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In many nervous systems, the establishment of neural circuits is known to proceed via a 
two-stage process; (1) early, activity-independent wiring to produce a rough map characterized 
by excessive synaptic connections, and (2) subsequent, use-dependent pruning to eliminate 
inappropriate connections and reinforce maintained synapses. In invertebrates, however, 
evidence of the activity-dependent phase of synaptic refi nement has been elusive, and the 
dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent 
manner. This conclusion has been challenged recently through the use of new transgenic tools 
employed in the powerful Drosophila system, which have allowed unprecedented temporal 
control and single neuron imaging resolution. These recent studies reveal that activity-dependent 
mechanisms are indeed required to refi ne circuit maps in Drosophila during precise, restricted 
windows of late-phase development. Such mechanisms of circuit refi nement may be key to 
understanding a number of human neurological diseases, including developmental disorders 
such as Fragile X syndrome (FXS) and autism, which are hypothesized to result from defects 
in synaptic connectivity and activity-dependent circuit function. This review focuses on our 
current understanding of activity-dependent synaptic connectivity in Drosophila, primarily 
through analyzing the role of the fragile X mental retardation protein (FMRP) in the Drosophila 
FXS disease model. The particular emphasis of this review is on the expanding array of new 
genetically-encoded tools that are allowing cellular events and molecular players to be dissected 
with ever greater precision and detail.
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et al., 2005; Liu et al., 1994; Wiesel, 1982). In these systems, an early 
soft-wiring program of activity-independent mechanisms involv-
ing guidance cues, diffusible signaling ligands and transmembrane 
receptors appears suffi cient to direct pre- and postsynaptic proc-
esses to proper locations and culminate in synaptogenesis (Cang 
et al., 2005a; Cutforth et al., 2003; Feinstein and Mombaerts, 2004; 
Feinstein et al., 2004; Imai et al., 2006; Yates et al., 2001). The fi nal 
refi nement of both dendritic and axonal projections to specify the 
mature synaptic map then requires intrinsic synaptic fi ring (for 
review see Wong and Ghosh, 2002). In some circuits, such as the 
mammalian olfactory system, the relative role of activity-dependent 
refi nement is more controversial, as different groups have found 
evidence for and against this process (Lin et al., 2000; Marks et al., 
2006; Yu et al., 2004; Zheng et al., 2000).

In invertebrates, the involvement of synaptic activity in modu-
lating circuits is much less clear. The dogma has long been that 
invertebrate circuits are hard-wired from the early stages of devel-
opment, and do not employ activity-dependent refi nement in a 
manner comparable to vertebrates. Indeed, a strong body of experi-
mental evidence supports this position, in both primary sensory 
circuits and higher order systems (Berdnik et al., 2006; Hiesinger 
et al., 2006; Jefferis et al., 2004; Oland et al., 1996; Scott et al., 2003; 
Srahna et al., 2006). However, both classical and recent evidence has 
shown that environmental experience in invertebrates is capable of 
modulating the connectivity of sensory and higher order  circuits 

INTRODUCTION
The development of neural circuits is initiated with the “soft-
 wiring” of speculative synaptic connections that form the founda-
tion of specifi c penultimate circuits, and culminates with a process 
of refi nement in which the correct synaptic connections are solidi-
fi ed, while improper connections are systematically weakened and 
removed from the circuit. The initial phase of synaptic overgrowth 
is presumably required to ensure that the nervous system is com-
pletely wired in the proper manner without missing essential syn-
aptic targets. It is hypothesized that a less inclusive, more precise 
growth, extension and connection program would run the risk of 
missing important synaptic connections and thus leave the brain 
with impaired processing capacity and unable to effi ciently respond 
to the myriad of sensory demands from the environment. Moreover, 
the removal of inappropriate synapses, coupled to the addition of 
newly acquired synapses, provides a vital segregation mechanism to 
distinguish connections with common functionality. Thus, before 
so-called “hard-wiring” can be complete, circuits must go through 
a period of neuronal process pruning.

The refi nement of neural circuitry depends on a period of neu-
ronal activity, which is known to be necessary for the fi nal speci-
fi cation of the synaptic map. This activity-dependent process has 
been classically investigated in the vertebrate neuromusculature and 
visual sensory system, with less exploration in higher order cen-
tral brain integration circuits (Cang et al., 2005b; Chandrasekaran 
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(Chiba et al., 1988; Devaud et al., 2001, 2003; Fahrbach et al., 1995; 
Sachse et al., 2007; Withers et al., 1993). Very recently, detailed 
structural analysis of single neuron architecture in vivo has shown 
activity-dependent refi nement of circuits as a late-occurring phase 
of development (Tessier and Broadie, 2008; Tripodi et al., 2008). 
These new insights have resulted from advances in the powerful 
Drosophila genetic system, and novel transgenic tools position a 
fi eld now poised to dissect the cellular and molecular mechanisms 
of circuit map refi nement.

Multiple neurological disorders of mental retardation and 
autism likely arise from defects in neural circuit refi nement. The 
most common of these is Fragile X syndrome (FXS), an X-linked 
inherited genetic disorder of mental retardation (IQ < 40), autism 
and hyperexcitability (Cohen et al., 2005; Hagerman et al., 2005; 
Rogers et al., 2001; Sullivan et al., 2006). FXS patients commonly 
exhibit hypersensitivity to sensory stimuli, hyperactivity and atten-
tion defi cit disorder, with approximately 20% of patients mani-
festing epileptic seizures during childhood (Berry-Kravis, 2002; 
Incorpora et al., 2002; Musumeci et al., 1999). A great deal of recent 
interest has focused on FXS at the intersection of developmental 
circuit refi nement and neuronal activation. FXS is caused by loss of 
function of the fragile X mental retardation (FMR1) gene, a member 
of a tripartite gene family (Pieretti et al., 1991; Siomi et al., 1995; 
Zhang et al., 1995). In rodents, the expression and function of the 
FMR1 product (FMRP) is regulated by neuronal activity levels, 
with the FMRP expression peak during the early postnatal period 
of synaptic refi nement (Ferrari et al., 2007; Khandjian et al., 1995; 
Ostroff et al., 2002; Singh et al., 2007; Tessier and Broadie, 2008; 
Wang et al., 2004, 2008). A hallmark of FMRP loss is the failure 
to remove immature synaptic connections (Comery et al., 1997; 
Galvez and Greenough, 2005; Galvez et al., 2003, 2005; Irwin et al., 
2001, 2002; McKinney et al., 2005; Nimchinsky et al., 2001; Rudelli 
et al., 1985). Thus, FMRP is a leading candidate for a molecule 
mediating activity-dependent synaptic refi nement.

A powerful FXS model has been long established in Drosophila 
(Wan et al., 2000; Zhang et al., 2001). There is only a single homolo-
gous Drosophila FMR1 gene (dfmr1), so its deletion is presumably 
more comparable to loss of the tripartite gene family in mammals. 
Consistently, null dfmr1 mutants exhibit strikingly similar molecu-
lar, cellular and behavioral phenotypes compared to mouse FMR1 
knockouts, but with the great advantage of increased robustness of 
phenotype manifestation (Zhang and Broadie, 2005). A particular 
advantage of the Drosophila model is the UAS-GAL4 promoter/
transcriptional activator transgenic tools which permit spatially and 
temporally targeted genetic manipulation of this system (Fischer 
et al., 1988). For example, transgenic expression of modifi ed ion 
channels can be used to potentiate or depress neuronal function 
to probe roles of neuronal activity in identifi ed circuits, and trans-
genic reporters can be similarly introduced to monitor this activ-
ity (Mosca et al., 2005; Reiff et al., 2005; White et al., 2001). The 
Mosaic Analysis with a Repressible Cell Marker (MARCM) clonal 
approach permits such manipulation down to the level of single 
neurons within defi ned circuits (Lee and Luo, 2001). The inducible 
GeneSwitch system can control these tools at specifi c temporal or 
developmental time windows (Osterwalder et al., 2001). The vast 
array of targeted activator lines available allows interrogation of 
relevant circuitry throughout the fl y brain.

This review focuses on recent work in the Drosophila FXS model 
showing that activity-dependent refi nement of synaptic architec-
ture in defi ned brain circuits proceeds into the adult stage of the 
life cycle. The many genetic tools being used to dissect the roles 
of the critical FMRP synaptic regulator will be discussed. In this 
review, we distinguish between early activity-dependent refi nement 
of synaptic connections and maintained activity-dependent syn-
aptic plasticity. Developmental refi nement includes architectural 
and functional remodeling of a circuit in response to initial-use 
neuronal activity, which is necessary to sculpt the fi nal synap-
tic map. This mechanism is restricted to precise developmental 
windows corresponding to activation by external experience. In 
contrast, synaptic plasticity involves activity-dependent alterations 
in synaptic structure and function required for the generation of 
higher order brain activities, such as learning and memory. This 
is a maintained property of neuronal circuits, which is temporally 
separable. However, it may be that the developmental refi nement 
sets the stage to permit the plastic modulations later in life, or that 
these two activity-dependent processes may involve an overlapping 
cast of molecular players.

DEVELOPMENTAL WINDOWS OF ACTIVITY-DEPENDENT 
CIRCUIT MODULATION
Sensory systems are particularly attractive for the study of activity-
dependent development, owing to the stereotypic structuring of 
sensory neurons and the ease of manipulating appropriate activity 
input. In the Drosophila visual system (Figure 1A), the dogma has 
been that development proceeds solely via intrinsic genetic elements 
such as receptor/ligand interactions, and specifi cally that neuronal 
activity is not required for the fi nal hard-wired map to form. For 
example, blocking visual activity by dark-rearing animals report-
edly caused no clear changes in dendritic structure in the lamina 
(Scott et al., 2003). A more rigorous experiment using the UAS/
GAL4 system to express the cell death head involution defective 
(hid) gene to destroy photoreceptors in the imaginal discs as soon 
as they are born, similarly failed to detect signifi cant  alterations in 
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FIGURE 1 | Organization of Drosophila olfactory and visual systems. 

(A) The visual lobe receives input from retinal photoreceptor cells (grey). 
Photoreceptors 1–6 project to the lamina neuropil (green) while 
photoreceptors 7 and 8 project to the medulla neuropil (red). Signals are 
further processed in the lobula complex (blue) before proceeding to higher 
order brain regions. (B) The olfactory system receives input from olfactory 
sensory neurons (black), which each project axons to unique olfactory lobe 
glomeruli (grey). Local interneurons (blue) process information from multiple 
glomeruli. Projection neurons (green) transmit signals to higher order brain 
regions, including the Mushroom Body.
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laminal dendritic structures (Scott et al., 2003). Likewise, a large 
scale high-resolution electron microscopy study revealed no dif-
ferences in synapse number, or the location of synaptic boutons, 
in photoreceptor contacts from 43 different genetic mutants alter-
ing the levels of synaptic activity (Hiesinger et al., 2006). These 
studies therefore concluded that neuronal activity is not required 
for circuit map refi nement. Similarly, the Drosophila olfactory sys-
tem is reportedly largely stable throughout pupal morphogenesis 
(Figure 1B), and olfactory lobe innervations by either the pre- or 
postsynaptic cell are still patterned in the absence of the opposing 
synaptic partner (Berdnik et al., 2006). In contrast, serotonergic 
interneurons in the Drosophila antennal lobe display dramatic 
reorganization throughout development, which is dependent on 
evoked and spontaneous neural activity (Roy et al., 2007). It is 
important to note that the Drosophila studies have all focused on 
developmental time points during pupal metamorphosis, as cir-
cuit activity has been shown to be functioning during this devel-
opmental transition (Hardie et al., 1993). However, it is not clear 
when the development of these circuits ends and a “mature state” 
is achieved. The moment when the insect emerges from the pupal 
case (eclosion), is commonly considered the end of development 
and the start of adulthood, without any defi ned transitory period. 
This delineation appears as naïve as considering birth to be the 
end of development in mammals: the postnatal period is the active 
stage of activity-dependent refi nement and synapse elimination. 
Similarly, changes in the volume of Drosophila olfactory glomeruli 
and visual lamina occur within days after eclosion (Barth et al., 
1997; Devaud et al., 2001, 2003; Sachse et al., 2007). Recent work in 
both fl ies and ants has shown pruning of axonal processes, dendrites 
and synaptic connections occurs during the post-eclosion period 
(Seid and Wehner, 2009; Tessier and Broadie, 2008). Thus, during 
the initial early-use period following eclosion, Drosophila shows 
developmental refi nement of synaptic processes, which we believe 
will become increasingly apparent with advances in genetic tools 
and high-resolution imaging.

The fragile X mental retardation protein (FMRP) appears to 
be one player modulating the refi nement of synaptic processes. 
FMRP is an mRNA-binding protein implicated in transcript stabil-
ity, transport and translational repression (for review, see Bassell 
and Warren, 2008). A popular hypothesis is that FMRP represses 
mRNA translation during transport to synapses and locally modu-
lates translation in response to synaptic activity. In this mechanism, 
FMRP provides the means of ensuring that proteins required for 
synaptic structure and function are effi ciently translated in response 
to use-dependent need. Importantly, FMRP expression peaks 
sharply during the developmental period of synaptic refi nement, 
both in vertebrates and invertebrates, which suggests a predominant 
role in this transitory mechanism. In Drosophila, dFMRP is strongly 
expressed in the brain during late stages of pupal metamorphosis 
and shortly after eclosion (Tessier and Broadie, 2008). Following 
the early-use period, dFMRP protein levels drops precipitously 
to a low level, which is thereafter maintained throughout adult-
hood. Interestingly, the dfmr1 mRNA profi le mimics the dFMRP 
protein levels throughout development, but then diverges in the 
adult animal when dfmr1 transcript levels rise to high levels but 
the dFMRP protein remains scarce (Tessier and Broadie, 2008). 
This suggests two distinct mechanisms of dFMRP regulation 

 during (1) the post-eclosion refi nement period and (2) presumed 
 synaptic plasticity mechanisms in the mature animal. Further 
support for a transient role of dFMRP is apparent in the earlier 
larval period of development (Gatto and Broadie, 2008). The 
conditional GeneSwitch system was used to control the temporal 
expression of dFMRP in the nervous system (Osterwalder et al., 
2001). GeneSwitch is a pharmacologically controlled version of the 
UAS-GAL4 system in which the GAL4 activator protein requires the 
cofactor RU486 (an analog of mifepristone) to promote transcrip-
tion at UAS promoter sites. The drug may be mixed with standard 
fl y food, or applied topically to induce targeted gene transcription. 
After removal of the drug, expression of the UAS transgene once 
again stops. Thus, the GeneSwitch system adds temporal control 
of gene expression to the inherent spatial control of the classi-
cal UAS-GAL4 method. Conditional dFMRP expression in dfmr1 
null animals is effective in reducing synaptic defects only when the 
induction window is during the early-use period immediately after 
larval hatching (Gatto and Broadie, 2008). Late dFMRP induction 
at maturity only very weakly alleviates a subset of synaptic defects. 
Thus, dFMRP peak expression and functional requirement both 
correspond to the restricted developmental windows of early use 
refi nement.

Several lines of evidence suggest that FMRP functions directly 
downstream of neuronal activity (reviewed in Bassell and Warren, 
2008). FMRP associates with polyribosomes in an activity-
 dependent manner and phosphorylated FMRP functions to locally 
repress the translation of critical synaptic proteins. After activation, 
FMRP is rapidly dephosphorylated to relieve this repression, but 
is subsequently re-phosphorylated to prevent excessive transla-
tion. In rodents, FMRP expression itself is regulated by sensory 
input activity (Irwin et al., 2005; Todd and Mack, 2000). Similarly 
in Drosophila, rearing in sensory deprived conditions results in 
decreased levels of both dfmr1 mRNA and dFMRP protein in the 
brain (Tessier and Broadie, 2008). Likewise, dFMRP expression 
is signifi cantly reduced in mutant animals with genetic blocks in 
olfactory and visual sensory pathways. Importantly, this activity-
dependent regulation occurs during the period of early circuit use-
dependent refi nement, when dFMRP levels are transiently elevated 
compared with the mature animal (Tessier and Broadie, 2008). 
Thus, it is probable that dFMRP is acting as a monitor of circuit 
activity during this time window, with its expression controlled by 
sensory input and activity-dependent processes regulated by the 
translation of subsets of synaptic mRNAs.

The translation of many FMRP mRNA targets (e.g. MAP1B, 
Arc/Arg3.1 and PSD95) is rapidly upregulated by synaptic activa-
tion of metabotropic glutamate receptors (mGluRs), (Davidkova 
and Carroll, 2007; Park et al., 2008; Todd et al., 2003; Waung et al., 
2008). The overextension of synaptic complexity in FMR1 knockout 
mice can be rescued either by antagonizing mGluR signaling or by 
more broadly enriching environmental stimulation (de Vrij et al., 
2008; Restivo et al., 2005). The latter is also effective at eliminating 
hyperactive behaviors in FMR1 mutant mice (Restivo et al., 2005). 
Together, these studies suggest that FMR1 mutant animals exist in 
a state of heightened activity, which therefore precludes cellular 
responses to additional input. In the Drosophila FXS model, the 
translation of the dFMRP mRNA targets (e.g. chickadee/ profi lin) 
is elevated in genetic mutants blocking sensory activity inputs 
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(Tessier and Broadie, 2008). To examine structural consequences 
of functional cell-autonomous requirements, Mosaic Analysis with 
a Repressible Cell Marker (MARCM) can be used to visualize single 
mutant neurons in an otherwise wildtype brain (Figure 2). This 
genetic technique might be compared to Golgi staining, with the 
important addition that neurons labeled via MARCM are mutant 
for the gene of interest while all unlabeled neurons remain unaf-
fected. The MARCM method uses a GAL4 activator expressed in a 
subset of neurons to turn on expression of a UAS-promoter con-
trolled GFP transgene (Lee and Luo, 2001). However, the animals 
also ubiquitously express a GAL80 repressor, which inhibits GAL4 
activation. To alleviate this repression, a heat shock controlled fl i-
pase is used to induce mitotic recombination between targeted 
FRT sites on the chromosome carrying the GAL80 repressor and 
the chromosome carrying the mutant gene of interest (in this case, 
dfmr1). By timing the recombination to coincide with the develop-
ment of a known neuronal population, the result is a mutant clone 
lacking the GAL80 repressor. Thus, GFP is expressed, effectively 
labeling the mutant clonal population and permitting mutant 
cell structural analyses. The Drosophila Mushroom Body (MB) 
learning/memory center is critical for the integration of sensory 
experience (Figure 2A). MARCM analysis of single MB neurons 
(Figure 2B), comparing control to dfmr1 mutant cells, revealed 
structural over-elaboration of synaptic connections, both in axonal 
processes and dendritic arbors (Pan et al., 2004). By defi nition, 
this requirement is cell-autonomous and also bidirectional, since 

dFMRP over-expression greatly reduced the number of synaptic 
connections. The fl uorescent GFP signal from MARCM clones was 
then photoconverted to an electron-dense signal for ultrastructural 
analyses (Figure 2C). This powerful method showed that synaptic 
differentiation was altered in the absence of dFMRP, with a loss of 
regulation in synaptic bouton size and establishing synaptic vesi-
cle pools (Pan et al., 2004). These MARCM defects were reversed 
by pharmacologically antagonizing mGluRs with 2-methyl-6-
 (phenylethynyl)-pyridine (MPEP), showing that dFMRP functions 
to control synaptic connectivity via a pathway mediated by synaptic 
mGluR activity (Pan et al., 2008). It was subsequently established 
that an axonal pruning and synapse elimination program in these 
MB neurons normally occurs shortly after eclosion, during the 
initial use period, and that this refi nement mechanism is lost in 
dfmr1 null neurons during this specifi c developmental window 
(Tessier and Broadie, 2008).

A recently developed means of directly manipulating neuronal 
activity in vivo employs the UAS-GAL4 system to target expres-
sion of a Chlamydemonas light-gated ion channel, channelopsin 
(Boyden et al., 2005; Nagel et al., 2003; Schroll et al., 2006). In the 
presence of the cofactor, all-trans retinal, this exogenous channel, 
referred to as channelrhodopsin (CHR2), conducts depolarizing 
current when stimulated with 480 nM blue light (reviewed in this 
issue). In Drosophila, this technique has recently been used broadly 
to control the activity of selected subsets of neurons by targeting 
UAS-CHR2 expression with a range of GAL4 driver lines (Borue 
et al., 2009; Hornstein et al., 2009; Pulver et al., 2009; Zhang et al., 
2007). In addition to the targeting advantages, the electrophysi-
ological functioning of the channel is now being manipulated, 
which will permit even more precise control of synaptic events 
(Nikolic et al., 2009; Radu et al., 2009; Wang et al., 2009a). When 
targeted to MB neurons, activation of the CHR2 channel effec-
tively augmented activity-dependent synaptic pruning in control 
animals, but completely failed to do so in dfmr1 null animals 
(Tessier and Broadie, 2008). This pruning function was restricted 
to the early-use developmental window in post-eclosion animals; 
reintroduction of environmental stimulation in mature animals 
failed to induce pruning. Thus, precise timing of events must be 
required for the activity-dependent pruning mechanism of dFMRP 
function, further suggesting that dFMRP itself may be the specifi c 
molecule “reading” the activity input required for refi nement of 
neuronal circuits.

More generally, developing Drosophila neurons have also been 
recently imaged in genetic mutants that either lack the ability to 
produce neurotransmitter, or were targeted with the UAS-GAL4 
system to express tetanus light chain toxin (TNT-LC) to eliminate 
neurotransmitter release (Tripodi et al., 2008). The TNT-LC pro-
tease cleaves the integral synaptic vesicle protein n-synaptobrevin 
in the presynaptic terminal and thereby eliminates evoked, but 
not spontaneous, neurotransmitter release (Broadie et al., 1995; 
Sweeney et al., 1995). This transgenic tool provides an excel-
lent means of ascertaining cellular responses and developmental 
requirements of evoked neurotransmission. Earlier studies have 
clearly shown that the synaptic outputs of motor neurons at the 
neuromuscular junction (NMJ), are sculpted by activity at mul-
tiple levels of structural and functional refi nement (Broadie and 
Bate, 1993; Budnik et al., 1990; Jarecki and Keshishian, 1995; Mosca 
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FIGURE 2 | Imaging the mushroom body learning and memory center. 

(A) OK107-GAL4 line driving GFP in the Mushroom Body (MB). (B) A single 
MB neuron clone generated by MARCM. (C) The MARCM fl uorescent signal 
photoconverted to an electron-dense signal in the presence of 
diaminobenzene (DAB) with high intensity 490 nm light. The arrow points to a 
labeled MB process.
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et al., 2005). In a recent study on embryonic motor neurons, it was 
determined that the elongation of dendritic branches onto which 
silenced synapses input was mitigated simply by the act of contact 
between the pre- and postsynaptic cell, and was independent of 
synaptic activity (Tripodi et al., 2008). However, presynaptic activ-
ity was required for synaptic refi nement, as neurotransmission was 
involved in regulating local dendritic architecture. Blocking evoked 
transmission with TNT-LC resulted in an increase in the length of 
dendritic branches which did not themselves make synaptic con-
tacts, but were derived from the same ordered branch as a branch 
which did make a synaptic contact (Tripodi et al., 2008). Thus, 
the growth of these so-called “non-synaptic sister branches” was 
locally controlled by nearby synaptic activity. This study further 
suggested that global changes in dendritic structure may be used to 
compensate for alterations in synaptic input. In other words, if the 
postsynaptic cell does not receive the correct amount of presynaptic 
input, it can elaborate its dendritic arbor to ensure proper synap-
tic coverage. These intriguing fi ndings show that the arrangement 
of the fi nal synaptic systems in the Drosophila neuromusculature 
involve activity-dependent mechanisms.

LEVELS OF ACTIVITY CONTROL
Neurotransmitter-activated G-protein coupled receptors partici-
pate in neurotransmission via G-protein dependent downstream 
signaling cascades (Conn and Pin, 1997). The role of metabotropic 
glutamate receptors (mGluRs) in particular has been well docu-
mented in regulating both synaptic architecture and function. In 
mammals, these receptors are divided into 3 classes of 8 subtypes 
(Pin and Duvoisin, 1995), with marked distribution and functional 
differences. Group I mGluR5 functions upstream of FMRP, and 
FMRP functions in mGluR-induced forms of synaptic plasticity 
(Hou et al., 2006; Nosyreva and Huber, 2006; Wilson and Cox, 2007; 
Zhang et al., 2009). The mGluR (or Gq) theory of Fragile X pro-
poses that synaptic Gq signaling through such receptors regulates 
FMRP to control the translation of specifi c mRNAs modulating 
synapse structure and function (Bear et al., 2004; Volk et al., 2007). 
However, the application of this theory to neural circuit devel-
opment is not clear. In support of such a developmental model, 
mGluR5 is important for synaptic development, although this 
role may be region-specifi c (Hannan et al., 2001). For example, 
recent studies show that formation of the mouse somatosensory 
barrel cortex is dependent on mGluR5, with knockout mice exhib-
iting a nearly complete loss of barrel segregation in developing 
layer 4  neurons (Wijetunge et al., 2008). Mutant neurons exhibit 
a reduced density of dendritic spines. In contrast, no difference 
was seen in dendritic spines from mGlur5+/− heterozygote layer 
3 pyramidal neurons (Dolen et al., 2007). Consistently, expression 
pattern analysis and pharmacological disruption of mGluR sign-
aling demonstrates these receptors function differentially during 
development and at maturity to regulate differentiation of dendritic 
spines as well as mediate synaptic plasticity (Chen and Roper, 2004; 
Doherty et al., 2004; Mares, 2009; Mateo and Porter, 2007; Reid and 
Romano, 2001; Reid et al., 1997; Vanderklish and Edelman, 2002; 
Wang et al., 2007). Since FMRP functions downstream of mGluR 
signaling, and is itself developmentally regulated during a transient 
window, FMRP may be the molecule providing developmental spe-
cifi city to this pathway.

The Drosophila genome encodes only a single functional mGluR, 
DmGluRA, allowing a single gene knockout of all mGluR sign-
aling that is unencumbered by potential multi-gene interactions 
(Bogdanik et al., 2004). Since DmGluRA is the only Drosophila 
mGluR, it must mediate all conserved functions of the mammalian 
sub-types. Genetic ablation of DmGluRA clearly demonstrates the 
importance of mGluR signaling in regulating synaptic structure and 
function in Drosophila (Bogdanik et al., 2004). Null mutants exhibit 
reduced synaptic bouton number and a concomitant increase in 
bouton size at the larval NMJ. In addition, activity-dependent 
synaptic facilitation is dramatically augmented in animals lack-
ing DmGluRA providing further evidence that this receptor func-
tions at the interface of synaptic structure and function. Based on 
mammalian studies, it is reasonable to hypothesize that DmGluRA 
may interact with dFMRP. Indeed, the expression of DmGluRA 
and dFMRP is inversely correlated in the Drosophila nervous sys-
tem (Pan et al., 2008), as observed in null mutants of each gene 
respectively. Moreover, co-removal of dFMRP and DmGluRA is 
able to restore normal coordinated behavior, which is impaired in 
DmGluRA single null mutants. Similarly, co-removal of DmGluRA 
and dFMRP rescues the increased synaptic arborization and branch 
number characterizing the dfmr1 single null NMJ. This genetic 
rescue is paralleled using a pharmacological mGluR antagonist 
(MPEP), which restores the dfmr1 null synaptic architecture 
towards normal, both at the larval NMJ and the adult brain MB 
learning/memory center (Pan et al., 2008). The challenge now is 
to extend these central brain studies to determine the relationship 
between mGluR signaling and the role of dFMRP in establishing 
and modulating synaptic function.

Fortunately, new techniques are emerging that make functional 
assays in defi ned Drosophila central brain neurons more accessible. 
For example, in recent years a primary neuronal culture system 
has been created by deriving in vitro isolated neurons from pupal 
brains (Figure 3) (Gu and O’Dowd, 2007; Phillips et al., 2008; 
Su and O’Dowd, 2003). These neurons send out processes that 
form synaptic connections over the course of a couple days, and 
are capable of both spontaneous and evoked neurotransmitter 
release, which can be monitored in vitro (Gu et al., 2009). Using 
the UAS-GAL4 system, primary cultures are derived from animals 
expressing visual markers (e.g. UAS-GFP) in a defi ned subset of 
neurons in order to interrogate functional properties. For example, 
the lypophilic FM dyes are commonly applied to visually moni-
tor the synaptic vesicle cycle (Figure 3B) (Betz and Bewick, 1992). 
Depolarizing stimulation causes the dye to be loaded into vesi-
cles and then unloaded upon subsequent depolarization, allowing 
readouts of both endocytosis and exocytosis. This technique can 
also be coupled to the process of photoconversion, such that the 
fl uorescent dye signal is converted into an electron dense product 
visible via high-resolution electron microscopy (Figure 3C). Thus, 
by photoconverting dye-loaded synapses, quantitative measure-
ments can be made of the capacity of defi ned synapses to respond 
to stimulation. Similarly, the genetically encoded synaptopHluo-
rin reporter can be expressed in a neuron type specifi c manner 
to also monitor the synaptic vesicle cycle (Poskanzer and Davis, 
2004; Poskanzer et al., 2003). SynaptopHluorin is a fusion protein 
of a pH-sensitive GFP (pHluorin) and the integral synaptic vesicle 
protein synaptobrevin, such that the phluorin moiety is situated in 
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the acidic lumen of the vesicle (Burrone et al., 2006; Miesenbock 
et al., 1998). Upon stimulation, vesicles fuse with the presynaptic 
membrane and synaptopHluorin is exposed to the relatively basic 
extracellular space, causing an increase in fl uorescence intensity. 
Likewise, when the reporter is endocytosed back into a vesicle, the 
acidic vesicular lumen quenches the synaptopHluorin fl uorescence. 
Monitoring these fl uorescence changes in dfmr1 and DmGluRA 
single and double mutants will extend the functional analysis of 
this critical pathway.

Of course, it is best to characterize synaptic function in the 
context of native circuits within the brain. To that end, a Drosophila 
non-dissociated whole brain explant system has been developed 

that provides access to relatively undisturbed central circuits for 
extended periods (∼1 week) (Ayaz et al., 2008; Wang et al., 2003). In 
principle, the explant brain can be subjected to repeated  imaging/
recording from the same neuron or circuit over time. As with pri-
mary neuronal cultures, these whole brain explants reportedly 
maintain synaptic properties and are amenable to both imaging and 
electrophysiological studies. Thus, it should be possible to moni-
tor activity-dependent processes of development in this form of 
ex vivo system. As with cultured neurons, synaptic function can be 
assayed with FM dye labeling using lipophilic dye incorporation 
into cycling synaptic vesicles and this marker photoconverted to 
allow ultrastructural analysis at a given time point (Figure 2C). 
Again the UAS-GAL4 system, or the more powerful MARCM tech-
nique described above, can be employed to study single neurons 
or described circuits. Importantly, both explants and minimally 
dissected intact brains can be imaged with GFP reporters to visu-
alize circuit neurons, in order to direct cellular electrophysiologi-
cal recordings (Gu and O’Dowd, 2007; Wilson and Laurent, 2005; 
Wilson et al., 2004). Exploiting these tools to study temporal regula-
tion of adult circuit development in both dfmr1 null and DmGluRA 
null animals will be critical components to determine the contribu-
tion of these genes to the functional wiring of the brain.

In mammals, one component of mGluR-dependent FMRP func-
tion is to regulate the cycling of AMPA glutamate receptors to/from 
postsynaptic membranes (Moga et al., 2006; Muddashetty et al., 
2007; Nakamoto et al., 2007; Waung et al., 2008). There have been 
many proposed mechanisms by which FMRP may regulate receptor 
endocytosis and traffi cking (Volk et al., 2007). A recent model pro-
poses translational regulation of the FMRP target mRNA encoding 
Activity Regulated Gene of 3.1 kb (Arg3.1; also called Arc) (Park 
et al., 2008). Arc expression is increased in synapses in response to 
synaptic activity and specifi cally in response to mGluR activation 
(Chowdhury et al., 2006; Moga et al., 2004; Park et al., 2008; Wang 
et al., 2009b). In Drosophila, two AMPA-R subtypes, GluRIIA and 
GluRIIB, are differentially regulated by dFMRP (Figure 4) (Pan and 
Broadie, 2007). The GluRIIB class of receptors is downregulated 
in the absence of dFMRP, whereas the GluRIIA class of receptors 
is upregulated. Conversely, DmGluRA single mutants exhibit a 
moderate elevation of both receptor classes, and the DmGluRA; 
dfmr1 double null mutant shows an additive effect: higher synap-
tic abundance of GluRIIA receptors and lower levels of GluRIIB 
receptors than in the dfmr1 null alone (Pan and Broadie, 2007). 
These two classes of AMPA-R differ markedly in their functional 
properties; for example, GluRIIA conducts larger current compared 
to GluRIIB (Figure 4) (DiAntonio et al., 1999; Sigrist et al., 2002). 
Thus, this mechanism of glutamate receptor subclass regulation 
may illustrate a means to directly modulate postsynaptic trans-
mission or, alternatively, to functionally compensate for changes 
in presynaptic effi cacy. Interestingly, FMRP in mammals has been 
shown to stabilize the mRNA of Postsynaptic Density Protein of 
95kDa (PSD-95), which modulates postsynaptic density forma-
tion and glutamate receptor localization/function (Zalfa et al., 
2007). Similarly in Drosophila, the PSD-95 homolog Discs Large 
(DLG) strongly regulates synaptic development and modulates 
the expression of GluRIIB class of receptors, but not the GluRIIA 
class (Chen and Featherstone, 2005). Thus, an attractive model is 
forming whereby downstream of DmGluRA synaptic signaling, 
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FIGURE 3 | Synaptic vesicle cycle imaging. (A) Nomarski (DIC) image of 
Drosophila primary brain neuron culture at 8 days in vitro. (B) The lipophilic dye 
FM1-43 loaded into vesicles by depolarization. Arrow points to a single 
synaptic bouton. (C) The fl uorescent FM1-43 signal can be photoconverted to 
an electron-dense signal in the presence of diaminobenzene (DAB) with high 
intensity 490 nm light. Arrow points to a single labeled synaptic vesicle.
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dFMRP regulates DLG mRNA stability and thereby  promotes the 
specifi c insertion of GluRIIB receptors into postsynaptic mem-
branes, at the expense of GluRIIA receptors, and thereby modulates 
synaptic transmission on the basis of GluRIIB functional properties 
(Figure 4).

This regulation of glutamate receptor subtypes may relate to 
recently reported changes in the functional synaptic transmission 
properties of dfmr1 and DmGluRA null mutants (Repicky and 
Broadie, 2009). Neurotransmission defects in both mutants are 
most apparent following prolonged periods of moderate to high-
frequency stimulation (e.g. 1 min, 10 Hz). During such a stimulus 
train, DmGluRA null animals show dramatic augmentation of the 
synaptic response, which is delayed in double mutant combination 
with the dfmr1 null. Similarly, the strikingly aberrant premature 
long term facilitation (LTF) present in DmGluRA null animals is 
again delayed in the double null mutants (Repicky and Broadie, 
2009). Following the high-frequency train, DmGluRA nulls mani-
fest grossly elevated post-tetanic potentiation (PTP), a defect pre-
vented by co-removal of dFMRP. These data suggest that DmGluRA 
functions in a negative feedback loop in which excess glutamate 
released during high-frequency transmission binds the DmGluRA 
receptor to dampen synaptic excitability, and dFMRP functions to 
suppress the translation of proteins regulating this synaptic excit-
ability. Removal of the translational regulator partially compensates 
for loss of the receptor and, similarly, loss of the receptor weakly 
compensates for loss of the translational regulator (Repicky and 
Broadie, 2009). The precise mechanism of this compensation may 
involve either pre- or postsynaptic functions, or potentially both.

The above studies clearly indicate a mechanistic requirement 
for both DmGluRA signaling and dFMRP function in modulating 
synaptic excitability and neurotransmission strength, but it is still 

unknown how these properties relate to circuit development. To 
begin to identify the intersecting pathways with activity, numer-
ous characterized genetic ion channel variants can be expressed 
in Drosophila neurons in a UAS-GAL4 targeted fashion to alter 
neuronal fi ring rates. For example, mutants in the Drosophila 
Shaker potassium channel have been made to perpetually activate 
this channel and effectively shunt electrical activity in the neurons 
expressing it (White et al., 2001). Conversely, a dominant negative 
(DN) form of Shaker can be expressed to specifi cally inactivate 
these channels and thus produce hyperexcitable neurons (Mosca 
et al., 2005). More specifi c blocks to neurotransmission may also 
be used, for example, by expressing the tetanus toxin light chain 
described above to block synaptic vesicle fusion, or by using 
DN temperature-sensitive mutants of the shibire gene encoding 
dynamin, which inactivates the synaptic vesicle cycle by inhibit-
ing endocytosis (Chen et al., 1991; Koenig and Ikeda, 1989; van 
der Bliek and Meyerowitz, 1991). Combining these techniques in 
dfmr1 and DmGluRA single and double mutants will be a power-
ful means to dissect the requirements of neuronal and synaptic 
excitability in order to test functional interactions in neural circuit 
developmental refi nement.

In addition to electrophysiological approaches, recent advances 
in Drosophila calcium imaging permit monitoring cellular responses 
to neuronal activation. Several GFP reporters have been generated 
which alter their fl uorescence properties in the presence of calcium, 
thus allowing the visual monitoring of calcium infl ux and buffering 
dynamics (Reiff et al., 2005). Reporters including the camgaroos 
and gCAMPs are GFP fusion proteins coupled to calmodulin Ca2+ 
binding domains (Pologruto et al., 2004; Yu et al., 2003). Upon 
binding with calcium, the GFP reporter undergoes a conforma-
tional change to enhance fl uorescence intensity (Figure 5). In 
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FIGURE 4 | Model of DmGluRA signaling and dFMRP function regulating 

postsynaptic changes. (A) In step 1, presynaptic glutamate (glu) release from 
synaptic vesicles (SV) stimulates the DmGluRA receptor to regulate dFMRP. In 
step 2, dFMRP regulates the stability of DLG/PSD-95 mRNA resulting in an 
increase in protein levels. In step 3, DLG facilitates the insertion of GluRIIB class 

of Drosophila AMPA-like receptors in postsynaptic membrane. In step 4, GluRIIB 
receptors support reduced excitatory junctional currents. (B) In the absence of 
dFMRP, DLG mRNA exhibits reduced stability and DLG protein levels are 
reduced. As a consequence, GluRIIA receptors dominate the synaptic 
membrane, causing increased excitatory junctional currents.
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Drosophila, these reporters can be used either in primary neuronal 
cultures of identifi ed neuronal subtypes (Figure 5A) or in the intact 
brain (Figure 5B). In addition, the commonly utilized cameleon 
reporters are a fusion of the calmodulin binding domain situ-
ated between CFP and YFP (Miyawaki et al., 1997). The cameleon 
reporter relies on a FRET based mechanism to generate fl uorescence 
changes in response to calcium binding. With this reporter, Ca2+ 
binding is monitored by a concomitant decrease in CFP emission 
and an increase in YFP emission (Fiala and Spall, 2003). Similarly, 
reporters based on the calcium-binding troponin C protein have 
been optimized by mutageneisis (TN-XXL) to produce high affi n-
ity calcium binding and reliable responses to stimulation (Mank 
et al., 2008). TN-XXL is sensitive over a range of stimulations and 
functions in both fl ies and mice as a stable monitor of calcium 
dynamics. Each transgenic reporter has distinct advantages and 
disadvantages, most notably in the respective signal to noise ratios, 
but they are continually being modifi ed to provide the best physi-
ological responses to neuronal activation.

BEHAVIORAL OUTPUTS OF ACTIVITY REGULATED CIRCUITS
The activity-dependent refi nement of neural circuits results in a fi nal 
wiring optimized for behavioral outputs. Of course, circuits remain 
plastic in mature animals, permitting constant modulation to adapt 
to changing conditions, to learn from environmental stimuli and 
to remember lessons learned. It may be that  activity- dependent 
refi nement during development is required to lay a foundation 
for maintained synaptic plasticity. Drosophila is well suited for the 
analysis of circuits driving quantifi able output behaviors. For exam-
ple, MB-dependent olfactory associative learning and progressive 
memory consolidation has been a particularly important focus in 
this system (Akalal et al., 2006; Connolly et al., 1996; de Belle and 
Heisenberg, 1994; Dubnau et al., 2001; Heisenberg et al., 1985; Tully 
and Quinn, 1985). Drosophila possess at least four distinct phases 
of memory (Isabel et al., 2004); short term memory (STM) and 

middle term memory, which persist each on the order of minutes, 
and anesthesia–resistant memory (ARM) and long term memory 
(LTM), which persist on the order of days to, theoretically, the 
end of the animal’s lifespan. Critically, only the latter two memory 
phases are dependent on de novo translation, with LTM alone being 
absolutely dependent on protein synthesis, both for its formation 
and maintenance (Isabel et al., 2004; Tully et al., 1994; Yu et al., 
2006). Experimentally, memory has been best characterized using 
an olfactory associative model whereby an animal is exposed to an 
odor/electrical shock pairing, learning to avoid this association in 
favor of an odor which has not been coupled to an electric shock 
(Tully and Quinn, 1985). While short and middle term memories 
are generated by multiple training sessions performed back to back 
with no breaks in between, this “mass training” protocol does not 
induce LTM (Yin et al., 1994). LTM is only induced by spacing train-
ing sessions (e.g. ∼15 min apart) and is blocked in the presence of 
protein synthesis inhibitors. Thus, there is an obvious potential link 
between protein synthesis-dependent LTM and the translational 
repressor FMRP whose loss is hallmarked by cognitive and memory 
impairments in FXS patients. FMRP may be required in an activ-
ity-dependent manner to establish the circuit map necessary for 
both learning and memory formation.

In Drosophila, null dfmr1 mutants have a relatively mild defect in 
learning formation and more profound defect in memory consoli-
dation in the above associative olfactory paradigm (Bolduc et al., 
2008). Importantly, the strong LTM defect only manifested after 
spaced training. dFMRP expression was broadly upregulated in the 
brain specifi cally in response to spaced training, but was unaffected 
by mass training protocols (Bolduc et al., 2008). Surprisingly, this 
upregulation appeared widespread and not restricted to any specifi c 
brain region or defi ned circuitry (e.g. Mushroom Body). Acute 
over-expression of dFMRP prior to training also blocked LTM, 
suggesting that dFMRP acts in acute memory consolidation; elevat-
ing dFMRP after training had no effect. Blocking protein synthesis 
in dfmr1 null animals rescued these memory defi cits, suggesting 
that enhanced protein synthesis is suffi cient to explain the fail-
ure to consolidate memories (Bolduc et al., 2008). In parallel with 
the dFMRP requirement, mutants of the staufen gene, encoding a 
protein involved in mRNA translocation, share a similar defect in 
LTM consolidation. The two proteins appear to interact in protein 
synthesis-dependent memory formation. Heterozygous mutation 
of each gene alone causes no memory defects, but double hetero-
zygotes (staufen/+; dfmr1/+) show dramatic loss of LTM consolida-
tion after spaced training, with no effect on mass training memory 
(Bolduc et al., 2008). As predicted by the Gq hypothesis, DmGluRA 
antagonists signifi cantly rescued memory consolidation defects.

dFMRP is also involved in Drosophila courtship, a learning and 
memory behavior that requires the integration of multiple sensory 
modalities (Joiner and Griffi th, 2000; McBride et al., 2005). Null 
dfmr1 males fail to effectively court females and have defective 
memory associated with this social interaction. These defects were 
rescued by feeding animals mGluR antagonists, which provides 
further support for this synaptic signaling mechanism in regulat-
ing dFMRP function (McBride et al., 2005). Interestingly, mGluR 
antagonists provide the most effective rescue of dfmr1 defects when 
supplied throughout development, as opposed to acutely in adult 
animals, which caused an adverse affect on memory formation 
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culture before and after depolarization. (B) OK107-GAL4 driving UAS-gCAMP 
in whole brain Mushroom Body axonal lobes (α, β, γ). Depolarization causes 
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in wildtype animals. Mechanistically, it is of note that in oocytes 
dFMRP binds to and negatively regulates the Drosophila Orb 
protein, a homolog of mammalian cytoplasmic polyadenylation 
 element-binding protein (CPEB) (Costa et al., 2005). In the brain, 
the CPEB RNA-binding protein is proposed to “mark” synapses 
locally in response to signaling via mGluRs and the Drosophila neu-
ral specifi c Orb2 is essential for Drosophila courtship conditioning 
induced LTM (Keleman et al., 2007; Si et al., 2003). Thus, it will be 
critical to ascertain whether dFMRP interacts with Orb2 to regulate 
general, or paradigm specifi c LTM. Unfortunately, the identity of 
the neural circuits involved in this complex social behavioral rep-
ertoire are unknown, precluding close developmental analysis of 
circuit structure and function at this time.

In contrast, the circuitry of another dFMRP-dependent complex 
behavior, circadian rhythm cycling, is particularly well character-
ized, including the large and small lateral clock neurons in the cen-
tral brain (Helfrich-Forster, 2003). Large lateral neurons exhibit 
overextension and apparent defasiculation in dfmr1 null animals, 
phenotypes that are proportional to the dosage of gene removal 
(Morales et al., 2002). The mechanism of these structural changes 
is dependent on the dFMRP mRNA target, actin-binding chicka-
dee/profi lin (Reeve et al., 2005). Reducing chickadee/profi lin protein 
levels in dfmr1 null animals can rescue over-elaboration phenotypes. 
Consistent with clock circuit dysfunction, null dfmr1 animals exhibit 
profoundly disrupted circadian activity cycles and prolonged bouts 
of sleep (Bushey et al., 2009; Dockendorff et al., 2002; Inoue et al., 
2002; Morales et al., 2002). So far, these defects have not been attrib-
uted to either aberrant mGluR activation or direct defects in clock 
control though the abundance of the clock protein period (Per) 
is elevated throughout the circadian cycle in dfmr1 null animals. 
Thus, it will be necessary to further investigate the developmental 
defects within this circuitry to understand the role of dFMRP in 
these behavioral manifestations. Lastly, there are numerous other 
well-characterized Drosophila behaviors, such as visual discrimina-
tion, aggression and pain avoidance which all require the integration 
of multiple sensory and higher order neural circuits (Chen et al., 
2002; Duistermars and Frye, 2008; Guo and Gotz, 1997; Manev and 

Dimitrijevic, 2004; Schuster et al., 2002; Tracey et al., 2003; Xu et al., 
2006; Yurkovic et al., 2006). Using the tools discussed in this review, 
and elsewhere in this issue, it will soon be possible to dissect these 
circuits to understand the role of activity and dFMRP in laying the 
foundation for these diverse behavioral repertoires.

CONCLUDING THOUGHTS
It still remains unclear the extent to which dFMRP functions in 
mediating activity-dependent developmental refi nement versus 
maintained plasticity to drive the proper manifestation of complex 
behavioral outputs. Currently, the most disease-relevant behavioral 
data in Drosophila is the defective MB circuit associative learn-
ing and memory consolidation, and this will certainly remain an 
important brain region for understanding the circuit requirements 
of dFMRP. But what about other circuits? Does dFMRP regulate 
neuronal activity the same way in all circuits? Is metabotropic 
receptor signaling upstream of dFMRP function in every circuit? 
Does dFMRP play a similar late-stage role in activity-dependent 
refi nement in all circuits? If there are differences, then can those 
differences be attributed to specifi c molecular functions of dFMRP? 
Special attention will need to be paid to the developmental control 
mediated by dFMRP, and particularly the synaptic pruning func-
tion. The key molecular components of this mechanism still need 
to be determined. Is pruning broadly used to establish maps in 
all circuits, or is it a specialized program for select brain regions 
or neuronal subtypes? As advances in Drosophila transgenic tools 
accelerate our ability to investigate these processes, these vital tools 
will continue to aid in our understanding of the molecular mecha-
nisms of disorders such as FXS, hastening our ability to engineer 
effective intervention strategies.
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