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We report a low-temperature colloidal synthesis of WSe2 nanocrystals from

tungsten hexacarbonyl and diphenyl diselenide in trioctylphosphine oxide

(TOPO). We identify TOPO-substituted intermediates, W(CO)5TOPO and cis-

W(CO)4(TOPO)2 by infrared spectroscopy. To confirm these assignments, we

synthesize aryl analogues of phosphine-oxide-substituted intermediates,

W(CO)5TPPO (synthesized previously, TPPO = triphenylphosphine oxide) and

cis-W(CO)4(TPPO)2 and fac-W(CO)3(TPPO)3 (new structures reported herein).

Ligation of the tungsten carbonyl by either the alkyl or aryl phosphine oxides

results in facile labilization of the remaining CO, enabling low-temperature

decomposition to nucleate WSe2 nanocrystals. The reactivity in phosphine

oxides is contrasted with syntheses containing phosphine ligands, where

substitution results in decreased CO labilization and higher temperatures are

required to induce nanocrystal nucleation.
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Introduction

Colloidal synthesis provides an attractive route to solid-state nanomaterials because it

can exploit the diverse reaction-parameter-space to obtain kinetic control, enabling access

to products that are difficult or impossible to achieve via bulk synthetic methods.

Understanding and manipulating the precursor chemistry has emerged as a vital tool

for advancing nanocrystal syntheses, as precursor conversion governs the nucleation and

growth of nanocrystals (Steckel et al., 2006; Liu et al., 2007; Owen et al., 2010; Garcia-

Rodriguez and Liu, 2012; Hendricks et al., 2012). Differences in precursor reactivity have

been used to tailor nanocrystal size, morphology and phase (Norako and Brutchey, 2010;

Hendricks et al., 2015; Campos et al., 2017; Hamachi et al., 2017; Rhodes et al., 2017;

Tappan et al., 2018; Geisenhoff et al., 2019; Hernandez-Pagan et al., 2019; Strach et al.,

2019; Geisenhoff et al., 2020; Lord et al., 2020; Mantella et al., 2020; Plummer and

Hutchison, 2020; Zhou et al., 2021; Bennett et al., 2022). For example, the size and size-
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distributions of cadmium, lead, and zinc chalcogenides have been

greatly tuned via a selection of thioureas and selenoureas to vary

the kinetics of the chalcogen supply (Hendricks et al., 2015;

Campos et al., 2017; Hamachi et al., 2017; Bennett et al., 2022). In

the case of copper nanocrystals, the shape has been selected

through manipulation of the ligand-bound copper intermediate

to vary the rate of conversion to active monomers (Strach et al.,

2019). Specifically, ligation with trioctylphosphine oxide results

in rapid conversion and the kinetically favored cubic product,

while trioctylphosphine yields the thermodynamically favored

spherical nanocrystals. In the synthesis of WSe2 nanocrystals

(Geisenhoff et al., 2019; Zhou et al., 2021), inclusion of

trioctylphosphine oxide, oleic acid or oleylamine ligands was

shown to vary the precursor reactivity, concomitant with a

change in the phase of the final products. We hypothesize

that differences in the observed reactivity are due to

differences in the decomposition of the tungsten carbonyl

precursors, where substitution by ligands at the metal center

serves to modulate the energy required for dissociation.

Metal carbonyls, including tungsten hexacarbonyl,

molybdenum hexacarbonyl, iron pentacarbonyl, dicobalt

octacarbonyl and dimanganese decacarbonyl are widely

used in the solution-phase syntheses of metal, metal

carbide, metal phosphide or metal chalcogenide

nanocrystals, where they are commonly used as a source of

metal or as a reducing agent (Hyeon et al., 2001; Puntes et al.,

2001; Puntes et al., 2002; Kang et al., 2004; Qian et al., 2004;

Lagunas et al., 2006; Lee et al., 2006; Sahoo et al., 2009; Kang

and Murray, 2010; Meffre et al., 2012; van Schooneveld et al.,

2012; Kang et al., 2013; Jung et al., 2015; Wang et al., 2016;

Guo et al., 2017; Liu et al., 2017; Zhao et al., 2017; Huang et al.,

2018; Xiao et al., 2018; Geisenhoff et al., 2019; Sokolikova

et al., 2019; Zhao et al., 2019; Baddour et al., 2020; Zhou et al.,

2021). The use of metal carbonyl precursors generally requires

temperatures high enough to force cleavage of the

metal–carbonyl bonds (Lewis et al., 1984) and induce

nanocrystal nucleation. Metal carbonyls can decompose

directly to form metal nanocrystals (Puntes et al., 2001;

Puntes et al., 2002; Lagunas et al., 2006; Sahoo et al., 2009;

Kang and Murray, 2010; van Schooneveld et al., 2012), or can

undergo ligand exchange at the metal site (Angelici, 1968;

Werner, 1968; Atwood and Brown, 1976; Darensbourg, 1982;

Howell and Burkinshaw, 1983). Such ligand exchange is

expected to be important in controlling the subsequent

reactivity of the metal carbonyls, but its role in nanocrystal

formation has not been explicitly explored. As CO alone has

been shown to direct nanocrystal growth and morphology

(Kang et al., 2010; Wu et al., 2011), its labilization from metal

carbonyls can also be expected to influence nanocrystal

formation. Here, we show that the ligands/solvents

common in many nanocrystal syntheses play an important

role in forming and dictating the reactivity of substituted

tungsten carbonyls that are used to form WSe2 nanocrystals.

We have previously synthesized WSe2 nanocrystals by hot-

injection of diphenyl diselenide (Ph2Se2) into tungsten

hexacarbonyl (W(CO)6) dissolved in mixtures of

trioctylphosphine oxide (TOPO) and oleic acid (OA) at 330°C

(Geisenhoff et al., 2019). When using this mixture of ligands, the

reactivity is increased with a larger TOPO/OA ratio, leading to

more nanocrystal nucleation and smaller nanocrystals that are

readily converted to the thermodynamically favored phase

(Geisenhoff et al., 2019). Indeed, when OA is excluded,

W(CO)6 decomposes at 260°C, prior to injection of Ph2Se2
(Geisenhoff et al., 2019). Here, we take advantage of this

greater reactivity in TOPO by using a low-temperature

injection of Ph2Se2 to form WSe2 nanocrystals at 150°C. We

follow the reactivity and conversion of W(CO)6 using IR

spectroscopy and show that, prior to Ph2Se2 injection, one or

two CO ligands are replaced by TOPO ligands, enabling facile

CO labilization. In contrast, when just one eq trioctylphosphine

(TOP) is included, the TOP-substituted tungsten carbonyl is

exclusively formed. This intermediate has decreased ligand

dissociation from the tungsten, such that nanocrystals cannot

be nucleated below 180°C. The assignment of the phosphine- and

phosphine-oxide-substituted intermediates is verified by

synthesis of the aryl analogs (TPP and TPPO, respectively;

TPP = triphenylphosphine, TPPO = triphenylphosphine

oxide), which can be crystallized for structural identification.

These studies demonstrate the role that phosphines and

phosphine oxides can play in nanocrystal nucleation and

growth by dictating the conversion of metal carbonyl precursors.

Results and analysis

WSe2 nanocrystals were synthesized via injection of Ph2Se2
into W(CO)6 dissolved in TOPO at 150°C. Briefly, W(CO)6
(20 mg, 0.057 mmol) was heated in TOPO (2.1975 g,

100 TOPO/W) to 150°C and held for 15 min. Beginning at ~

70°C, the colorless solution began to turn yellow and continued to

darken as the temperature increased. This color change was

accompanied by bubbling, indicative of some gas evolution.

After 15 min at 150°C, Ph2Se2 in hexadecane (115 mM, 1 ml,

4 Se/W) was rapidly injected into the W solution. Immediately

after injection, the solution changed to brown/black and rapid

gas evolution was observed, indicating nucleation of WSe2
nanocrystals.

Figure 1A0 shows the IR spectrum of an aliquot collected just

before the Ph2Se2 injection. Here, multiple CO vibrations are

observed between 1,950 and 1,850 cm−1 (Supplementary Table

S1). These vibrations are all shifted to lower wavenumber relative

to that of W(CO)6 (1,971 cm−1, Supplementary Figure S1),

suggesting that W(CO)6 has undergone substitution by TOPO

to form W(CO)6−x(TOPO)x intermediates. Similar shifts are

observed when the CO of W(CO)6 is substituted by one, two

or three phosphine oxide ligands (Darensbourg et al., 1986;
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Planinić and Meider, 1989; Cook et al., 2004). Just 1 minute

following Ph2Se2 injection, the original peaks disappear and are

replaced by weak vibrations at 1,937 and 1,903 cm−1 (Figure 1Ai),

which likely arise from another intermediate formed by oxidative

addition of Ph2Se2 to the W(CO)6−x(TOPO)x complexes (Lang

et al., 1994a; Lang et al., 1994b; Fortman et al., 2008). Within

10 min following Ph2Se2 injection, no CO vibrations are evident

in the IR spectrum (Figure 1Aiii), indicating complete conversion

of the W(CO)6−x(TOPO)x intermediates. The heating profile of

this synthesis is provided in Figure 1B, with the x indicating

nucleation and filled circles indicating when aliquots were taken.

After 10 min following Ph2Se2 injection, the heating mantle was

removed and the resultant nanocrystals were collected, washed

and characterized.

Figure 1C shows the powder X-ray diffraction pattern of the

resulting nanocrystals. The lack of a (002) reflection suggests very

little interlayer stacking, which is confirmed by transmission

electron microscopy (Supplementary Figure S2). The most

intense reflection is observed at 2θ ≈ 34°, consistent with the

(−113) reflection of the metastable 2M phase of

WSe2.(Geisenhoff et al., 2019; Sokolikova et al., 2019; Fang

et al., 2019) This phase assignment is corroborated by X-ray

photoelectron spectroscopy (Supplementary Figure S3). We have

previously shown that increased TOPO/OA leads to more 2H

phase when WSe2 nanocrystals are synthesized at 330°C

(Geisenhoff et al., 2019). In this previous work, dominance of

the thermodynamically favored phase was due to greater

reactivity induced by TOPO, which led to more phase-

conversion at high temperatures (Geisenhoff et al., 2019). In

contrast, the synthesis presented herein takes advantage of the

TOPO-induced reactivity to synthesize WSe2 nanocrystals at

lower temperatures, allowing preservation of the metastable

2M phase.

Since the bulky octyl groups of TOPO prohibit the isolation of

single crystals, we used an aryl analog to corroborate the formation

of W(CO)6−x(TOPO)x intermediates. Specifically, we synthesized

W(CO)6−x(TPPO)x (x = 1, 2, 3). W(CO)5TPPO (Figure 2A) was

synthesized from photochemically prepared W(CO)5THF (THF =

tetrahydrofuran) following a previously reported procedure

(Darensbourg et al., 1986). To synthesize W(CO)4(TPPO)2,

W(CO)6 and TPPO (10 eq) were combined in toluene and

refluxed for ~1 h with stirring. Further addition of toluene

resulted in a yellow precipitate, which was redissolved with heat.

The resulting solution yielded yellow crystals in ~12 h. Single-crystal

X-ray diffraction identified the crystals as cis-W(CO)4(TPPO)2
(Figure 2B, Supplementary Table S2) and powder X-ray

FIGURE 1
Injection of Ph2Se2 into W(CO)6 + TOPO (TOPO/Se/W = 100/4/1) at 150°C. (A) FTIR spectra of aliquots taken prior to Se injection and
approximately 1, 5 and 10 min after Se injection. (B) Temperature profile of the reaction with aliquots indicated by circles. The black x indicates the
nucleation event, evidenced by a color-change of the reaction solution. (C) Powder X-ray diffraction pattern of nanocrystalline product compared to
that simulated from single-crystal data for 2M WSe2 (Fang et al., 2019).
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diffraction confirmed this as the majority product (Supplementary

Figure S4). We note, however, that a trace product of fac-

W(CO)3(TPPO)3 (Supplementary Table S2, Supplementary

Figure S5) was identified by single-crystal X-ray diffraction.

Figure 2C (top, pink) shows the IR spectrum of

W(CO)5TPPO. With pseudo-C4v symmetry, this molecule has

four IR-active CO vibrations (Supplementary Table S3)

(Darensbourg et al., 1986; Cook et al., 2004). Figure 2C

(bottom, blue) shows the IR spectrum of cis-W(CO)4(TPPO)2.

With pseudo-C2v symmetry, this molecule also has four IR-active

CO vibrations (Supplementary Table S4), which are at similar

positions to other tungsten carbonyls substituted with two

phosphine oxide moieties (Planinić and Meider, 1989).

Comparing the IR spectra of these two molecules to that of

the pre-injection aliquot (Figure 1A0), we conclude that heating

W(CO)6 in TOPO yields a mixture of the mono- and di-

substituted species, W(CO)5TOPO and cis-W(CO)4(TOPO)2,

respectively (Supplementary Table S1). The lack of a peak at

~1,970 cm−1 indicates little to no remaining W(CO)6, suggesting

that W(CO)5TOPO and cis-W(CO)4(TOPO)2 are the reactive

intermediates when Ph2Se2 is injected. Phosphine oxides are

known to be particularly good at promoting CO labilization in

metal carbonyls (Darensbourg et al., 1980; Darensbourg et al.,

1981; Darensbourg, 1982), which is likely the reason for

increased reactivity when WSe2 nanocrystals are synthesized

in TOPO.

It is worth noting that both increased concentration of

W(CO)6 (Supplementary Figure S6) and the addition of a

degassing step (Supplementary Figure S7) leads to more

substitution by TOPO. When the synthesis is repeated using

TPPO instead of TOPO, the reactivity is similar. Specifically,

nucleation was observed immediately after the injection of

Ph2Se2 and WSe2 nanocrystals are formed within 10 min at

150°C (Supplementary Figure S8). These observations

corroborate that the higher reactivity is due to the phosphine

oxides.

To contrast the rapid reactivity induced by TOPO, we sought

a ligand with stronger binding and decreased CO labilization that

would decrease reactivity in the nanocrystal synthesis. TOP is

commonly used in nanocrystal syntheses and contains a strong

σ-donating, π-accepting phosphine in contrast to the weak, hard

oxygen donor of TOPO. Figure 3 shows the characterization of a

WSe2 synthesis performed similarly to that presented in Figure 1,

but with just 1 eq TOP added to the reaction mixture. When

W(CO)6 is heated at 150°C in the presence of 100 eq TOPO +1 eq

TOP for 15 min, IR spectroscopy reveals a new species

(Figure 3A0), with vibrations that are distinct from both

W(CO)6 and W(CO)6−x(TOPO)x. We assign this species as

primarily W(CO)5TOP with a small amount of

W(CO)4(TOP)2 (Supplementary Table S5, vide infra).

Importantly, when Ph2Se2 is injected into this mixture at

150°C, no color change or gas evolution are observed over the

course of 11 min and the CO vibrations remain largely

unchanged (Figure 3Ai–iii).

The low reactivity in the presence of TOP is in stark contrast

to syntheses without TOP, in which a color-change, gas evolution

and loss of CO are observed immediately upon injection (Figures

1A, B). To induce nanocrystal nucleation, the reaction was heated

to 250°C over ~10 min (Figure 3B). As the temperature was

increased, the solution began to turn brown, indicating

nucleation of WSe2. This color-change was accompanied by

FIGURE 2
Crystal structures of (A) W(CO)5TPPO and (B) cis-
W(CO)4(TPPO)2. (C) FTIR spectra of W(CO)5TPPO (top) and of cis-
W(CO)4(TPPO)2 (bottom) solids.
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gas evolution, indicating liberation of CO.When the temperature

reached 250°C, the solution was very dark brown and gas

evolution had slowed. Aliquots were collected shortly after

nucleation (Figures 3A, Biv), once the temperature reached

250°C (Figures 3A,Bv) and after 30 min at 250°C (Figures 3A,

Bvi). The intensity of the W(CO)5TOP CO vibration at

1,930 cm−1 decreased following WSe2 nucleation, and

disappeared completely by the time the temperature reached

250°C. Powder X-ray diffraction (Figure 3C) on the final

nanocrystalline product reveals 2M WSe2.

To confirm the assignment of W(CO)5TOP, we synthesized

the aryl analog, W(CO)5TPP (Figure 4A) using previously

reported methods (Aroney et al., 1994). Figure 4bi shows the

IR spectrum of crystals of W(CO)5TPP dissolved in THF. With

pseaudo-C4v symmetry, this molecule is expected to have four

IR-active CO vibrations, but in this case the A1 (2) and E modes

are unresolvable (Supplementary Table S6) (Cotton and

Kraihanzel, 1962; Angelici and Malone, 1967). Importantly,

when W(CO)5TPP is heated in 100 eq TOPO at 150°C for

15 min (Figure 4Bii), the IR spectrum is comparable to that of

the TOP-containing syntheses prior to injection of Ph2Se2
(Figure 3A0), and can be assigned primarily to W(CO)5TPP

with a small amount of W(CO)4(TPP)2 (Supplementary Table

S7). All peaks are shifted to slightly higher wavenumber for TPP-

substituted species relative to the TOP-substituted species due to

the electron-withdrawing nature of the phenyl substituents

(Cotton et al., 1981; Honeychuck and Hersh, 1987).

When Ph2Se2 is injected into W(CO)5TPP +100 eq TOPO at

150°C, the reactivity is similar to that of the TOP-containing

synthesis. Specifically, no color-change or gas evolution were

observed over 10 min and the W(CO)5TPP CO vibration at

1,937 cm−1 persisted, although with some decrease in intensity.

We note that, in this synthesis, the CO vibration assigned to

W(CO)4(TPP)2 disappears upon injection of Ph2Se2. We

hypothesize that this is due to conversion of W(CO)4(TPP)2
to W(CO)5TPP. This conversion results in formation of a small

amount of TPP=Se and Ph2Se (Supplementary Equation S1),

neither of which can react directly with W(CO)5TPP to nucleate

nanocrystals at 150°C. When the reaction is further heated, a

color change is observed, indicating nucleation of WSe2
(Supplementary Figure S9B). The reactivity of W(CO)5TPP is

greater than that of the TOP-containing synthesis, likely due to

the electron-withdrawing nature of the phenyl substituents. Both

phosphine-substituted species, however, show delayed reactivity

compared to synthesis in TOPO alone. This observation

confirms that carbonyl substitution with phosphines or

FIGURE 3
Injection of Ph2Se2 into W(CO)6 + TOPO + TOP (TOPO/TOP/Se/W = 100/1/4/1) at 150°C. (A) FTIR spectra of aliquots taken prior to Se injection
and approximately 2, 6, 11, 15, 18 and 48 min after Se injection. (B) Temperature profile of the reaction with aliquots indicated by circles. The black x
indicates the nucleation event, evidenced by a color-change of the reaction solution. (C) Powder X-ray diffraction pattern of nanocrystalline product
compared to that simulated from single-crystal data for 2M WSe2 (Fang et al., 2019).
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phosphine oxides can be used to delay or induce nanocrystal

nucleation, respectively.

Discussion

The decrease in reactivity observed with the phosphine

substitution compared to phosphine-oxide substitution is likely

two-fold. First, the phosphine is a stronger σ-donating and π-
accepting ligand, making it less labile than the phosphine oxide

ligand (Wovkulich and Atwood, 1980). Second, phosphine- and

phosphite-substitution in metal carbonyls have been shown to

decrease CO labilization (Angelici and Graham, 1965; Angelici

and Graham, 1967; Angelici, 1968; Werner, 1968; Parker and

Wojcicki, 1974; Atwood and Brown, 1976; Darensbourg et al.,

1981; Cotton et al., 1982; Howell and Burkinshaw, 1983). In

contrast, substitution with hard donor ligands (Angelici and

Graham, 1967; Angelici, 1968; Werner, 1968; Brown and

Dobson, 1972; Parker and Wojcicki, 1974; Howell and

Burkinshaw, 1983), including phosphine oxides (Darensbourg

et al., 1980; Darensbourg et al., 1981; Darensbourg, 1982), has

been shown to increase CO labilization in metal carbonyls. This

has been explained due to σ- and π-bonding effects between the

donor and central metal atom, as well as a result of direct donation

from the filled σzb orbital of the donor to the π* orbitals of the

carbonyls cis to the donor (Fenske and Dekock, 1970; Parker and

Wojcicki, 1974; Howell and Burkinshaw, 1983). The low lability of

both the phosphine and carbonyl ligands inhibits coordination by

the Se precursor, thus requiring higher temperatures to force

cleavage of the W–C and/or W–P bonds to initiate WSe2
nucleation. We note that the substituents of the phosphine ligand

also play a significant role in modifying the reactivity of the

substituted metal carbonyls. With direct coordination to the

donor, electron-withdrawing groups (e.g. phenyl substituents)

decrease the P–W bond strength to allow for ligand dissociation

at lower temperatures. This effect is not present in the phosphine

oxides, as the substituents are not well-coupled to the donor.

In our hands, W(CO)6 does not dissolve well in

noncoordinating solvents used for nanocrystal synthesis, such

as hexadecane. Thus, the influence on reactivity of a coordinating

solvent will likely be an important consideration. The reactivity

trend observed with phosphine oxides vs. phosphines can

possibly be extended to other common nanocrystal ligands/

solvents based on the known reactivity with metal carbonyls.

For example, oleylamine would also be expected to be CO-

labilizing due to the hard N donor (Angelici and Graham,

1967; Angelici, 1968; Werner, 1968; Brown and Dobson, 1972;

Parker and Wojcicki, 1974; Howell and Burkinshaw, 1983), and

could facilitate metal carbonyl decomposition (Zhao et al., 2017).

Variation of the substituents on the N donor could be used to

further tune the reactivity. We note that we have not discussed

the role of steric interactions, which could be used to further

modify the metal carbonyl stability.

Summary and conclusion

We present a low-temperature synthesis of WSe2
nanocrystals by taking advantage of the modified reactivity of

substituted tungsten carbonyls. When nanocrystals are

synthesized in TOPO, W(CO)5TOPO and cis-

W(CO)4(TOPO)2 are identified as the reactive tungsten

intermediates. This substitution with TOPO enables facile CO

labilization, allowing for the ligand dissociation required to

initiate reactivity of the tungsten carbonyls with the Se

precursor at 150°C. In contrast, when just 1 eq TOP is

included, nanocrystals cannot be nucleated below 180°C due

to the non-labilizing nature of the phosphine. The reactivity of

phosphine-containing syntheses can be further tuned via choice

of phosphine substituent, where electron-withdrawing groups

lead to increased reactivity. These results demonstrate the

influence of common nanocrystal ligands on metal carbonyl

FIGURE 4
(A) Crystal structure of W(CO)5TPP. (B) IR spectra of (i)
W(CO)5TPP dried solid and of (ii) that solid heated in 100 eq TOPO
to 150°C for 15 min (bottom). All spectra were collected at room-
temperature.
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reactivity and offer insight for fine-tuning the reactivity to

manipulate nanocrystal nucleation and growth.
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