to pFUGW, a lentiviral vector containing EGFP expressed under 
the ubiquitin promoter (Lois et al., 2002).

PRODUCTION OF RECOMBINANT VIRUSES
Recombinant AAV and lentiviruses were produced as previously 
described (Celikel et al., 2007).

MEASUREMENT OF VIRAL TITER
To measure viral titers, a dilution series across fi ve orders of mag-
nitude of viral stock solutions were used for HEK293 cell infection. 
Each sample was analyzed in triplicate. After 4 days’ incubation at 
37°C, the number of fl uorescent cell plaques at the different viral 
dilutions was measured and viral titer was estimated in fl uorescent 
plague forming units/ml.

INJECTION OF RECOMBINANT VIRUSES INTO MOUSE BRAIN
The titer of the injected virus had been adjusted such to be equal for 
all experiments (107 or 3.3 × 105 U/ml). For all genes a high (107 U/
ml) and a low titer (3.3 × 105 U/ml) were tested and comparable 
results were obtained (ratios of migrating cells was similar). One 
microliter of recombinant AAV/lentivirus expressing shRNA and 
fl uorescent protein marker was delivered to aSVZ/pRMS area of 
each hemisphere of P6-old C57BL/6 mouse pups with Hamilton 
(Hamilton, Switzerland) syringes and special needles for precise 

http://www.ebi.ac.uk/miamexpress
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animal injections: reduced needle volume, 20 mm length, 26s gauge 
and 45° tip angle. Seven, 10 or more days after injection for AAV 
and 4, 7 or more days for lentivirus, the animals were killed, and 
fl uorescent cells in the OB, RMS and SVZ were counted. OB fl uo-
rescent cells were evaluated as percentage of the total number of 
infected cells on the SVZ-RMS-OB route. Total number of infected 
cells was approximately the same for different viruses. Misinjected 
mice were excluded from analysis. For each shRNA virus and time 
point at least fi ve mice were injected. Data were analyzed by paired 
t-test.

IMMUNOHISTOCHEMISTRY
Sagittal brain sections (60–75 µm) were cut with a vibratome (Leica 
VT1000S, Leica, Germany). Immunostaining was carried out on 
free-fl oating sections. Slices were blocked in 0.5–1% Triton and 
1% normal goat serum. Primary and secondary antibodies were 
described above. Sections were mounted onto slides with Moviol 
and subsequently analyzed on an upright fl uorescent microscope 
(Zeiss Axioplan 2, Zeiss, Germany).

WESTERN BLOT ANALYSIS
For Western blot analysis protein samples were boiled in SDS gel 
sample buffer. Denatured proteins were separated by SDS-PAGE, 
transferred onto PVDF membranes and probed with antibod-
ies. For statistical analysis antibody signals were quantifi ed using 
ImageJ software and values were normalized to the corresponding 
β-actin signals. Statistical analysis was performed with paired 
t-test.

RESULTS
SEARCH FOR GENES INVOLVED IN MIGRATION OF RMS NEUROBLASTS
Obtaining specifi c mRNA for posterior and anterior RMS
Our study employed transgenic 5HT3

A
-EGFP mice, in which the 

enhanced green fl uorescent protein, EGFP, is expressed from the 
promoter of the serotonin receptor gene 5HT3

A
. The unique and 

faithful expression pattern of the transgene has been reported 
elsewhere (Inta et al., 2008). In 5HT3

A
-EGFP mice, there is strong 

EGFP expression in the RMS thus allowing the visualization of this 
long-distance oriented postnatal migratory pathway (Figure 1A), 
which represents a unique, robust structure and a valuable source 
of migrating neurons. Double labeling experiments with cell-type 
specifi c markers demonstrated that all EGFP-positive cells in the 
RMS are neuroblasts since they express doublecortin (neuroblast 
marker) but not GFAP (astrocyte and stem cell marker) or CNP 
(oligodendrocyte marker) (Inta et al., 2008). Since RMS neurob-
lasts originate in the SVZ from non-migrating cells, expression 
of migratory genes should be activated during initial migration 
of the neuroblasts. Although, neuroblasts in the posterior RMS 
(pRMS, RMS part in the immediate vicinity of the SVZ) already 
migrate and express some obligatory migratory genes (e.g. coding 
for cytoskeleton fi lament constituents), one expects that the signal-
ing underlying active migration in the RMS to be more pronounced 
in the anterior RMS (aRMS, RMS part near OB). We have evidence 
that genes involved in differentiation are upregulated mostly after 
neuroblast arrival to their fi nal position in the OB as indicated by 
triple comparison of the microarray data from pRMS and aRMS 
(this study) and immature periglomerular cells (Khodosevich 

FIGURE 1 | Identifi ed RMS areas serving as source for gene expression 

analysis. (A) Sagittal view of 5HT3A-EGFP mouse RMS stained with anti-EGFP 
antibodies. Orange and red ovals indicate the posterior and anterior RMS 
(pRMS and aRMS), respectively. (B) Scheme of sagittal view of section shown 
in (A), modifi ed from Inta et al., (2008). In the RMS neuroblasts migrate 
tangentially while after reaching the OB they migrate radially. (C–F) Laser 

microdissection of green cells from pRMS and aRMS. (C) and (D) pRMS before 
and after EGFP-neuroblast microdissection, respectively. White line is a border 
of lateral ventricle. (E,F) aRMS before and after EGFP-neuroblast 
microdissection, respectively. In (C–F) scale bars are 50 µm. Cx – cortex, 
hp – hippocampus, lv – lateral ventricle, rm – radial migration, tm – tangentional 
migration.
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et al., 2007; Khodosevich and Monyer, unpublished data). Thus, 
for a whole-transcriptome search of genes involved in postnatal 
cell migration of a homogenous, well defi ned cell population, we 
compared the gene expression pattern of neuroblasts from aRMS 
(Figures 1A,B, red oval) and pRMS (Figures 1A,B, orange oval).

To isolate EGFP-positive neuroblasts from the two RMS areas, 
we used the previously described approach for gene expression 
analysis of in vivo fl uorescent cells by LMD (Khodosevich et al., 
2007). After perfusion, fi xed brains were frozen and sliced into 
single cell layer sections. To further improve the specifi city of micro-
dissection, only bright green cells were dissected. After neuroblast 
microdissection (Figures 1C–F), RNA was isolated by an optimized 
procedure (Khodosevich et al., 2007) and used for two rounds of 
amplifi cation employing a MessageAmp II aRNA Amplifi cation 
Kit (Ambion, USA). RNA from the second round of amplifi cation 
was used for microarray hybridization.

Microarray analysis of differentially expressed genes in 
aRMS versus pRMS
To determine those genes that showed a signifi cant change in 
expression in the aRMS compared to pRMS, microarray data 
were analyzed by Affymetrix software using (for details see 
Supplementary Material) using the following parameters: (1) the 
gene under analysis had to have present calls in all microarray 
hybridizations, (2) the adjusted p-value was <0.002 or >0.998 for 
all probe pairs and (3) the gene had to be up/downregulated in at 
least six out of nine comparisons (three microarrays of pRMS are 
compared with three microarrays of aRMS). Whilst these strict 
criteria might result in some ‘false negatives’, they reduce the gen-
eration of ‘false positives’. A total of 1,100 genes were signifi cantly 
up- or downregulated in neuroblasts of aRMS compared to pRMS, 
with 650 having a more than two-fold change in all comparisons 
(see Table 1 for top 20 upregulated genes; for a full list of upregu-
lated genes see Table 1 in Supplementary Material). Most of the 
downregulated genes in aRMS are likely to have a role in neuro-
genesis, given that fewer cells undergo cell division at a location in 
the stream that is further away from the SVZ. Here, we aimed at 
the identifi cation of genes that are involved in cell migration and 
thus we concentrated on genes that are upregulated in the aRMS 
compared to pRMS. Not surprisingly, we could identify genes 
that belong to gene classes that had been shown to be involved in 
cell migration (Ghashghaei et al., 2007; Lledo et al., 2006; Ridley 
et al., 2003; Zheng and Poo, 2007), including cell adhesion mol-
ecules (Pcdh7, Hnt), cell membrane receptors (Epha6, Glrb), GFs 
(Tgfbi, Fgf12, Pdgfc), signal transduction genes (Errfi 1, Ppm1a, 
Srpk2, Cdc42, Ppm1l, Plcb4, Arpp21, Prkcz), transcription regu-
lating genes (Ets1, Snrpn, Shprh, Sfrs1) and Ca2+-signaling genes 
(Cadps2, Camk4).

Confi rmation of microarray data
To validate the microarray data, we arbitrarily chose 26 genes 
and analyzed their expression by qRT-PCR (Table 2). We selected 
genes with different extent of change in the array analysis. In all 
tested cases, up- or downregulation determined by the array data 
was confi rmed by qRT-PCR and in most cases comparable ratios 
were obtained by the two approaches. Furthermore, comparing 
our results with in situ RNA hybridization data provided by the 

Allen Mouse Brain Atlas for adult brain (www.brain-map.org), it 
became clear that most upregulated genes have stronger in situ 
mRNA hybridization signals in the RMS whereas downregulated 
genes have stronger in situ mRNA hybridization signals in the SVZ 
(Table 2 and Figure 1 in Supplementary Material).

BIOINFORMATICS ANALYSIS OF THE UPREGULATED GENES
Differential expression of gene groups
To understand whether the upregulated genes can be categorized 
into functionally related sets of genes, we sorted them according to 
GeneOntology and performed an analysis using Ingenuity Pathway 
Analysis (IPA), Bibliosphere Genomatix and GOstat. We identifi ed 
many GeneOntology or IPA gene groups, the expression of which 
had changed during migration from pRMS to aRMS (Table 2 in 
Supplementary Material). By GeneOntology we analyzed both 
upregulated and downregulated genes in the aRMS. It is likely that 
upregulated genes play a role in brain development, cytoskeleton 
organization and axon guidance. Conversely, many of the identi-
fi ed downregulated genes have been implied in other studies to be 
involved in cell cycle regulation, cell division, DNA replication and 
neurogenesis, which is not surprising given that migrating neurob-
lasts are derived from SVZ precursor cells. IPA was performed only 
on upregulated genes and led to the  identifi cation of gene groups 

Table 1 | Top 20 upregulated genes in the migrating neuroblasts.

Gene symbol Gene name Fold

  difference

Pcdh7 Protocadherin 7 52.02

Ylpm1 YLP motif containing 1 41.42

Cadps2 Ca2+-dependent activator protein  29.57

 for secretion 2

Epha6 Eph receptor A6 25.65

Glrb Glycine receptor, beta subunit 17.73

Sh3gl3 SH3-domain GRB2-like 3 14.07

Errfi 1 ERBB receptor feedback inhibitor 1 13.81

Ets1 E26 avian leukemia oncogene  13.62

 1, 5’ domain

Ppm1a Protein phosphatase 1A, magnesium  12.42

 dependent, alpha isoform

Srpk2 Serine/arginine-rich protein  11.95

 specifi c kinase 2

Snrpn Small nuclear ribonucleoprotein N 8.37

Tgfbi Transforming growth factor,  8.24

 beta induced

Fgf12 Fibroblast growth factor 12 8.17

Cdc42 Cell division cycle 42 homolog  6.55

 (S. cerevisiae)

Sfrp2 Secreted frizzled-related protein 2 6.35

Ppm1l Protein phosphatase 1  6.22

 (formerly 2C)-like

Sema4f Semaphorin 4F 6.11

Unc5c Unc-5 homolog C (C. elegans) 6.06

Plcb4 Phospholipase C, beta 4 5.74

Camk4 Calcium/calmodulin dependent  5.73

 protein kinase IV
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involved in signal transduction – e.g., calcium signaling, GABA 
receptor signaling – and cell movement – e.g., integrin signaling 
and formation of plasma membrane projections, actin cytoskeleton 
signaling and neurite outgrowth.

Identifi cation of canonical pathways
The microarray data were subjected to a search for canonical 
pathways by IPA and Bibliosphere software as well as available 
pathway databases, such as KEGG (Kyoto Encyclopedia of Genes 
and Genomes) (Table 3 in Supplementary Material). Amongst 
the identifi ed more than 20 canonical pathways (p < 0.001), 
some were shown to be involved in migration of other neuro-
nal cell types (e.g., calcium signaling and axonal guidance sign-
aling). Interestingly, we also identifi ed canonical pathways that 
were shown to be involved in the migration of other cell types. 
For instance, upregulation of the leukocyte extravasation signal-
ing pathway (p << 0.001) had been demonstrated before to be 
involved in migration of leukocytes from blood vessels to the site of 

infl ammation (Vicente-Manzanares and Sanchez-Madrid, 2004) 
(Table 3 in Supplementary Material). Also, the upregulation of 
ephrin receptor signaling, actin cytoskeleton signaling and ERK/
MAPK signaling found in this study had been characterized in 
many migrating cell types (Pasquale, 2005).

MICROARRAY DATA VALIDATION PROBING THE CYTOSKELETON 
PATHWAY
To confi rm the reliability of the microarray data, we selected sev-
eral genes that had been previously shown to be involved in the 
cytoskeleton reorganization of different cell types and that based 
on bioinformatics analysis might be the constituents of a generic 
cytoskeleton network (Figure 2A). We performed several in vitro 
and in vivo tests to investigate whether they are indeed involved 
in neuroblast migration. Based on the microarray data, four-
teen upregulated genes (indicated in bold in Table 2) involved in 
cytoskeleton signaling were identifi ed, indicating the importance 
of this pathway for the migrating neuroblasts. The genes include 
not only kinases and GTPases, but also several actin polymeri-
zation regulating genes (Evl, Enah, Arpc2) (Krause et al., 2003), 
genes encoding scaffolding proteins contributing to actin branching 
(Wasf1, Wasl, Cyfi p2) (Takenawa and Suetsugu, 2007) and a gene 
coding for a membrane adaptor involved in the correct positioning 
of the actin fi lament complex to the cell membrane (Plekha1 or 
TAPP1) (Hogan et al., 2004). The majority of the members of the 
cytoskeleton pathway were shown to be involved in cell migration. 
However, in most previous studies the analysis was confi ned to 
one gene only and the experiments were carried out in vitro (e.g., 
Hogan et al., 2004; Krause et al., 2003; Polleux et al., 2002; Segarra 
et al., 2006; Takenawa and Suetsugu, 2007). Here, we investigated 
several members of the cytoskeleton pathway and the functional 
assays do not only validate the microarray data, but in conjunction 
with previous studies our results highlight the signifi cance of this 
pathway for the migration of several neuronal and non-neuronal 
cell types.

Boyden chamber migrational analysis
The fi rst functional test involved studies of neuroblast migration in 
a Boyden chamber. Neuroblasts were dissected from the SVZ and 
RMS of wild-type mice, triturated and plated on the membrane 
in the upper chamber containing different protein inhibitors at 
previously established concentrations (Figure 2B).

Inhibitors of PI3K, Akt1, Rac1 and Cdc42 decreased by two-fold 
and more the number of neuroblasts that migrated to the lower cham-
ber within 24 hours. Phosphatidylinositols (PIPs) phosphatidylinosi-
tol-3,4-biphosphate (PIP3,4), phosphatidylinositol-4,5-biphosphate 
(PIP4,5) and phosphatidylinositol-3,4,5-triphosphate (PIP3,4,5) have 
been shown to be critical for cell polarity and thus regulate the direc-
tion of cell migration (Niggli, 2005). Indeed, in this assay, PIPs dra-
matically decreased the number of migrating neuroblasts. A drastic 
reduction of neuroblast migration was also obtained with a PKCζ 
inhibitor that decreased it by 10-fold. Inhibitors of other kinases, e.g., 
mTOR kinase and Raf1 kinase, did not infl uence neuroblast migra-
tion (data not shown). We also show that the tested protein inhibitors 
did not infl uence either neuroblast adhesion or apoptosis, although 
apoptosis can be induced in this system by manumycin A, an inhibitor 
of the Ras cell survival pathway (data not shown).

Table 2 | Comparison of aRMS-pRMS gene expression differences 

obtained by microarrays, qRT-PCR and Allen Brain Atlas in situ data.

Gene  Microarray  qRT-PCR Allen Mouse

symbol mean  mean  in situ Brain  Atlas1

Akt12 ?3 2.45 RMS

Alcam −2.99 −2.39 SVZ

Arpc2 2.83 1.89 RMS

Aspm −11.86 −6.53 SVZ–pRMS

Cdc42 6.55 3.14 RMS

Cdc42ep3 3.93 4.29 RMS

Cspg2 3.00 3.56 RMS

Cyfi p2 2.58 3.08 RMS

Dscam 3.64 17.82 RMS

Enah 1.96 2.29 RMS

Evl 1.78 3.50 RMS

Hnt 4.25 3.57 n.s.4

Neurod1 −7.91 −4.88 SVZ–RMS

Pappa 4.12 6.19 RMS

Pcdh7 52.02 340.45 n.s.

Pdgfc 4.77 3.74 RMS

Pik3r1 2.38 5.09 RMS

Plekha1 3.20 10.80 RMS

Prkcz 4.33 3.44 RMS

PTEN 3.27 3.26 RMS

Sema4f 6.11 3.61 RMS

Sfrp2 6.35 18.47 RMS

Sh3gl2 3.28 4.68 n.s.

Sh3gl3 14.07 3.52 n.s.

Wasf1 3.21 2.89 RMS

Wasl 1.79 1.81 RMS

Zic1 5.89 11.66 RMS

1Data from Allen Mouse Brain Atlas (www.brain-map.org/) indicating presence 
of in situ signal in the RMS or SVZ.
2In bold are cytoskeleton pathway genes.
3Difference of Akt1 expression was not identifi ed by microarrays, most probably 
because of small p-value.
4n.s. – no signal in RMS/SVZ area in Allen Mouse Brain Atlas.
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FIGURE 2 | In vitro analysis of the cytoskeleton pathway. (A) Cytoskeleton 
pathway involved in neuroblast migration resulting from the microarray data 
analysis. (B) Boyden chamber migrational assay: dissected neuroblasts were 
plated on a porous membrane, were allowed to migrate for 24 hours and Tuj1-
positive cells were then counted (p < 0.001). (C,D) Migration analysis in 
organotypic cultures obtained from 5HT3A-EGFP mice. (C1) PI3K inhibitor 
(LY294002) severely disturbed neuroblast migration. Migration was quantifi ed as 
the ratio of the EGFP-positive neuroblast containing area surrounding the SVZ 
between untreated (control) and treated (inhibitor) slices (obtained from the same 
sagittal level) after 4 days in culture (n ≥ 5 slices per condition). (C2) Higher 
magnifi cations of RMS and SVZ in control and PI3K inhibitor-treated slices. Insets: 

note that LY294002-treated neuroblasts have short or no neurite compared to 
control neuroblasts. (C3) Quantifi cation of the LY294002 effect (n = 5, p < 0.001). 
(D1) Effect of PKCζ inhibitor. (D2) Directionality of neuroblast migration and, 
therefore, cell polarization is disturbed after PKCζ inhibitor treatment. Neuroblasts 
do not migrate in the streams, but migrate in all directions. This is clearly visible in 
the cortex where there are signifi cantly more neuroblasts in PKCζ inhibitor-treated 
slices compared to control slices. (D3) Quantifi cation of the PKCζ inhibitor effect 
(n = 6, p < 0.005) Abbreviations: Ak – Akt1 inhibitor, C – control, cx – cortex, hp – 
hippocampus, lv – lateral ventricle, LY – PI3K inhibitor LY294002, P3,4,5 – PIP3,4,5; 
P4,5 – PIP4,5; P3,4 – PIP3,4; PZ – PKCζ inhibitor, Ra – Rac1 inhibitor, TA – Rho 
GTPases inhibitor Toxin A of C. diffi cile, W – PI3K inhibitor wortmannin.
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Organotypic culture migrational analysis
A second migration assay employed was organotypic slice cultures. 
Sagittal brain slices (n = 5–7) of 5HT3

A
-EGFP mice containing the 

SVZ with the anterior part of the RMS were cultured for 4 days 
with or without a protein inhibitor or PIPs (Figures 2C1,D1). 
PI3K inhibitor, LY294002, signifi cantly decreased cell migration 
out of the SVZ (p < 0.001) (Figure 2C1). Neuroblast migration 
was quantifi ed as the ratio of the EGFP-positive neuroblast-con-
taining area surrounding the SVZ between untreated control and 
inhibitor-treated slices after 4 days (Figure 2C1). LY294002 not 
only decreased cell migration two-fold (Figure 2C3), but also 
changed the morphology of migrating neuroblasts: they had either 
a smaller neurite or no neurite (in Figure 2C2 compare insets 
showing  representative examples of EGFP-labeled neuroblasts in 
control and LY294002-treated slices). In LY294002-treated slices a 
well- delineated stream of migrating RMS neuroblasts was hardly 
detectable (Figure 2C2). Other protein inhibitors also decreased 
the area of neuroblast emigration (to 88 ± 3% for Rho GTPase 
inhibitor and to 85 ± 8% for Rac1 inhibitor).

Surprisingly, PKCζ inhibitor signifi cantly (p < 0.005) increased 
the area containing EGFP-positive neuroblasts (Figures 2D1–D3). 
Normally, in sagittal organotypic slices neuroblasts migrate largely in 
the RMS from the SVZ toward the bulb (not shown on Figure 2D1) 
and also caudally above the hippocampus in the dorsal migratory 
pathway (Figure 2D1, see also Inta et al., 2008) where the different 
postnatal migratory pathways are described in detail). After addition 
of the PKCζ inhibitor, directionality of neuroblast migration was 
abolished with EGFP-positive neuroblasts migrating in all direc-
tions (the total area of emigration in PKCζ inhibitor-treated slices 
was increased by 60%, Figure 2D3). Thus, the two streams could 

be barely  identifi ed in PKCζ inhibitor-treated slices (Figure 2D2) 
and many cells could be detected in brain areas lacking migrating 
neuroblasts in control slices. The role of PKCζ in cell polarization 
had been shown before also for hippocampal neuronal culture (Shi 
et al., 2003).

Analysis of neuronal migration in vivo
Finally, we carried out in vivo studies to analyze the involvement of 
several genes coding for constituents of the cytoskeleton pathway. 
We injected recombinant AAV viruses expressing a red-fl uorescent 
marker and shRNAs to particular genes of the pathway (Wave1, 
Akt1, Rac1, Pik3r1 and Prkcz) into the anterior SVZ (aSVZ)/pRMS 
of wild-type mice (arrow in Figure 3A) and counted percentage of 
red cells that reach OB (red oval in Figure 3A) out of total number 
of infected cells on SVZ-RMS-OB route 7 and 10 days after virus 
injection (n = 5–7 injected mice for each time point).

All tested gene-specifi c shRNAs (Figure 3B) dramatically 
decreased the relative number of red cells that migrated to the OB 
(Figures 3C,D) compared to virus expressed scrambled shRNA 
(control) or red fl uorescent protein only. Often the effect of the 
treatment resulting in decreased number of infected neuroblasts 
in the OB was accompanied by an increase of neuroblasts along 
the migratory route, visible as labeled cells stacked under the cor-
pus callosum. The phenotypes of animals expressing gene-specifi c 
shRNAs are summarized in Table 3.

Silencing of PKCζ expression caused neuroblasts to change their 
migration route and arrive into areas where they do not migrate 
in controls. We found shRNAPKCζ virus-infected cells in entorhi-
nal as well as in piriform cortex, whereas in controls these areas 
were devoid of infected cells (data not shown). It is likely that in 

FIGURE 3 | In vivo analysis of the cytoskeleton pathway. (A) Position of 
injection site (arrow) and destination area of migratory fl uorescent cells (oval) 
after 7 or 10 days post-injection. (B) Western blot analysis of transfected HEK 
cells illustrating successful knockdown of Wave1, Rac1, Pik3r1 and Akt1. (C) Red 
fl uorescent cells in olfactory bulb infected by shRNAScrambled and shRNAAkt1 

viruses. Fewer infected cells were found in OB of shRNAAkt1-injected animals. 
(D) Percentage of infected cells in olfactory bulb relative to total number of 
infected cells on SVZ-RMS-OB route after injection of shRNA expressing viruses 
against genes of the cytoskeleton pathway (*p < 0.005). Gene names are under 
histogram. GCL – granule cell layer, GL – glomerular layer.
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 migrating RMS neuroblasts, PKCζ is involved in cell  polarization 
as previously shown for hippocampal neurons (Shi et al., 2003).

IN VIVO ANALYSIS OF NOVEL NETWORKS UPREGULATED IN MIGRATING 
RMS NEUROBLASTS
The thorough functional analysis carried out for the members of 
the cytoskeleton pathway provides evidence that the upregulated 
genes identifi ed by the microarray study are indeed important for 
migrating RMS neuroblasts, and that the analysis can be extended 
to other genes and pathways. There were numerous novel candidate 
networks comprising genes that were signifi cantly upregulated in 
migrating neuroblasts (p-values ranging from 10−10 to 10−42), mer-
iting further attention (Table 4 in Supplementary Material). Four 
networks were chosen for functional in vivo studies: calmodulin-
signaling network, Akt1-DNA transcription network, GF signaling 
network and MAPK signaling network (Figures 4A,B and 5A,B, 
respectively, and Table 4 in Supplementary Material). These net-
works were chosen for further analysis fi rstly because associated 
p-values were high and secondly they comprised members that 
instigated our curiosity given that other studies had revealed their 
signifi cance for neuronal processes not necessarily involved in 
migration. For instance calmodulin is known to be involved in 
calcium signaling and has been shown to play a role in numer-
ous neuronal processes, including plasticity or neurotransmitter 
release (Xia and Storm, 2005). Furthermore, these networks com-
prise members that are also constituents of the above described 
and analyzed cytoskeleton pathway – e.g., Akt1 is a member of both 
the cytoskeleton and the Akt1-DNA transcription pathways. The 
occurrence of some genes in different pathways allows grouping 
them together in a large neuronal migratory signaling complex.

For each network we selected several constituent genes and 
silenced their expression by injection of recombinant lentivirus 
expressing shRNAs and EGFP into aSVZ/pRMS of wild-type mice. 
Knockdown effi ciency for all used shRNAs was 75% or higher in 
transfection and infection experiments (Table 5 in Supplementary 
Material). After 4 and 7 days, the migration of EGFP-labeled infected 
cells to OB was quantifi ed. Possible infection of some proliferating 
cells would not be a confounding issue in this scenario given that the 
analysis was carried out already a few days post infection. Control 
experiments indicated that we usually infected only a small number 
of precursor cells (the vast majority of infected cells were nestin-
negative, data not shown). Two shRNA expressing viruses were used 
for each target gene to avoid off-target effects. For each network at 
least three genes were selected. The genes were either immediate 
downstream effectors in the network (e.g., Calm1 and Camk4 in 
calmodulin-signaling) or appeared to be at crucial points on which 

signaling within the network converge (e.g., Hdac2 in Akt1-DNA 
transcription signaling). All genes selected for functional in vivo 
analysis are expressed in RMS according to in situ data of the Allen 
Brain Institute (Table 6 in Supplementary Material).

Calmodulin-signaling network
The calmodulin-signaling network involves signaling via voltage-
gated calcium channel (VGCC) genes (Cacna1a, Cacna1b, Cacna1c, 
Cacna2d1, Cacnb3, Cacnb4, Cacng2/Stargazin) and calmodulin 1 
(Calm1) that in turn modulate the activity of transcription factor 
CaMKIV (Camk4), Akt/PKB (protein kinase B) and PKA (protein 
kinase A), and also the actin cytoskeleton machinery (Figure 4A). 
To analyze the importance of calmodulin-signaling for migrating 
neuroblasts, we silenced the expression of the Ca2+-sensor gene 
Calm1 and its direct target Camk4. For both we showed a remark-
able reduction in the number of neuroblasts that had migrated to 
the OB 4 or 7 days post-injection (Figures 6A,B,E,F).

A striking effect was visible when restricting the analysis to the 
bulb and quantifying the ratio of tangential versus radial migration. 
Thus, in animals with Calm1/Camk4 knockdown, the number of 
infected neuroblasts in the part of the RMS within the OB (tangen-
tially migrating cells) was increased with a concomitant decreased 
number of labeled cells outside of the stream (radially migrating 
cells) (Figures 7A,B,D).

In this network, activation of calmodulin-signaling through 
VGCC most likely results as a consequence of AMPA recep-
tor activation (Gria1 – GluA1 subunit of AMPA receptor in the 
Figure 4A). Indeed, silencing of Gria1 gene expression resulted 
in a reduction in the number of OB neuroblasts and slowing of 
their migration (Figures 6E,F). Furthermore, RMS neuroblasts 
infected by  shRNAGria1 expressing viruses have more neurites 
than  neuroblasts infected by control virus (Figures 8A–D), pos-
sibly interfering with directed migration toward the OB.

We have analyzed several genes for their possible involvement in 
neuroblast differentiation (Calm1, Camk4, Vav3 and Gria1). We did 
not fi nd any morphological difference in infected neuroblast that 
reached the granule cell layer when comparing control and gene-
knockdown animals, at least not during the time period analyzed 
in this study. There was also no change in neuronal precursor/
neuroblast differentiation when tested in an assay using infected 
neurospheres (data not shown).

Akt1-DNA transcription network
Another identifi ed upregulated network, the Akt1-DNA transcrip-
tion network (Figure 4B), couples Akt1 signaling to glutamate 
receptor signaling, DNA transcription and protein folding. The 

Table 3 | Phenotypes of animals infected into aSVZ/pRMS by AAV viruses expressing gene-specifi c shRNA and red fl uorescent protein.

Gene knockdown Phenotype

Akt1 Fewer fl uorescent cells in the OB 7 and 10 days post-injection, many fl uorescent cells stacked along the RMS

Pik3r1 Fewer fl uorescent cells in the OB 7 and 10 days post-injection, some fl uorescent cells exiting the RMS just prior to entering the OB

Prkcz Fewer fl uorescent cells in the OB 7 and 10 days post-injection, many fl uorescent cells in brain areas normally devoid of infected cells 

 in controls (entorhinal cortex, piriform cortex etc.)

Rac1 Fewer fl uorescent cells in the OB 7 and 10 days post-injection, many fl uorescent cells stacked along the RMS

Wave1 Fewer fl uorescent cells in the OB 7 and 10 days post-injection, many fl uorescent cells stacked along the RMS
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FIGURE 4 | Signaling networks upregulated in migrating neuroblasts. 

(A) Calmodulin-signaling network. (B) Akt1-DNA transcription network. Networks 
were identifi ed by Ingenuity Pathway Analysis and subsequently modifi ed using 
Bibliosphere, PathwayArchitect, GO and pathway databases. The intensity of the 

red color indicates the extent of gene upregulation. Connecting lines with 
arrowheads indicate activation of proteins, without arrowheads protein–protein 
interaction. Continuous and dashed lines are direct and indirect activation/
interaction, respectively. Node description is indicated in the right upper corner.
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FIGURE 5 | Signaling networks upregulated in migrating neuroblasts. (A) 
Growth factor signaling network. (B) and (C) MAPK signaling network. (C) is 
simplifi ed version of (B). Networks were identifi ed by Ingenuity Pathway Analysis 
and subsequently modifi ed using Bibliosphere, PathwayArchitect, GO and pathway 

databases. The intensity of the red color indicates the extent of gene upregulation. 
Connecting lines with arrowheads indicate activation of proteins, without 
arrowheads protein–protein interaction. Continuous and dashed lines are direct and 
indirect activation/interaction, respectively. For node description see Figure 4.
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FIGURE 6 | Effect of in vivo gene expression knockdown on neuroblast 

migration to the olfactory bulb. (A) and (B) Example of gene knockdown 
effect. Green fl uorescent cells in olfactory bulb infected by 
shRNAScrambled and shRNACalm1 viruses, respectively. Insets show 
higher magnifi cation of cells indicated by boxed area. Much fewer 
shRNACalm1-expressing cells reached the OB after 7 days post-injection in 
comparison to cells infected with shRNAScrambled virus. (C) and (D) Effect 
of Hdac2 knockdown on neuroblast migration in the RMS. Compared to 

controls (C), more infected cells were migrating in the RMS 4 days post-
injection in shRNAHdac2 (D) virus-infected animals. The RMS is visible as 
more intensely stained in the panels showing the doublecortin (DCX) 
expression. (E) and (F) Percentage of infected cells in the OB relative to 
total number of infected cells on SVZ-RMS-OB route after injection of 
shRNA expressing viruses into the aSVZ/pRMS, 4 and 7 days post-injection, 
respectively (*p < 0.001). The two bars denote two different shRNAs used 
for each gene.
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FIGURE 7 | Effect of in vivo gene expression knockdown on neuroblast 

migration in the olfactory bulb. The RMS within the olfactory bulb (bRMS) is 
visible as more intensely stained in the panels showing doublecortin (DCX) 
expression thus clearly delineating it from the more lightly stained granule cell 
layer (GCL). In comparison to control shRNAScrambled (A), Calm1 (B) or 

Hdac2 (C) gene knockdown resulted in fewer cells in the GCL but more cells 
in the bRMS relative to the whole OB 4 days post-injection. (D) Percentage of 
green fl uorescent cells in the bRMS (more intensive red area) to green 
fl uorescent cells in the whole OB in control and gene knockdown experiments 
(*p < 0.01).

importance of Akt1 per se for migrating neuroblasts was shown 
above. Therefore, we analyzed the importance of three major Akt1 
effectors in three subparts of the network: Grip1 (glutamate recep-
tor interacting protein 1, glutamate receptor signaling), Hdac2 
(histone deacetylase 2, DNA transcription) and Hsbp1 (heat-shock 
binding protein 1, protein folding). While Grip1 knockdown did 
not have an apparent effect on neuroblast migration (Figures 6E,F, 
7D), Hdac2 and Hsbp1 expression silencing decreased the number 
of infected OB neuroblasts (Figure 6E,F, 7D).

Of all genes studied, inhibition of Hdac2 expression had the most 
prominent effect on neuroblast migration (Figures 6C–F, 7C,D). 
There were only few infected neuroblasts migrating radially outside 
of the RMS within the OB (Figures 7A,C) and most neuroblasts in 
which Hdac2 had been knocked-down resided in the anterior part 
of the RMS (Figure 6D).

Hsbp1 silencing decreased signifi cantly the total number of OB 
neuroblasts but the percentage of cells in the OB RMS relative to 
the whole OB was comparable to that in controls (Figure 7D).
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FIGURE 8 | Effects of Gria1 or Vav3 knockdown on the shape of migrating 

neuroblasts. (A) and (B) Neuroblasts migrating in anterior RMS subsequent to 
infection with shRNAScrambled and shRNAGria1 expressing viruses, 
respectively. (C) Gria1 knockdown resulted in a decrease of neuroblasts having 
one neurite and an increase of neuroblasts having two and more neurites (light 
blue – control, dark blue – Gria1 knockdown) (*p < 0.005). (D) Gria1 knockdown 

resulted in an increase in the average number of neurites per neuroblast in the 
RMS (*p < 0.001). (E) and (F) Typical migrating RMS neuroblast infected by 
shRNAScrambled and shRNAVav3 expressing viruses, respectively. Arrowheads 
indicate the growth cones of the leading neurite. (G) In animals infected by 
shRNAVav3 expressing viruses, fewer neuroblasts in the RMS have a large 
growth cone (*p < 0.001).

Growth factor signaling network
Although the importance of GFs for migrating neuroblasts has been 
studied for a long time (e.g., see Abrous et al., 2005; Ghashghaei et al., 
2007), the intracellular network mediating this signaling is by and large 
unknown. Of note, GF signaling network (Figure 5A) comprises core 
members – PI3K, Akt1, Rac1 and PKCζ – that we have shown to be 
important effectors in the cytoskeleton pathway. We chose three addi-
tional proteins from the GF signaling network that could infl uence the 
activity of these core members: Vav3 (vav oncogene 3), Errfi 1 (ERBB 
receptor feedback inhibitor 1) and Ppm1a (protein phosphatase 1A). 
We did not observe any effect for migrating neuroblasts by silencing 
of Errfi 1 expression (Figures 6E,F, 7D). However, both Ppm1a and 
Vav3 silencing decreased the number of neuroblasts migrating to the 
OB (Figures 6E,F) associated with an increased number of infected 
cells in the OB RMS relative to the whole OB (Figure 7D).

Vav3 codes for guanyl-nucleotide exchange factor (GEF) and was 
suggested to participate in lamellipodia formation (Hunter et al., 
2006). Neuroblasts migrating in the RMS normally have a neurite 
ending with a growth cone, a fast-changing structure  consisting 
of fi lopodia and lamellipodia (Figure 8E). However, most RMS 
neuroblasts infected by shRNAVav3 expressing viruses had smaller 
growth cones (Figures 8F,G). Thus, migrational defects in shR-
NAVav3 expressing neuroblasts may result at least in part from a 
disorganization of growth cone structure.

Interestingly, we found the upregulation of the Pdgfc gene in 
migrating neuroblasts, which encodes a relatively new member 
of the PDGF family, and could have an autostimulatory effect on 

neuronal migration. However, silencing the Pdgfc gene in vivo did 
not infl uence neuroblast migration (Figures 6E,F, 7D).

MAPK signaling network
We next analyzed in vivo the MAPK signaling network that com-
prises several separate cascades (Figures 5B,C as a summary). For 
Rac1 and its activator Vav3 that are also part of the GEF cascade, we 
had shown above the involvement in neuroblast migration in vivo. 
However, when testing in vivo three downstream molecules Map3k13, 
Map2k4 and Atf2 (activating transcription factor 2) that participate 
in other cascades of the MAPK signaling network, we did not fi nd 
an effect on neuroblast migration (Figures 6E,F, 7D). It is unlikely 
that the lack of an effect is due to technical reasons, considering the 
success for many of the genes that were tested. However, it cannot 
be excluded with certainty that the extent of gene knockdown as 
obtained here (reduction of gene expression to at least 25%) suf-
fi ced to modify the migrational phenotype of neuroblasts. Another 
possible scenario for a lack of functional effect could be that the 
knockdown of a gene in the network is circumvented by the activity 
of another gene in the network.

Other upregulated networks in migrating neuroblasts
Schemes for other top-scored networks are presented in the 
Supplementary Material and were not studied functionally 
(Table 4 in Supplementary Material). The novel networks include 
calcium signaling networks (Networks 8, 19 and 21), one network 
comprising genes related to the protein degradation  machinery 
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(Network 5), a cAMP signaling network (Network 18) and 
 potential beta-estradiol cascades (Networks 10 and 14).

Of note is also a network that might couple GABA receptor sig-
naling with the actin regulatory protein machinery (Network 12). 
Previous experiments demonstrated that non-synaptic signaling 
of GABA decreases neuroblast migration within the RMS (Bolteus 
and Bordey, 2004), but the exact mechanism of the GABA action is 
unknown. Based on our data, a scenario can be envisaged linking 
GABA activity and neuronal motility. Signaling in this network 
includes the activity of GABA

A
 receptors, gephyrin (a microtubule-

associated protein mediating the interaction of the receptors with 
the cytoskeleton) and enabled homolog (Enah) (an actin-associated 
protein inducing polymerization of actin – Krause et al., 2003). 
Hence, GABA could inhibit neuroblast migration by affecting the 
actin machinery remodeling proteins.

DISCUSSION
Using EGFP-labeled RMS neuroblasts as a model system, we per-
formed a whole-transcriptome search for genes involved in in vivo 
neuronal migration. Most studies carried out so far investigated 
the role of external factors for neuronal migration. There is lit-
tle known about intracellular networks that mediate the cellular 
response to these factors. We isolated labeled RMS neuroblasts 
from two distinct locations of their migratory route, thus, expect-
ing a change in the expression of the genes involved in migration. 
Via microarray analysis, we identifi ed around 1,100 differentially 
expressed genes, 650 of which changed expression more than 
two-fold. Bioinformatics analysis revealed many novel candidate 
networks that may govern neuronal migration. The validity of 
the microarray data was tested for a number of arbitrarily chosen 
genes by qRT-PCR. Our data were also in agreement with pub-
licly available in situ hybridization data (www.brain-map.org). To 
confi rm the reliability of our microarray data, we chose several 
candidates that might be involved in cytoskeleton reorganization. 
We demonstrated by several functional in vitro and in vivo assays 
that the upregulated genes indeed affected migration and could 
hence be grouped in one functional network. A number of these 
genes had been previously shown to be involved in cell migra-
tion. Thus, PTEN and Plekha1 were shown to affect migration 
of cancer cells (Dey et al., 2008) and fi broblasts (Hogan et al., 
2004), respectively. Also PI3K had been demonstrated to be crit-
ical for tangential migration of GABAergic interneurons during 
embryonic development (Polleux et al., 2002). Whilst these studies 
are important, they are restricted to the analysis of an individual 
gene in a defi ned cell type. The major advance of this study is 
that the analysis was extended to numerous genes that could be 
grouped in pathways. Most importantly, we carried out in vivo 
experiments to test the functional role of several upregulated genes 
for neuroblast migration. After corroborating the bioinformat-
ics data using as a proof of principle the cytoskeleton pathway, 
we selected four additional networks, the calmodulin-signaling 
network, Akt1-DNA transcription network, GF signaling network 
and MAPK signaling network, to further test in vivo their role 
for neuroblast migration. The choice of these networks was dic-
tated by the high p-values (indicating a high probability that these 
networks are activated in migrating neuroblasts) and by the fact 
that these networks comprised certain genes whose regulation in 

different contexts had been studied in neurons (e.g., calmodulin 
in paradigms  leading to altered plasticity). Finally, the tested net-
works have some constituents that they share with the cytoskel-
eton pathway and could thus be grouped into a larger network 
whose components are activated during neuroblast migration. We 
carried out in vivo functional analysis to demonstrate that the 
selected genes of distinct networks govern neuroblast migration. 
The tested genes – Calm1, Camk4, Gria1 (calmodulin-signaling), 
Hdac2, Hsbp1 (Akt1-DNA transcription), Vav3, Ppm1a (GF signal-
ing) – were not known to be involved in neuroblast migration or 
migration of other cell types.

To date, there have been no studies employing a whole-tran-
scriptome search for genes underlying neuronal migration in vivo. 
Therefore, we used RMS neuroblasts as a tool for such a search. The 
programs used for network analysis are based on literature data 
mining, hence most members in the networks identifi ed here have 
been shown to interact with at least one other member. Previously 
described interactions could have occurred in various cell type and 
in different cellular processes, including migration. The novelty of 
linking upregulated genes in the networks presented here resides 
in the identifi cation of many genes that are possibly involved in 
a distinct cellular process, i.e., migration. Although the statistical 
values for the described networks are highly signifi cant, such an 
approach may still result in false positive candidate genes, reason 
why each network must be functionally analyzed.

We identifi ed several gene networks that migrating neuroblasts 
share with other types of migrating cells. A striking example is 
the upregulated Leukocyte extravasation signaling pathway that is 
involved in leukocyte migration from blood vessels to the site of 
infl ammation (Vicente-Manzanares and Sanchez-Madrid, 2004) 
(Table 3 in Supplementary Material). Also, some of the novel net-
works, such as the GF signaling network (Figures 5A and 9), are 
not neuron-specifi c but comprise genes that have been shown to 
affect migration of other cell types.

A major fi nding of this study is the identifi cation of several 
novel intracellular networks that we showed to be important for 
migrating neuroblasts in vivo (Figure 9). The involvement of Ca2+ 
in cell migration has been previously described in neurons (Guan 
et al., 2007; Zheng and Poo, 2007). However, an intracellular net-
work mediating this signaling has been missing. According to our 
functional in vivo results (Figure 9), calcium entry into migrat-
ing neuroblasts fi rst activates calmodulin 1 (Calm1) and as a fur-
ther downstream effector the DNA transcription factor CaMKIV 
(McKinsey et al., 2000) known to modulate several intracellular 
pathways (Agell et al., 2002). An important Ca2+ source must be 
the extracellular Ca2+, given the remarkable upregulation of the 
VGCC genes (Cacna1a, Cacna1b, Cacna1c, Cacna2d1, Cacnb3, 
Cacnb4, Cacng2/Stargazin). These channels can be activated via 
AMPA receptors that were shown to enhance/stimulate GABAergic 
interneuron migration (Manent et al., 2006). Indeed, our in vivo 
experiments demonstrated the importance of the GluA1 subunit 
regulating neuroblast migration (Figures 6E,F, 7D and 8A–D). 
Finally, the bioinformatics data indicate a connection with the 
actin fi ber remodeling system via the Wave1 (Wasf1) and Arp2/3 
complex.

Another identifi ed upregulated network, the Akt1-DNA tran-
scription network (Figure 9), couples Akt1 signaling to the complex 
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protein machinery involved in transcriptional regulation and protein 
folding. Many factors could regulate Akt1 (e.g., see Figures 4A,B). 
One of them is Hsbp1 that regulates apoptosis through Akt1 (Rane 
et al., 2003). Only a small percentage of neuroblasts after reach-
ing the OB integrate into local circuits. Many migratory cells die 
by apoptosis, a process counteracted by Hsbp1-Akt1 activity. Akt1 
could also have a considerable impact on DNA transcription by acti-
vating several DNA and histone- modifying proteins that we found 
to be upregulated in migrating cells,  including histone deacetylase 
2 (Hdac2) and DNA methyltransferase 3a and 3b (Dnmt3a and 
3b, respectively). Consistent with the bioinformatics data, Hdac2 
expression silencing in vivo had a remarkable effect on neuroblast 
migration (Figures 6C–F, 7C,D). Thus, the Akt1-DNA transcrip-
tion network is likely to play a functional role in these  developing/
immature cells whose pattern of transcribed genes undergoes fast 
modifi cations.

The GF signaling network (Figure 5A) activates several intracel-
lular cascades and the actin machinery. There are core proteins of 
this network – PI3K, Akt1, Rac1 and PKCζ – that are important 
effectors for neuroblast migration as demonstrated by our in vitro 
and in vivo analysis. The GF signaling network that was function-
ally investigated here is further linked to other signaling cascades 
(e.g., p38/MAPK and Jnk) via the small GTPases, Cdc42 and Rac, as 

indicated by the bioinformatics analysis. Furthermore, we extended 
this study to two auxiliary proteins in the GF signaling network 
(Figure 9), Ppm1a and Vav3, and provided in vivo evidence that 
they affect RMS neuroblast migration. Vav3 is a GEF and cata-
lyzes the exchange of GDP to GTP in a GTPase complex, thereby 
activating GTPases (Rossman et al., 2005). Activation of Rac1 
by Vav3 promotes microvascular endothelial cell migration and 
Vav2−/− Vav3−/− mice show signifi cant decrease in the  formation 
of fi lopodia and lamellipodia (Hunter et al., 2006). In our study 
we found that knockdown of Vav3 altered growth cone formation 
of migrating RMS neuroblasts (Figures 8E–G). Thus, Vav3 and 
Ppm1a, as well as other auxiliary proteins (see Figure 5A) have an 
important role in neuroblast migration most likely by fi ne-tuning 
the modulation of the core protein activity (PI3K, Akt1, Rac1 and 
PKCζ) in the GF signaling network.

Finally we investigated the involvement of MAPK signaling 
network (Figure 5B) in neuroblast migration. The crucial role of 
the MAPK cascade for migration of different cell types including 
neurons (Sarkisian et al., 2006) has been demonstrated (reviewed 
in Huang et al., 2004). We provided in vivo evidence for an involve-
ment of the upper part of the network in neuroblast migration 
(Vav3, PI3K and Rac1). However, silencing of the downstream 
genes Map3k13, Map2k4 and Atf2 did not affect neuroblast 

FIGURE 9 | Major signaling pathways in migrating neuroblasts resulting from our study. In red are proteins that we showed in vivo to be important for 
migrating neuroblasts. In green are proteins that might be involved in neuroblast migration according to our microarray data and bioinformatics analysis.
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 migration. This clearly indicates the necessity for functionally 
testing individual genes and networks resulting from bioinfor-
matics analysis.

Of further interest are the results regarding the strong 
 upregulation of some genes that were not further functionally 
tested. Thus, the most upregulated gene (more than 50-fold) was 
protocadherin (Pcdh7), which codes for a cell adhesion protein. 
Protocadherins are a family of cell adhesion proteins that play an 
important role in establishing neural connectivity (Morishita and 
Yagi, 2007). For example, protocadherin FAT1 was shown to be 
necessary for actin binding of Ena/VASP, an actin  polymerization 
regulating protein (Moeller et al., 2004). It is possible that Pcdh7 
plays a role in actin remodeling and thus affects RMS neuroblast 
migration.

An impressive upregulation was also noted for Cadps2 (Ca2+-
dependent activator protein 2), a secretory vesicle-associated pro-
tein involved in the release of neurotrophins (Sadakata et al., 2004) 
that play a key role in many processes of brain development, includ-
ing neuronal migration (Woo and Lu, 2006).

Neuronal migration is a very important process for brain develop-
ment and in some brain areas still plays a functional role in plasticity 
even during adulthood. Many signals initiate in the surrounding 
microenvironment and direct the migration of the right neurons 
to the right place. The signals are integrated by many intracellular 
pathways in a large migratory network. Although these pathways 
have different constituents they operate together and disturbance of 
any of them could dramatically change the outcome of migration. 
We performed an in vivo analysis to identify candidate genes consti-
tuting functional networks underlying migration. For many poorly 

studied proteins we ascertained new functions and assigned a place 
in a network. We discussed how certain pathways could be meaning-
fully linked into more complex networks, how certain players act in 
several pathways that all are parts of the migratory cell transcriptome. 
Comparison with data obtained from cancer cells may help identify 
differentially expressed genes/pathways in migrating malignant cells 
and normal cells. However, any  bioinformatics data have to be tested 
functionally because a defi ned network may serve different functions 
in the same cell type and distinct cellular processes (for instance, 
migration in this study) must be analyzed in the context of the whole 
organism. Publicly available data obtained in the study can be used 
for further comprehensive functional analysis of yet other pathways 
and their integration into a global migrational network.
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