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Memristive devices have led to an increased interest in neuromorphic systems. However,
different device requirements are needed for the multitude of computation schemes used
there. While linear and time-independent conductance modulation is required for machine
learning, non-linear and time-dependent properties are necessary for neurobiologically
realistic learning schemes. In this context, an adaptation of the resistance switching
characteristic is necessary with regard to the desired application. Recently, bi-layer oxide
memristive systems have proven to be a suitable device structure for this purpose, as they
combine the possibility of a tailored memristive characteristic with low power consumption
and uniformity of the device performance. However, this requires technological solutions
that allow for precise adjustment of layer thicknesses, defect densities in the oxide layers,
and suitable area sizes of the active part of the devices. For this purpose, we have
investigated the bi-layer oxide system TiN/TiOx/HfOx/Au with respect to tailored I-V non-
linearity, the number of resistance states, electroforming, and operating voltages.
Therefore, a 4-inch full device wafer process was used. This process allows a
systematic investigation, i.e., the variation of physical device parameters across the
wafer as well as a statistical evaluation of the electrical properties with regard to the
variability from device to device and from cycle to cycle. For the investigation, the thickness
of the HfOx layer was varied between 2 and 8 nm, and the size of the active area of devices
was changed between 100 and 2,500 µm2. Furthermore, the influence of the HfOx

deposition condition was investigated, which influences the conduction mechanisms
from a volume-based, filamentary to an interface-based resistive switching mechanism.
Our experimental results are supported by numerical simulations that show the
contribution of the HfOx film in the bi-layer memristive system and guide the
development of a targeting device.
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1 INTRODUCTION

Memristive devices have been under the spotlight as an ideal
element for neuromorphic computing due to their outstanding
characteristics to emulate bio realistic information processing
(Versace and Chandler, 2010; Legenstein, 2015; Mohammad
et al., 2016; Jeong and Shi, 2019; Krestinskaya et al., 2020).
Their non-volatile memory property, which is induced by an
adaptation of the resistance state by applying electrical signals,
makes them ideal candidates for the emulation of synaptic
functionalities in artificial neural networks (Sah et al., 2014).
For this application, they enable the realization of extremely
energy-efficient hardware (Massimiliano and Yuriy, 2013;
Ignatov et al., 2017) and have the potential of a high
integration capability due to their simple two-terminal device
structure (Lin et al., 2020). In particular, the integration of
memristive devices in crossbar structures is worthy of
mentioning here, which makes it possible to implement
efficient learning schemes (Prezioso et al., 2015; del Valle
et al., 2018; Alibart et al., 2013).

When considering the wide range of different neuromorphic
systems, two main fields of applications in neuromorphic systems
can be distinguished (Ielmini and Ambrogio, 2020): (i)
neurobiologically realistic learning schemes and (ii) machine
learning based algorithms. In neurobiologically realistic
learning schemes the synaptic connections of a network are
tuned by time-encoded spike-like signals (Snider, 2008), which
typically requires nonlinear memristive device characteristics in a
time-dependent manner (Ziegler et al., 2015; Dittmann and
Strachan, 2019). In contrast to that, machine learning based
algorithms use vector-matrix multiplications in which an
explicit time dependence is not required (Ziegler et al., 2018).
For that application, it is more important to set very precisely
different resistance values for the individual memristive cells in a
crossbar array (Yakopcic et al., 2015). Therefore, a time-
independent linear resistance modulation is desirable
(Chandrasekaran et al., 2019) which requires a high symmetry
between the setting and the resetting characteristic of the
memristive device over a wide range of resistance states
(Wang et al., 2016).

In last couple of years many memristive device structures have
been presented that are adequate for the machine learning
algorithms (Kim et al., 2017; Cüppers et al., 2019; Li et al.,
2020; Yao et al., 2020). It has been shown that the use of the
memristive devices can significantly simplify the training routine
in massively interconnected networks (Wang et al., 2019).
Among those devices, particularly, memristive devices with a
metal oxide bi-layer structure gained considerable interest in that
field. Those memristive devices showed a significant
improvement in the resistance modulation linearity (Li et al.,
2018a) and the number of resistance states (Stathopoulos et al.,
2017) along with the reduced variability in the resistive switching
characteristics (Wang et al., 2010). The bi-layer metal oxide
devices typically consist of an oxide layer that serves as a
reservoir of oxygen vacancies and a solid state electrolyte layer
which builds a Schottky-like interface contact with the adjacent
metallic electrode (Huang et al., 2012; Bousoulas et al., 2016; Kim

et al., 2018; Xiong et al., 2019). The resistive switching mechanism
can be described as follows (Cüppers et al., 2019): under an
external bias voltage oxygen vacancies are injected from the
reservoir layer into the solid state electrolyte layer in which
the oxygen vacancies are forming a filamentary conduction
path toward the metallic electrode. This reduces both the
resistance of the electrolyte layer and the Schottky barrier
height and leads to a lowering of the overall device resistance
(Asanuma et al., 2009; Zhao et al., 2020). An alternative concept
of a memristive bi-layer metal oxide device is the double barrier
memristive devices (DBMD) (Hansen et al., 2015). In this device
structure, an ultra-thin solid electrolyte layer is sandwiched
between a metal oxide layer and a metal electrode forming a
Schottky-like contact. Here, the metal oxide layer serves as a
diffusion barrier for oxygen ions, but not as a reservoir (Hur et al.,
2010; Yin et al., 2015; Clima et al., 2016; Dirkmann et al., 2016;
Hansen et al., 2017). The resistive switching effect is based on a
shift of the oxygen ions in the solid state electrolyte layer in the
direction of the metal electrode, which also leads to a reduction of
the Schottky barrier height (Dirkmann et al., 2016). The
advantage of the non-filamentary type of devices is that they
did not require an electroforming step (Yoon et al., 2014), and the
switching effect is based on a defined interface effect (Govoreanu
et al., 2013). However, a disadvantage compared to bi-layer metal
oxide devices with oxygen vacancy filaments is the shorter
retention time (Solan et al., 2017). Furthermore, DBMDs have a
rectifying characteristic (Gao et al., 2015) and thus a high
asymmetry in the voltage polarity. However, these devices allow
the realization of selector-free crossbar structures (Ma et al., 2017;
Hansen et al. 2018) and the realization of biologically realistic
computational schemes (Wang et al., 2015; Diederich et al., 2018).

A common challenge in the development of memristive
devices is a tailor-made design of memristive devices for a
respective computational scheme (Pei et al., 2015). For this, a
number of materials and technology parameters have to be
considered, such as the concentration of oxygen vacancies (He
et al., 2017) or active ions (Clima et al., 2016), materials for the
active layers and interface (connecting) layers (Li et al., 2018b).
But also geometrical parameters such as layer thicknesses (Park
et al., 2015;Wang et al., 2016; Li et al., 2018a) and size of the active
areas (Lee et al., 2010) have to be considered carefully. These
parameters are often only slightly known or not known at all but
must be related to the device performance for a reliable device
functionality (Niu et al., 2010; Lee et al., 2011). This particularly
requires systematic investigations of the individual parameters
and suitable device technology combined with a profound
understanding of the underlying physical processes (Sun et al.,
2019).

The aim of this work is to bridge the gap between the material
design and the electronic characteristics of memristive devices for
a tailored development of bi-layer metal oxide devices for
neuromorphic systems. For this purpose, the bi-layer system
TiN/TiOx/HfOx/Au is examined in more detail in this paper.
In detail, a four-inch wafer technology is presented, which allows
to vary different device parameters, such as layer thickness and
area size of the devices over the wafer. Using automated electronic
measurements, a statistic of important device characteristics is
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collected, and related to material properties and technology
parameters. For a detailed understanding of the resistive
switching mechanism, a physical device model is presented,
which also allows a detailed examination of the individual
device parameters. Essentially, we show that different
sputtering conditions can influence oxygen ion and oxygen
vacancy concentrations in the HfOx layer. This causes
different device characteristics. While an area-based switching
mechanism leads to a rectifying current-voltage characteristic at
high layer qualities with few oxygen vacancies, filamentary
structures are formed in the HfOx layer at higher
concentrations of oxygen vacancies. This leads to a
symmetrical current-voltage characteristic with multilevel
resistant states and improved retention. In both cases, a
change in the Schottky barrier between the HfOx layer and the
Au electrode can be identified as the reason for the observed
switching effect. For a tailored design of memristive devices for
their application, the different electronic characteristics are
related to possible applications in neuromorphic systems.

The present work is structured as follows: In chapter 2, the
implemented technology for manufacturing the memristive
devices is presented first. Then the used methods for material
and electrical characterization of the devices are discussed.
Finally, chapter 2 presents a physical device model that serves
to describe the underlying physical effects of the resistive
switching mechanisms. In chapter 3, the obtained results are

presented and discussed. For this purpose, first, the results of the
electrical measurements and their statistics are shown in relation
to an individual device and technology parameters. Then,
important parameters of the devices are related to their
electronic characteristics using the simulation model. Finally,
the chapter discusses the application of the devices in
neuromorphic computing architectures. The presented results
are summarized in chapter 4.

2 MATERIALS AND METHODS

2.1 Device Technology
Figure 1 shows a developed device technology for bi-layer oxide
memristive devices. In Figure 1A cross-sections of the fabricated
TiN(50 nm)/TiOx (30 nm)/HfOx (2–8 nm)/Au(50 nm) bi-layer
memristive devices with Al(300 nm) contact pads are sketched.
They are fabricated on a 4-inch oxidized silicon wafer (1 μm of
thermal SiOx) in the full device technology. This technology is
overviewed in Figure 1B and contains around 40,000 single
devices, including test structures for the device development
(see microscope images in Figure 1B). This allows the
investigation of various device parameters, such as the active
device area (six different area sizes are realized, as shown in
Figure 1B), the thickness of the active HfOx layer, and the
material compositions over the wafer for a targeted

FIGURE 1 | Schematic representation of the technology for bi-layer oxidememristive devices: Using different sputtering geometries (referred to asmethods 1 and 2
in the text), different types of devices have been produced, showing filamentary switching (referred to as type F) and area-based resistance switching (referred to as type
R). (A)Cross-section of TiN/TiOx/HfOx/Au bi-layer oxide memristive devices over the wafer. The used deposition method (method 2) allows for a variation of the thickness
of HfOx layer from 2 to 8 nm. (B)Microscope images of a complete 4-inch wafer with 40,000 single devices and sections, showing the individual cells which consist
of clusters with six devices, each with a different area size. Three regions on the wafer are indicated as A, B, and C. Each region has an area size of 0.5 × 0.5 cm2. For type
R devices a 2 nm HfOxwas deposited on all the three regions, while the thicknesses for type F have 2, 5, and 8 nm HfOx films on region A, B, and C, respectively. Here, it
was assumed that the HfOx thickness is the same in each region due to the 1-dimensional thickness change over a 4-inch wafer and the relatively small area size.
Approximately 60 memristive devices were measured in each area A, B, and C, respectively, for type F.
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development of memristive devices. For a variation of the latter
parameter, two different sputtering methods for the HfOx layer
were used. In particular, a variation in oxygen vacancies is
required to achieve a desired resistive switching process in this
class of memristive devices (He et al., 2017). Here, using a
sputtering system equipped with three confocal source targets,
two methods are employed for the deposition of the HfOx which
are referred to as method 1 and 2. During the deposition, the
substrate is rotated to obtain a uniform film thickness, while a
wedge film is formed without a rotation. The wedge is formed
only along one direction. For method 1 the HfOx layer was
deposited on the wafer under optimal conditions, i.e., rotation of
the substrate within a confocal sputtering arrangement. For
method 2 the wafer was not rotated during the sputtering of
the HfOx layer. This leads to a reduced layer quality, but also a
wedge over the wafer as shown in Figure 1A (further details are
discussed below). As a result, we obtained two distinctive bi-layer
oxide memristive device structures, which are referred to in the
following as device R and device F.

In more detail, the TiOx/HfOx bi-layer was deposited on an
inertial reactive sputtered TiN bottom-electrode via DC
magnetron sputtering, where O2/Ar of reactive gas was
adjusted with the ratio of 10/40 and 10/29 for the TiOx and
HfOx film, respectively. After the TiOx was sputtered, the
thickness of the HfOx was controlled using the two discussed
sputtering methods 1 (for device type R) and 2 (for device type F):
as seen in Figure 1A a wedge layer with a variation of the HfOx

thickness from 2 to 8 nmwas obtained for device F, where devices
were fabricated along the axis (x-direction) perpendicular to the
axis of the wedge (y-direction). Device R has a 2 nm uniform
HfOx layer. The layer deposition was finalized with an Au top-
electrode layer. Thereafter, the material stack was patterned using
photolithography and reactive ion etching for device R, while a
lift-off in Dimethylsulfoxide (DMSO) was used for device F. The
lift-off process was carried out due to the thickness variation of
HfOx in device F. Here, the investigation of the switching
behaviors was preceded after we confirmed that the two
patterning methods scarcely affected electrical characteristics.
All devices were insulated with SiO2 layers from the ambient
air to avoid the influence of moisture in switching behaviors
(Tsuruoka et al., 2012; Zhou et al., 2018; Zhou et al., 2020)
(Figure 1A), and Al contact pads were deposited by e-beam
evaporation.

2.2 Material Characterization
The development of the memristive devices was supported by a
material characterization accompanying the manufacturing
process. The thickness and the composition of the layers were
characterized by ellipsometry measurements (SE500, Sentech)
and surface profile measurements (Dektak 150, Veeco).

For a detailed material investigation, unstructured HfOx films
were deposited on silicon substrates. Therefore, the two described
sputtering methods 1 and 2 were employed to deposit 37 nm
thick HfOx films. On those films ellipsometry measurements were
performed at 632.8 nm at 70° of incidence. As the results,
refractive indices of n � 1.9889 and n � 2.0285 were measured
for, respectively, the uniform (method 1) and the wedge- (method

2) deposited HfOx films. Thus, in agreement with previous
investigations (Martínez et al., 2007) the film can be assumed
to have amorphous crystallinities. However, the obtained n value
from the uniform deposited film was higher than n of the wedge
deposited HfO2 film, which can be attributed to a reduced
packing density (Gao et al., 2016).

Furthermore, X-ray photoelectron spectroscopy (XPS)
measurement was utilized to study the quantitative atomic ratio
O/Hf in sputtered HfOx layers. The XPS analysis were carried out
using monochromatic Al_K-alpha radiation (excitation energy
hν � 1,486.68 eV) under charge neutralization using a SPECS
SAGE HR 150 XPS system equipped with a 1D delayline detector
and a Phoibos 150 analyzer. The calibration of the energy scale was
ensured by reference measurements on a polycrystalline silver
sample. Before the measurements, HfOx was sputtered on Si/
SiO2 wafers for 900 s using the two different sputtering method
1 and 2. As a result, a ratio of O/Hf of 1.80/1 was observed for
deposition method 2, while a ratio of 1.98/1 was recorded for
samples sputtered via method 1 (see SupplementaryData S1). The
sputtering method 1 provides a stoichiometry close to HfO2, while
the obtained stoichiometry viamethod 2 leads to optimal condition
for the forming of oxygen vacancy filaments (McKenna, 2014).
Thus, we can conclude that sputtering method 1 leads to a reduced
number of oxygen vacancies than the sputtering method 2. Hence,
a HfOx layer with a higher density of oxygen vacancies can be
assumed for device type F in respect to device type R.

2.3 Electrical Characterization
Current-voltage measurements (I-V curves) and voltage pulse
measurements were carried out to characterize the electrical
properties of TiOx/HfOx bi-layer memrsitive devices using a
source measurement unit (Keysight b2901a). Therefore, a
voltage is applied to the top-electrode of the device (bottom-
electrode were grounded), while the current has been measured
simultaneously. Furthermore, current compliance was imposed
during the measurement to prevent the device from damage. The
used current compliance was ICC � 10 μA, ICC � −5mA for R and
F devices, respectively. For pulse measurements the device
resistance was measured at, respectively, 1 and 0.1 V for R and
F devices. The switching voltage to set and reset the device
resistances was 3 V/−2 V for device type R and −1 V/1.5 V for
F type devices. For both devices a pulse duration of ∼10ms was
used. For a statistical evaluation of the electrical properties, median
values were extracted taking into account the variability in cycle to
cycle (C2C), and device to device (D2D). In the C2C investigation
10 times of DC voltage sweep cycles in one device were carried out.
For reliable statistics, automated measurements of more than 10
memristive devices in each device parameter were performed,
which means a total of 180 devices measured for three different
thicknesses and six different area sizes. Both C2C and D2D
statistics were investigated in DC conditions.

2.4 Physics Based Device Model
For a profound understanding of the resistive switching
mechanisms and a targeted development of the devices a
physics based device model was developed. In Figure 2A a
sketch of this device model is shown: the model consists of
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two RC elements representing, respectively, the HfOx and the
TiOx layer. The metal-semiconductor contact between the HfOx

layer and the Au electrode is considered by a Schottky diode
(DSchottky). Thus, an external applied voltage (V) is divided into
the local voltage drops at the Schottky diode (VSchottky), over the
HfOx layer (VHfOx) and the TiOx layer (VTiOx) according to

V � VSchottky + VHfOx + VTiOx (1)

An important difference between here investigated two types of
memristive devices is sketched in Figure 2B. While for the type F
device a filament of oxygen vacancies is formed under the
external voltage application, the type R device does not form
any filaments. Essential for this is the concentration of oxygen
ions and vacancies in the active HfOx layer (Dirkmann et al.,
2018). For the filamentary device F, we assumed that a number of
oxygen vacancies are the mobile ions that vary between a
minimum and a maximum concentration, denoted as Nmin

and Nmax, respectively. In detail, for the filamentary device F
we estimated Nmin � 4 · 1024 m−3 and Nmax � 2 · 1027 m−3 in
accordance with the previous work (Menzel et al., 2011;
Dirkmann et al., 2018). On the other hand, for the device type
R we assumed a significantly lower concentration of oxygen
vacancies due to a better layer quality. Here, the mobile
species are oxygen ions where a concentration of N � 1023 m−3
was used which is in qualitative agreement with (Dirkmann et al.,
2016).

The concentration of the oxygen ions and vacancies has a
particular effect on the active area used for resistance
switching (cf. Figure 2B). Thus, for the filamentary device
F only the filament area is relevant for the switching effect,
i.e., A � Afil (see upper drawing in Figure 2B). For the type R

device the whole device area is involved in the switching
mechanism, i.e., A � Adevice (see lower drawing in Figure 2B).
Both, the active area and the oxygen ion/vacancy
concentration, are relevant for the resistance of the HfOx

layer:

RHfOx � dHfOx
e · zv0 · A · μn · N

(2)

where μn is the electron mobility, zv0 is the ion charge number,
and e is the elementary charge (Hardtdegen et al., 2018).

The layer thickness of TiOx is significantly larger than that of
HfOx. Therefore, a much lower local electrical field strength is
assumed (E � Vlayer/dlayer). Thus, under an external bias voltage
oxygen ion drift is suppressed within the TiOx layer and the
resistance RTiOx of the TiOx layer can be assumed to be constant.
Nevertheless, the TiOx layer plays a crucial role in the
functionality of the bi-layer oxide structure: (i) it serves as a
reservoir for oxygen vacancies in filament devices, and (ii) it
stabilizes the switching process for both types of devices
(Stathopoulos et al., 2017; Hardtdegen et al., 2018; Mikhaylov
et al., 2020). For the latter point, the electronic contribution of the
TiOx layer is particularly important and has to be captured in the
model. In general, the electronic charge transport through metal
oxide layers can be determined by various transport mechanisms.
It has been shown that a good approximation for the electron
current is given by the following voltage realization (Jiang et al.,
2016):

ITiOx � j0 · A · sinh(VTiOx) (3)

where j0 is a fit parameter that has to be adapted to the real
devices. The layer capacitances are given by

FIGURE 2 | (A) Sketch of the physics based device model for TiN/TiOx/HfOx/Au memristive devices. The model consists of two RC elements in the TiOx and HfOx

layers and a Schottky diode at the interface of HfOx and Au top-electrode. The external source voltage is divided into three local voltage drops at the HfOx, TiOx layers,
and the Schottky diode. (B) Two different resistive switching mechanisms of type F devices (top) and type R devices (bottom) are considered. While in type F devices
oxygen vacancies form a filamentary conductive path in the HfOx film under an external voltage, in type R devices oxygen ions in the HfOx film drift toward the top
metal-electrode. As a result, in both device types the changed ion concentration leads to a modulation of the Schottky barrier height, which leads to the switching
behaviors. Hereby originates the difference in the switching mechanisms from the density of the oxygen vacancies in the HfOx film. (C)Measured I-V curves (gray) and the
simulation results (red) for type F (top) and type R (bottom) devices. The arrows point to the SET direction.
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Clayer � ε
A

dlayer
(4)

where ε � εrε0 is the permittivity of the respective layer.
The starting point of the switching model is the memristive

behavior caused by a temporal and spatial change of the oxygen
ions in the HfOx layer. This effect is taken into account in the
device model via an average ion velocity.

dx
dt

� cdrift · IIon (5)

where x is the memristive state variable, i.e., the average position
of oxygen ions or length of the filament in the HfOx layer (cf.
Figure 2B) and IIon is the ionic current of the oxygen ions.
Furthermore, cdrift describes the resulting drift constant of the
system, which is defined as

cdrift � μn · Rmean

dHfOx · A (6)

Here, Rmean is the mean resistance of the HfOx layer, which is
given by Rmean � 1

2 · [Rmin + Rmax] for devices of type F and
Rmean � RHfOx for the devices of type R. In particular, for
devices of type F the resistance of the HfOx layer can be
specified as a function of the memristive state variable x:

RHfOx � dHfOx
e · zv0 · A · μn

· [ 1
Nmax

· x + 1
Nmin

· (1 − x)] (7)

An essential important property of ionic based memristive
devices is the back diffusion of the ions. The back diffusion
determines the reliability and the storage time of the memristive
device and is crucial parameter for a precise adjustment of
multiple resistance states. In order to consider this behavior in
the model, a further term was added to Eq. 6:

cdrift � μn · Rmean

dHfOx · A − cback · [1 − (2x − 1)2] (8)

Here cback is a parameter that describes the strength of the back
diffusion and must be adapted to the measured data.

The ion current can be written in the following form using the
law of Mott and Gurney (Hardtdegen et al., 2018):

IIon � 4AeNmeana]0 · exp(−ΔWVT
) · sinh(a · EHfOx

VT
) (9)

whereΔW is the diffusion barrier, which is reduced by the electric
field EHfOx . Furthermore, VT is the thermal voltage, a the hopping
distance, and ]0 is the attempt frequency. Nmean determines the
mean concentration of mobile ion species in the HfOx layer,
i.e., Nmean � 1

2 · (Nmax + Nmin), while A is the active area of the
device, which depends on the device type (cf. Figure 2B). Thus
A � Afil for the filamentary device andA � Adevice for the interface
based switching device (cf. Figure 2B).

The interface between the HfOx/Au is assumed to be the
relevant interface for the resistive switching process in both types
of devices. In the simulation, this interface is modeled as a
Schottky diode with variable Schottky barrier (ϕB). Using the

thermionic emission theory, the charge transport over a Schottky
barrier can be described in the following equation (Sze and Ng,
2006):

IS � IR(exp eV
nVT − 1) (10)

Where n is the ideality factor, which describes the deviation from
an ideal diode characteristic, and IR the reverse current, which is
given by:

IR � A*AT2 · exp− eϕB
VT (11)

where A* is the effective Richardson constant, which is
1.20173 · 106Am−2K−2, T the local temperature, and A the
active area. Under negative voltage polarities, however, the
reverse current decreases gradually with the applied bias
voltage. Therefore, on this polarity the reverse current is (Sze
and Ng, 2006):

IR,v < 0 � −A*AT2 · exp− eϕB
VT exp

− eαr



|V |

√
VT (12)

Here αr is a device dependent parameter. In our model we
assumed that both quantities n and ϕB depend on the
concentration of moved ions at the Au/HfOx interface. A
higher concentration of the negatively charged oxygen ions at
that interface in R type devices increases the electron
concentration locally. For devices of type F an increased
concentration of oxygen vacancies increases the amount of
acceptor states for electrons at the interface and thus there is
also an accumulation of electrons at the interface. Thus, for both
type of devices a reduction of the Schottky barrier is expected,
which in turn has a significant effect on the charge transport
through the complete device. In the model this was considered by
a state variable dependency of those quantities:

ϕB(x) � ϕLRS
B · x

xmax
+ ϕHRS

B · (1 − x
xmin

) (13)

n(x) � nLRS · x
xmax

+ nHRS · (1 − x
xmin

) (14)

the values for nLRS and nHRS, as well as ϕHRSB and ϕLRSB were obtained
from the experimental I-V curves using Eq. 10. Another important
parameter influencing the ion movement within the memristive
device is the local temperature change. This includes mainly Joule
heating and plays a crucial role particularly in filamentary-based
device structures. This was taken into account in the simulation
model as follows (Ielmini and Milo, 2017).

T � I · V · Rtherm + T0 (15)

Here, Rtherm is the effective thermal resistance and T0 is the room
temperature. The temperature along the filament is assumed to be
relatively homogeneous and thus a uniform filament temperature
can be assumed (Ielmini and Milo, 2017).

The device parameters have been carefully collected from
measurements and literature and are summarized in Table 1.
The I-V curves simulated with the model are shown in Figure 2C
and compared with the measurement curves determined
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experimentally. As can be seen from this figure, the model
presented here shows very good agreement with the
experiment. A more detailed description of the results follows
in the next chapter.

3 RESULTS AND DISCUSSION

3.1 Resistive Switching and Statistical
Examinations
In Figure 3A typical obtained I-V curves of the two kinds of
memristive devices (named as F and R) are shown. Common for
both device types is that they show bipolar resistive switching
with a gradual resistance change. A major difference between
both types of devices is their voltage polarity. While type R
devices require a positive voltage (applied to the top electrode)
to set the device, type F devices require a negative voltage to be
applied for the set process. The different polarity behaviors are
originated from differences in concentration and species of
mobile ions, which will be discussed in Concentration of
Mobile Icon. Furthermore, while a highly rectifying memristive
behavior is observed for device type R, a more symmetric
memristive behavior is found for devices of type F together
with a 3 times higher current level as compared to type R
devices (cf. Figure 3A). In some more detail: the rectifying

TABLE 1 | Simulation Parameter.

Parameter Value Parameter Value

type F type R

ΦHRS
B [eV] 0.25 0.71 αr[V/A · s] 1.2 · 106

ΦLRS
B [eV] 0.06 0.61 μn[m2/V · s] 10− 5

nLRS 4.5 3.9 ]0[Hz] 3 · 1011
nLRS 5 4.45 εTiOxr 17
Nmax[m−3] 2 · 1027 εHfOxr 5.5
Nmin[m−3] 4 · 1024 ΔW[eV] 0.425
N[m−3] 1023 a[nm] 0.4
dHfOx[nm] 2–8 2.5 dTiOx[nm] 30
j0TiOx[A/m2] 5.8 · 107 5.8 · 104 Rtherm[K/W] 1.1 · 104
Adevice[μm2] 100 Afil[nm2] 6,362
Cback /Cdrift 0 3.25 · 10−11 T0[K] 273

FIGURE 3 | (A) Representative I-V curves of TiN/TiOx/HfOx/Au bi-layer memristive devices for type R (left), and type F (right). The arrows point to the resistive
switching direction. A clear rectifying behavior was observed in the type R, and a symmetric switching behavior in the type F. (B) Electroforming voltage (median values)
as a function of HfOx thickness. Electroforming voltages were tailored by the thickness of the HfOx in type F. (C) SET (blue) and RESET (red) voltages (median values) as a
function of device active area size. The smaller the area is, the lower SET/RESET voltage was observed. (D) Retention measurement and fitting curves. Type F
devices (blue) showed an improved retention characteristic compared to type R (red). The fitted curves are shown with dashed lines, and the fitting constants were 0.02
and 0.3 for type F and type R, respectively.
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behavior of devices of type R can be quantified by the ratio
between the maximum and minimum current rasym � ∣∣∣∣Imax/Imin

∣∣∣∣
at a voltage of ±0.5 V. Here we were able to determine rasym � 70
for an active device area of 100 μm2 which, however, has a strong
area dependence. In particular, for an area of 625 μm2 the
asymmetry ratio rasym is reduced from 70 to 4 (further
information is provided in Supplementary Figure 3).

An important property of memristive devices and another
difference between the here considered devices is the initial
electroforming process. While no initial electroforming step
was necessary for type R devices, type F devices had to be
electroformed at the beginning. For a more precise discussion
of the electroforming process of type F devices, the median of the
required voltages as a function of the thickness of the HfOx layer
is depicted in Figure 3B. In detail, electroforming voltages of 2.35,
2.42, and 2.52 V have been observed for, respectively, a 2, 5, and
8 nm thick HfOx layer. Thus, the electroforming voltage shows
moderate thickness scalability. After the electroforming process
type F device are operated typically at a maximum (minimum)
voltage ±0.75 V. In terms of operating voltage, type F devices also
differed from type R devices: type R devices require on average a
1.3 V higher operating voltage with a moderate area dependence
(cf. Figure 3C). The operating voltages for type R devices were
2.2 V/−0.42 V (SET/RESET) for the smallest area size and 1.7V/
0 V for the largest area size. However, the type R devices show a
more gradual transition from the inertial high resistive state
(HRS) to the low resistive state (LRS) (cf. Figure 3A).

A crucial property of memristive devices is their retention
time. Furthermore, a detailed investigation of the retention
characteristic already provides important conclusions about
the underlying resistive switching mechanism (Hansen et al.,
2015). The retention behavior for the here discussed two types of
memristive bi-layer structures are shown in Figure 3D. For the
measurement of the retention characteristics, the two types of
devices were initially set to the low resistance state and then the
resistance value of the devices was determined at regular intervals
by means of voltage pulses. As can be seen in the figure, the two
types of devices show quite different retention behaviors. For
device type R, diffusive characteristics were observed (see red data
points in Figure 3D), while much higher retention is observed for
device type F. In order to analyze the retention characteristics in
some more detail the retention curves were fitted using a power
law according to the Curie-von Schweidler equation (Mikheev
et al., 2014; Goossens et al., 2018):

R � Ron/Roff ∝ tα (16)

where α is a fit parameter, which is between 0 and 1 (Yang et al.,
2010). As a result, α � 0.3 is observed for devices of type R,
whereas α � 0.02 best reflects the experimental data for devices of
type F. While α � 0.02 describes a very good retention time for
devices of type F, α � 0.3 shows clearly lower retention for devices
of type R. This difference can be explained by the different ion
dynamics between the two devices. While in the type R device the
filamentary structures are suppressed and mobile oxygen ions are
shifted toward the electrode, in the type F devices oxygen
vacancies are organized in filamentary structures. This leads to

different activation energies of the ion dynamics. It has been
shown that the activation energy of oxygen vacancies is in the
range of 6–8 eV inside filaments (McKenna, 2014), while it is less
than 1 eV outside filaments (Dirkmann et al., 2016; Dirkmann
et al., 2018). Furthermore, it is worth mentioning that localized
electronic states at the Au/HfOx interface can also contribute to
the observed switching mechanism. The localized electronic
states are filled or emptied depending on the applied bias
voltage polarity (Hansen et al., 2015; Zhou et al., 2016). Even
if the exact mechanism underlying the switching effect cannot be
clearly explained by the presented measurements alone, the
strong difference in the retention times and the different
voltage polarity indicate that oxygen vacancies dominate the
respective switching behavior in type F devices, while mobile
oxygen ions lead to resistive switching in type R devices.

In order to be able to make suitable statements about possible
applications of the memristive devices in neuromorphic systems
and to tailor the device characteristics accordingly, a statistical
investigation of relevant device parameters is required. As
relevant device parameters we considered the thickness of the
active HfOx layer (dHfOx), the active area size A, and the
concentration of mobile ions N. The results of that
investigation are shown in Figure 4. In the cumulative
distribution function (CDF) of the resistance of type R devices
(Figure 4A) and of type F devices (Figure 4B) the resistances
were obtained from voltage sweep measurements by calculating
the corresponding median values and the standard deviations.
The resistance obeyed a lognormal distribution for all examined
devices. For devices of type R (cf. Figure 4A) the resistance
distributions for area sizes from 100 to 1,225 µm2 are shown. For
the devices of type F the different curves in Figure 4B originate
from the different dHfOx . As a result, we found that for devices of
type R the resistance window decreased with increasing active
area size A which can be attributed to the decreasing rectifying
ratio (further details are in the supplement). Furthermore, the
relatively small width of the CDF curve was observed for type R
devices indicating a high device uniformity. For the devices of
type F, the low resistant states show a steeper change in the CDF
curve than the high resistant states. Even though the found
variations in the resistances are small, the devices with a HfOx

thickness of 5 nm show here the best variability.
To be able to make detailed statements about the requirements

to be met by the physical device parameters, the influence of the
variability in relation to the physical parameters must be
examined. Therefore, normalized standard deviations of the
devices were determined and plotted as a function of the
active volume, i.e., the layer thickness of the active HfOx layer
times the device area. The obtained results for both types of
devices are shown in Figure 4C. The figure shows the different
measured variabilities for the devices of type R (triangular data
points) and the devices of type F (circular data points) as a
function of the active volume of the device. For devices of type R it
appears that the variability is only weakly affected by increased
area size. Here the normalized standard deviation of 0.2 is quite
constant over the investigated area sizes (see the dashed black line
in Figure 4C). However, for devices of type F a parabolic curve
best describes the found trend which indicates a clear optimum at
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approximately 2.6 · 103 μm2 · nm for the HRS and 2.73 · 103 μm2 ·
nm for the LRS. This means that a reduction from dHfOx � 8 nm to
dHfOx � 2 nm increases the optimal device area from Adevice �
(18 × 18) μm2 to Adevice � (36 × 36) μm2. Thus, the trend can be
observed that with extremely small layer thicknesses, a larger area
leads to a more stable device behavior.

3.2 Resistive Switching Mechanism and
Device Requirements
A sound understanding of the resistive switching mechanism is
important to enable a targeted design of the memristive devices
for application in neuromorphic systems. For this reason, the
device model described in Physics Based Device Model was used
to interpret the experimental results described above. The
obtained results are shown in Figure 2C. Therein the
experimental I-V curves are compared with simulated curves.
The used simulation parameters are summarized in Table 1. In
both cases, i.e., in the case of the filamentary (type F device) and
the interface-based device (type R device), one can see quite
good agreement between simulation model and experiment.
The main difference between the two I-V curves in the
simulation model comes from (i) differences in concentration
and species of mobile ions due to stoichiometric differences
between Hf and O, (ii) different active areas that are responsible
for the switching behavior (cf. Figure 2C), and (iii) the lowering
of the Schottky barrier and the change of the ideality factor. In
order to understand more exactly the underlying switching
mechanisms that lead to the different device characteristics,

the mentioned points (i–iii) will be discussed in the following in
more detail.

3.2.1 Schottky Barrier Height Lowering
From the measured I-V curves the minimum and the maximum
values of the variation of the Schottky barrier were determined.
Therefore, Eq. 11 was adapted to the experimental data at the
voltage interval ranging from 0 to 100 mV for both device types.
Furthermore, we made the assumption that the resistance of the
device does not change in that interval. As a result, we found that
the values for the Schottky barriers vary between 65meV and
250meV for the filamentary device F (upper graph in Figure 2C),
whereby a barrier variation of 615meV and 708meV was
obtained for the area-based device R (lower graph in
Figure 2C). In addition, the fit procedure also considered the
ideality factor as an adjustable parameter, whereby we obtained
5.0 and 4.54 for filamentary device F and 3.9 and 4.45 for the area-
based device R. A key finding from that analysis is that area-based
device has a much higher Schottky barrier, while for both devices
a strong variation of the Schottky barrier is observed. In order to
analyze that finding in more detail, simulations were carried out
with a maximal barrier lowering of 200meV . The results of the
simulations for the two device types are shown in Figure 5. The
obtained changes in the resistance value for the type R
(Figure 5A) and type F devices (Figure 5B) are shown. For
this purpose, the Schottky barrier of the high ohmic state (see
indicated ϕHRSB in the figures) was used as a starting value and the
barrier height was successively reduced, i.e., ΔϕB � (ϕHRSB − ϕLRSB ).
This confirms the experimentally observed finding of a strong

FIGURE 4 | Resistance distribution for different physical device parameters in type R devices (A), and type F devices (B). (A) CDF for different active device area
sizes of device type R. The arrows point to the direction of the increasing area. (B)CDF for different HfOx thicknesses in type F devices. (C)Device variability (σ/μ) in terms
of physical device parameters. The variability of type R devices is marked with triangles, and type F devices with circles. Red color for high resistance states, and blue
color for the low resistance were used. The fitted curves are shown with dashed lines. For type F devices a parabolic trend was observed, which shows a correlation
between the area and the thickness of the HfOx in the variability of devices.
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dependence of the resistance change of the devices on the
maximum barrier lowering for both types of devices. Two
types showed different switching mechanisms: filamentary-
and interface-type. However, Schottky contact adjustment was
an essential factor in resistive switching behaviors for both typem
F and type R devices. Thus, it can be stated that the Schottky
barrier change is the main reason for the switching behavior of
the two different memristive devices, which is in good agreement
with previously published data (Hansen et al., 2015; Hardtdegen
et al., 2018).

In fact, a significant influence on the Schottky barrier height
and therewith an important technology parameter is the material
used for the electrode and the oxide layer. Since the same
electrode material (Au) was used for both types of devices, the
observed difference can only come from the HfOx layer. In this
respect, the difference is mainly in the layer quality due to the
different manufacturing processes that we used for the two
devices. This has a particular effect on the number of oxygen
ions and vacancies, which we will discuss in more detail below.
However, a qualitative indicator of contact quality is the
asymmetry between the minimum and the maximum current
values in the I-V characteristics and the ideality factor n of the
contacts. Here we observe that n is lower for the type R devices
than for the type F devices and the type R devices show a clear
asymmetry and therefore a stronger rectifying characteristic. To
investigate this point, the asymmetry as a function of the barrier
lowering ΔϕB is shown in Figure 5C. The asymmetry was
determined by the following formula:
[(Imax − Imin)/(Imax + Imin)]. As a result, we found that the
barrier lowering of the area-based devices does not affect the

asymmetry, whereas 100mV of the type F devices is sufficient to
completely destroy the asymmetry.

3.2.2 Concentration of Mobile Ions
One of the most important parameters for the resistance
switching mechanism of memristive devices is the
concentration of mobile ions. In the simulation model we
have, therefore, investigated the concentration of mobile ions
in the HfOx layer as a further central device parameter. It turned
out that for the rectifying device R a constant low concentration
of negatively charged oxygen ions (Nmin � Nmax � 1023 m−3) best
describes the experimental I-V curve, where a variation of
positively charged oxygen vacancies from Nmin � 4 · 1024 m−3
to Nmax � 2 · 1027 m−3 for the filamentary device F gives the
best agreement with the experiment (cf. Figure 2C). These
obtained results are in good agreement with previous
investigations (Dirkmann et al., 2016; Hardtdegen et al., 2018)
and support the model outlined in Figure 2A. In order to
investigate these variations, the concentration of oxygen
vacancies was varied in the range from 5.2 · 1025 m−3 to 2.5 ·
1027 m−3 for F type device and a variation from 1 · 1022 m−3 to
1 · 1024 m−3 of oxygen ions were used for the rectifying device
type R. The simulation results are summarized in Figure 6.

Figure 6A shows I-V curves for the filamentary device with
different mean concentrations of oxygen vacancies. In particular,
two major trends for the change in oxygen vacancies can be seen:
(i) the hysteresis shows a clear variation with the change of the
oxygen vacancies, and (ii) the values for set and reset voltages
become smaller. To interpret these two properties in more detail,
Figure 6B shows the ratio RHRS/RLRS at −0.1 V as a function of the

FIGURE 5 | Influence of the Schottky barrier height lowering ΔΦB on the device resistance: the resistance value as a function of Schottky barrier lowering for type R
devices (A) and type F devices (B).ΦHRS

B is the inertial Schottky barrier height for the respective R and F type device. (C) Asymmetry as a function of the barrier lowering.
Strong asymmetric characteristics are observed in device R (circle) within 200meV in the barrier lowering, while the asymmetry was destroyed in device F (triangles) at
100meV barrier lowering.
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concentration of oxygen vacancies. What can be seen very clearly
is that there is an optimum of the ratio at 2.5 · 1026 m−3. The
reason for this is the threshold value of the oxygen diffusion,
which essentially determines RHRS and RLRS. For this purpose,
Figure 6C shows the state variable x as a function of the applied
voltage for the different concentrations at oxygen vacancies.
According to Eq. 7, the concentration of the oxygen vacancies
determines the change of the resistance of the active HfOx layer,
but also the ion drift (see Eq. 6), and thus the change of the state
variable x. What can be observed from the simulation is that high
oxygen vacancy concentrations cause a change in the state
variable already at very low voltage values (cf. Figure 6C).
This means that a threshold value for setting the device can
no longer be set precisely, which already leads to a reduced
resistance value for a voltage of −0.1 V. However, since threshold
values are important for the application, a precise setting of the
oxygen vacancies is an important device parameter that should be
chosen carefully.

The results for the rectifying memristive device under varying
concentrations of oxygen ions are shown in Figure 6D. Here it
can be seen that the concentration of oxygen ions has an effect on
the change of the resistance value as well as on the retention
characteristics. Thus, at extremely low concentrations of oxygen
ions, only small hysteric effects are observed, while a pronounced
hysteresis is only observed at a concentration of 5 · 1022 m−3. This
concentration of oxygen ions, thus, defines a critical minimum for
memristive switching behavior.

3.2.3 Area Dependence
An experimentally important indication of the type of resistive
switching mechanism is given by the area dependence of the
devices. For this purpose, the product of area times resistance
(RA) as a function of the area of the devices is shown for both
device types in Figure 7. While the upper graph of Figure 7 is
presenting the results from the rectifying device R, the graph on
the bottom is showing the area dependency for the filamentary
device F. Here, the data points are taken from the measurements

and the dashed lines are the results of the simulation model. The
expected trend can be seen for the high resistant state of the
devices: for the filamentary device F, an area independent
behavior is seen, while a clear area dependence was found for
the rectifying device R. It is noticeable that the low ohmic state of
the rectifying device R shows a non-uniform area dependence.

FIGURE 6 | Simulated I-V curves of TiN/TiOx/HfOx/Au bi-layer memristive devices with a variation of the mean concentration of mobile ions in the HfOx layer. (A) The
variation of themean concentration of positively charged ions in the range from 5.2 · 1025 m−3 to 2.5 · 1027 m−3 is simulated for type F. (B) The ratio ofRHRS/RLRS at −0.1 V
as a function of the mobile ions. The optimum memristive hysteresis was observed at the mobile ion concentrations of 2.5 · 1026 m−3. (C) The state variable (x) as a
function of the applied voltages for different concentrations of mobile ions in the HfOx layer. Operating voltages (SET/RESET voltage and threshold voltage) in the
bi-layer memristive devices were affected by the concentration of mobile ions in the HfOx layer. (D) The variation of the concentration of negatively charged ions in the
range from 1 · 1022 m−3 to 1 · 1024 m−3 is simulated for type R. The resistance values and the hysteretic effects were influenced by the concentration of oxygen ions.

FIGURE 7 | The R · A product as a function of the device active area for
(A) type R and (B) type F. The dashed lines present simulated device models.
(A) The R · A product showed a constant behavior in HRS for type R, while an
area dependent behavior for type F (B). The area dependency of the
R · A product in LRS for device R (A) was caused by the area dependency of
the ion drift constant, which was in good agreement with the simulation
results.
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One would actually expect a horizontal line in the R · A vs. A
representation chosen here. This is relevant with the drift
constant cdrift from Eq. 8, which depends on the layer
thickness of the HfOx layer (dHfox) and the active device area
(A). While the changes in the layer thicknesses (dHfox) in the
experimentally investigated interval cause only a small change in
cdrift , the changes in the area for the rectiyfying device R have a
considerable influence on cdrift . In this case, the drift constant
(cdrift) is reduced, especially for large active areas, and thus a
smaller change in the state variable x is induced during a voltage
ramp. This in turn leads directly to a smaller change in the device
resistance, which we can also observe experimentally. Thus, this
shows that the choice of the device area has an influence on the
dynamics of the oxygen ions and vacancies, especially for the
rectifyingmemristive device. Furthermore, these results give good
confirmation of the proposed switching mechanism, i.e., area-
based switching for the R-type device and filamentary switching
for the F-type device.

3.3 Applications for Neuromorphic
Computing
The emulation of synaptic plasticity processes with memristive
devices is one of the most important application fields of
memristive devices in neuromorphic systems (Ziegler et al.,
2018). In particular, this requires the design of suitable
learning and training processes (Ielmini and Ambrogio, 2020),
which needs a targeted adjustment of the resistance states of
individual memristive devices in networks. In the following
section, it is presented that type F devices fulfill requirements
for machine learning based algorithms, whereas type R devices for
neurobiologically inspired learning schemes.

The challenge in the machine learning based algorithm is to
create suitable local learning rules that guarantee a local change of
the device state so that a requested global network functionality is
enabled. Therefore, a general framework is provided by the
Hebbian learning rule (Ziegler et al., 2015), which can be
systematized in the following equation:

dωij

dt
� f (ωij,Aj,Ai) (17)

where ωij describes the coupling strength between the pre- and
the post-synaptic neuron and Aj(i) their activities, as sketched in
Figure 8A. This formula translates Hebb’s postulate, that
synaptic connections change only when the respective pre-
and post-synaptic neurons are active at the same time. The
choice of the function f is thus decisive for the learning or
training procedure of any artificial neural network. A common
way to realize the weight update according to Eq. 17 is provided
by the delta rule (Kendall et al., 2020), which is at the heart of deep
learning neural networks:

Δωij � α · (di − yi) · pj (18)

where the coefficient α is named learning rate and is usually
positive. Furthermore, pj is the activity of the pre-neuron (input
value), yi is the activity of the post-neuron (output value), and di
the desired output value for a given input pj used during learning.

To convert that equation into hardware, the coupling strength ωij

can be represented by the conductance Gij of the memristive
device, and yj, pj, and dj by voltage- or current-dependent
functions that either increase or decrease the conductance of
the memristive device (Linares-Barranco et al., 2011). Thus, for
the implementation of memristive devices in neuromorphic
network structures via the delta rule a precise change of the
conductance in dependence on applied voltage (or current) pulses
is required (Payvand et al., 2018).

In order to investigate the resistance update behavior of the
devices used here under voltage pulsing, AC pulses trains were
used (see the sketch in Figure 8B). Therefore, a voltage train of 20
SET pulses followed by 20 RESET pulses was applied to the
devices. Furthermore, the resistance states have been determined
by a readout pulse that followed each switching pulse. The results
obtained are shown in Figure 8C for type F devices and in (D) for
type R devices. Read pulses of 1.0 and 0.1 V with a pulse width of
10 ms have been used for R and F devices, respectively. For the
reset pulse, the width was 1 ms and the amplitudes were −2 and
1.5 V for R and F devices. As a result, a gradual transition change
with multiple resistance states was observed in devices of type R,
while a more binary behavior was recorded for devices of type F
(cf. Figures 8C,D). In order to investigate the pulse behavior of
the type F devices in more detail with respect to Eq. 18, the
voltage amplitudes for SET and RESET pulses were successively
changed in each pulse, as sketched in the inset of Figure 8E. The
therewith obtained resistance change as a function of the voltage
pulse amplitudes is shown in Figure 8E. Thus, a linear change in
resistance with a successive incremental increase of the voltage
pulse height was recorded for both set and reset. Furthermore, the
resistance change was nearly symmetric in both resistance states,
presenting 0.44 and 0.56 linearity for set and reset, respectively.
Hence, this behavior fulfills nicely the requirement proposed by
equation 18 and makes type F devices, together with their
relatively good retention, perfect candidates for the hardware
realization of deep learning neural networks. In this context, bi-
layer oxide memristive devices of similar types have already
proven their performance (Yao et al., 2020).

While the delta rule underlies a variety of machine learning
systems and allows an effective implementation of Hebb’s
learning rule within artificial neural networks, there is no
explicit time dependence. However, the time dependence of
learning processes is an important parameter in biology and
determines how the synaptic connection is strengthened or
weakened (Panwar et al., 2017). Here, an important property
is the memory effect of synapses which leads to a sustained
strengthening of the synaptic connection after repeated (high
frequency) excitation named long-term potentiation (LTP).
Therefore, the respective time interval between the excitation
is required. At this respect, the diffusive ionic processes of
memristive devices and their memory behavior are unique
properties for the emulation of bio-realistic time-dependent
learning (Ziegler et al., 2018), such as spike-timing dependent
plasticity (STDP) and paired-pulse facilitation (PPF), to only
mention two important plasticity processes. Many ways to
emulate such learning schemes have been presented in recent
years with memristive devices (Wang et al., 2020). However, the
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challenge here is to select the correct voltage functions for the pre-
and post-neurons, so that an appropriate voltage pulse is applied
across the memristive device (Linares-Barranco et al., 2011;
Ambrogio et al., 2013). To investigate this for the type R
device, we took a closer look at the PPF scheme. The results
obtained,therefore, are shown in Figure 8F. Two identical
sequential SET pulses were applied using different time
intervals. In this study, the PPF ratio was defined as the
incremental percentage change in the resistance after the first
and second pulses. As a result, we found, the longer the time
interval is, the smaller the resistance changes with a linear trend.
This, particularly, corresponds to the enhanced back diffusion of
oxygen ions in R type devices, as discussed above, and resembles
well with biology.

4 CONCLUSION

In summary, we have presented two bi-layer TiN/TiOx/HfOx/Au
memristive devices. Depending on the respective sputtering
method, we were able to realize different switching
mechanisms. While mobile oxygen ions are responsible for
resistance switching in type R devices, oxygen vacancies cause
the switching mechanism in type F devices. Using a statistical
analysis of the devices and a physical device model, we have
investigated the relevant technology and device parameters, and
related them to the electronic behavior of the devices. In Figure 9
these parameters are graphically summarized and their relevance

for the respective device type is shown. As you can see from that
figure for devices of type R, whose resistive switching is induced
by mobile oxygen ions, the device area (Adevice), the Schottky
barrier (ϕB), and the ratio dHfOx/dTiOx are important. In devices of
type F, whose switching mechanism can be traced back to
filamentary oxygen vacancies, also the Schottky barrier (ϕB) is

FIGURE 8 | (A) Sketch of synaptic plasticity process. (B) The waveform of voltage pulse trains; 20 SET pulses followed by 20 RESET pulses. A readout pulse
followed each switching pulse. The resulting change in resistance states under the voltage train is shown in (C) for type F, (D) for type R. The linearity in resistance change
was improved in the type R. (E) The resistance as a function of the amplitude of SET/RESET voltages in type F. The amplitude of the applied voltage for a SET (RESET)
was decreasing (increasing) to lead a next level in the resistance, and a readout voltage followed each switching voltage pulse. The multistate resistance was
observed along with the symmetricity between LRS and HRS. (F) PPF as a function of interval time between two sequent switching voltage pulses in type R. The dashed
line presents a fitted curve in the experimental data (blue). Increasing the time interval results in the weaker resistance change.

FIGURE 9 | Relevant technology and device parameters to realize a
desired resistive switching behavior in the TiN/TiOx/HfOx/Au bi-layer
memristive devices.
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important. But, for that devices the product ofAdevice and dHfOx ismore
in the focus for good device performance, than Adevice or dHfOx alone.
For both types, however, it is important to adjust the concentration of
themobile charge carriers precisely to reach a reliable performance. In
general, it can be concluded that the respective device properties must
always be tailored to the specific application. Therefore, we hope that
the framework described here helps to identify the relevant technology
parameters for that purpose.
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