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Current theranostics for neurodegenerative diseases (NDD) management are

majorly symptomatic due to a lack of identification of early-stage biomarkers

and the inefficiency of drugs to penetrate through the blood-brain barrier.

Recently, the Neuro-nanotechnology interface has emerged as a potential

strategy for diagnosis, monitoring, and treatment of NDDs owing to smaller

particle size, high specific surface area, tunable physicochemical attributes and

rich surface functionalities. However, toxicity and biocompatibility are two

significant challenges restricting their commercial prospect in NDD

management. On the contrary, green nanosystems fabricated using plant

extracts, microorganisms, biome-based precursors, repurposed-byproducts,

exosomes, and protein-based bio-nanomaterials are economical, eco-friendly,

biocompatible and renewable due to the abundance of biodiversity. This

prospect explores the novel and cutting-edge interface of green

nanosystems and NDDs for developing diagnostic and implantable devices,

targeted drug delivery strategies, surgical prostheses, therapeutics, treatment,

nanoscaffolds for neurogeneration, and immunity development. Besides, it

discusses the challenges, alternate solutions and advanced prospects of

green nanosystems with the integration of modern-age technologies for the

development of sustainable green Neuro-nanotechnology for efficient

management of NDDs.

KEYWORDS

neurodegenerative diseases, nanotechnology, blood-brain barrier, green
nanomaterials, toxicity

State-of-the-art neurodegenerative diseases
theranostics: Limitations and challenges

The population affected with neurodegenerative diseases (NDDs), growing at the pace of

tens of millions of individuals yearly, has been declared the most significant global health threat

of the twenty-first century by World Health Organization (Hou et al., 2019; Holbrook et al.,

2021). NDDs are characterized by the functional loss of brain neurons resulting in diversified

clinical and pathological manifestations and vocal, motor, and cognitive dysfunctions. NDDs

are a heterogeneous group of either hereditary or sporadic conditions, including Alzheimer’s
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disease, Amyotrophic lateral sclerosis, Parkinson’s disease, prion

disease, or Huntington’s disease (Hou et al., 2019; Holbrook et al.,

2021). Though the neurodegeneration and the pathogenesis

mechanism are different for each NDD, they are commonly

characterized by neuroinflammation, neuronal loss, misfolded

protein aggregation, oxidative stress and autophagy dysregulation

(Tiwari et al., 2019; Mathieu et al., 2020; Slanzi et al., 2020). The

unspecific etiology associated with NDDs makes diagnosing and

identifying at an early stage challenging.Moreover, the absence of any

early-stage biomarkers has made it difficult to diagnose NDDs

accurately and at a preliminary stage (Tiwari et al., 2019;

Hansson, 2021). It forces the utilization of peripheral patient-

derived biomaterial as a sample to diagnose NDDs, which is

insufficient to provide an accurate diagnosis due to the absence of

predominantly disease-associated neurons. Furthermore, the

present-day treatments are only symptomatic and the entry of

drugs into the brain is restricted by a selective mechanism of the

blood-brain barrier (BBB) (Kumar et al., 2021). There are only

specific ways through which a molecule can cross BBB, including

efflux transport, passive transport and active transport (Kadry et al.,

2020). Passive transport includes two non-energetic transportation

pathways encompassing transcellular and paracellular diffusion

pathways, which are only allowed to small hydrophilic/lipophilic

molecules. Contrary, active transport necessitates energy for

transporting small molecules to cross the BBB through various

biological gradients (Kadry et al., 2020; Kumar et al., 2021).

Moreover, transport through the BBB also occurs by efflux

mechanisms like P-glycoprotein (Pgp) mechanism (Kadry et al.,

2020). It indicates that the perquisite to develop drugs and sensors for

NDDs with the potential to cross BBB lies in architecting small

hydrophilic/lipophilicmolecules with appropriate surface chemistries

to develop binding potential.

Neuro-nanotechnology: Across the
blood-brain barrier

The advent of nanotechnology provides a solution to cater for

these challenges by engineering functionalized materials in

nanometer dimensions (1–100 nm) that can be soluble in lipids,

interact with neural systems at the molecular level, and efficacy to

sustain in the in vivo environment for a prolonged time and

efficiently crosses BBB (Silva, 2006; Pampaloni et al., 2019). The

high effective surface area of nanosystems possesses more enormous

possibilities of interaction with biomarkers for diagnosis, with drugs/

molecules for drug delivery with more considerable retentive efficacy

and with defective cells for a regenerative cure (Chen et al., 2022;

Tiwari et al., 2022). Moreover, the physicochemical attributes of

nanosystems, including physical properties (magnetic, optical,

electrical, thermal, mechanical) and chemical features (surface

chemistry, reactivity, solubility), can be tuned per the targeted

application. Owing to these tunable and superior physicochemical,

morphological and topological features, nanosystems have been

utilized as essential vectors for targeted drug delivery, as

modalities for neuroimaging, strategies for neuroprotection, tools

for neurosurgery, and as scaffolds for neuroregeneration in NDDs

with potential to cross BBB (Silva, 2006; Chen et al., 2022; Tiwari and

Kaushik, 2022). For instance, magnetic nanosystems are utilized as
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brain contrast agents in NDD imaging techniques such as magnetic

resonance imaging (MRI). Further, themagnetic attribute can also be

utilized in treating NDD by regulating it through an external

magnetic field. Similarly, the chemical attributes can also be tuned

as per desired application, like the solubility of nanosystems can be

optimized through surface functionalization. Moreover, desired

surface functionalities can be grown over nanosystems for

attaching targeted molecules or drugs for treatment or diagnosing

an NDD (Silva, 2006; Rahman et al., 2022; Tiwari and Kaushik,

2022). Various nanosystems, including carbon-based nanomaterials,

polymeric nanosystems and composites, metal-based nanoparticles,

liposomes, dendrimers, quantum dots and recently, 2D nanosystems

(likeMXenes) have been evaluated for developingNDD’s diagnosing,

monitoring and treatment strategies (Feng et al., 2021; Tiwari et al.,

2021; Banitaba et al., 2022; Chen et al., 2022; Ghosh et al., 2022;

Rahman et al., 2022). For instance, core-shell nanosystemswithmetal

at the core and polymer as a coat are utilized as effective nano-carrier

to transport nerve growth factor (promotes neural growth) for

crossing BBB (Kumar et al., 2020). However, the toxicity and

biocompatibility of these nanosystems are yet to be addressed,

which restricts their commercial viability in biomedical sectors

(Seaton et al., 2010; Sengul and Asmatulu, 2020). Moreover, these

nanosystems can accidentally enter the brain or other human organs

during therapy or imaging processes, leading to a disbalance in their

functionality. For instance, crossing the BBB through various means,

including through adsorption-based transcytosis, through receptors

or targeted transporters expressed on endothelial cells of brain

capillaries, and through intranasal routes, can induce various

neurotoxicity mechanisms such as immune response and

inflammation, oxidative stress, activating particular signaling

pathways, and induced cell autophagy and apoptosis affecting the

BBB functions (Boyes and van Thriel, 2020). Moreover, these toxic

effects can directly alter the neural environment and structure and

may result in a cascade of effects due to glial neural interactions and

activation. Therefore, despite of promising progress of nanosystems

in neurosciences, their applications are limited due to neurotoxicity,

generic toxicity, biocompatibility and controllable selectivity, which

can temporarily or permanently affect the central nervous system or

other human functionalities.

Emergence of green nanosystems for
efficient NDD management: A green-
neuro-nanotechnology

The primary reason associated with the toxicity of conventional

nanosystems lies with the precursors and strategies used for their

fabrication (Sengul and Asmatulu, 2020; Husain et al., 2021; Verma

et al., 2021; Chaudhary et al., 2022c; Umapathi et al., 2022). For

instance, the utilization of toxic, volatile and corrosive chemical

precursors and their remnant traces in the stoichiometry of

nanosystems developed through bottom-up chemical routes are

hazardous for humans and the environment. Moreover, the

physical techniques, especially top-down methods, are destruction-

based approaches that require high energy and induce accidental

toxicity by disrupting the nanosystem structure in an uncontrolled

manner during their synthesis. Contrarily, green strategies to architect

nanosystems involve significantly fewer toxic chemicals and require

minimal energy for their fabrication (Verma et al., 2019; Khalaj et al.,

2020; Pathania et al., 2022a; Batra et al., 2022). The replacement of

harmful chemical precursors with biochemical such as

phytochemicals, microorganisms, and biome-extracted precursors

caters to the accidental doping side-effects/toxicity induced in

nanosystems during their fabrication. Additionally, most

phytochemicals possess antimicrobial, neurogeneration, anti-stress

and anti-NDD attributes, which are the additive advantage of

green synthesized nanosystems accidentally/intentionally doped

with their precursors (Singh et al., 2018; Pathania et al., 2022b;

Monika et al., 2022). For instance, inhalation aromatherapy of

essential oils is proposed as brain-targeted nasal delivery in NDD

therapeutics (Cui et al., 2022). These essential oils have also been

utilized to fabricate green nanosystems for diversified disease

management, and their doping/traces in fabricated nanosystems

have exhibited enhanced disorder-combatting efficacies. Apart

from essential oils, various phytochemicals (ketones, amines,

phenols, flavones, terpenoids, bio-acids) extracted from different

part of plants (leaves, fruits, stem, flowers, seed, bark, and roots)

serves as multifunctional precursors with capping, reducing and

stabilizing actions, which minimizes the chemical/precursors

requirements thereby reducing the probability of induced toxicity

and secondary contamination to the environment (Khalaj et al., 2020;

Palit and Hussain, 2020; Pathania et al., 2022a, 2022b). Similarly,

microbial-mediated fabrication (bacteria, yeast, viruses, fungi, algae),

biomes-extracted precursors, protein-based nanosystems, exosomes

and repurpose-byproducts are green strategies to fabricate eco-

friendly bio-nanosystems/green-nanosystems. Moreover, during the

fabrication, physicochemical attributes of these nanosystems can be

easily optimized by regulating the cellular/phytochemical activities

and reaction parameters such as concentration and nature of

precursors, reaction medium and time, and reaction temperature

and pH. The intelligent selection of biomes/biome-extracted

precursors for nanosystem fabrication can be used to control the

surface functionalities, optimizing band structures and band gaps,

morphological and topological features, ambient and hostile

environment stabilities, biocompatibility, toxicity and

bioaccumulation for targeted solutions. In recent years, various

targeted green nanosystems have been engineered for combatting

NDDs, including implantable and diagnostic devices like catheters,

biosensors and stunts, drug delivery like nanoliposomeswith potential

to be functionalized with antibodies and crossing BBB, developing

immunity and nanoscaffolds for neurogeneration, controlling and

curing primary and secondary symptoms, biocompatibility in surgical

prostheses, and targeted therapeutics and imaging eliminating

systemic toxicity (Mizrahi et al., 2014; Santhoshkumar et al., 2014;

Charbgoo et al., 2017; Maddinedi et al., 2017; Suganthy et al., 2018;

Kotcherlakota et al., 2019; Zhang et al., 2020; Ahlawat and Narayan,
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2021; Jan et al., 2021; Pathania et al., 2022b, 2022a; Cui et al., 2022;

Jasim et al., 2022; Kokturk et al., 2022;Monika et al., 2022). Moreover,

their indirect utilization for strengthening present NDD monitoring

strategies, such as enhancing the monitoring performance of

microelectrodes utilized in electrophysiology, improving laser-

mediated vascular anastomoses, and enhancing optical interfaces

for neural imaging, is combatting the bottlenecks of controlled

monitoring of neuronal ensembles. The essential feature of green

nanomaterials for NDDs is their biocompatibility in terms of

neurotoxicity, haemo-histocompatibility, cytotoxicity, genotoxicity

and carcinogenesis, which implies their immense potential for

combatting NDDs. The green nanosystems by addressing the

issues of neurotoxicity also possess potential for maintaining the

neural health in light of neurogeneration and controlling secretion of

neural fluids. Consequently, green nanosystems are energy-efficient,

cost-effective, eco-friendly, non-toxic, biocompatible, single-stage

processed, multifunctional and renewable strategies for efficient

NDD management and treatment with enhanced anti-NDD,

antimicrobial, immunity developing, neurogenerative and BBB-

crossing efficacies (Figure 1).

Challenges, alternate solutions and
prospects: Conclusive outlook

In spite of extraordinary sustainable advantages and

significant performances, the assessment of green

nanomaterials for diversified application in NDDs,

including neurogenesis, diagnosis, imaging-based

monitoring, drug delivery and drug development, is in its

infancy. There are few reports on the utilization of green

nanosystems for combatting NDDs compared to other severe

diseases such as cancer. This restricted development of green

nanosystems is associated with several challenges related to

efficacies, stability, manufacturing, scalability, selectivity and

controlled utilization. For instance, the scalable fabrication of

green nanosystems is quite difficult due to low yield, the

challenge of purification, and altitudinal/regional variation in

the composition of biochemical precursors, which limits their

commercial applications (Palit and Hussain, 2020; Pathania

et al., 2022b). Moreover, low encapsulation efficacy,

bioaccumulation, uncontrolled cellular activities, stability

on multiple biological variations and the hostile

environment, selectivity in target cells/tissues/areas, and

strong associations with prominent and early-stage

biomarkers are challenging in developing green

nanosystem-based strategies for diagnosis, monitoring,

management and treatment of NDDs. Additionally, there

is a requirement for careful selection of animal models

that recapitulate specific human pathology in accordance

with green nanomaterial stoichiometry, composition,

structure and synthesis (Dawson et al., 2018; Maurya et al.,

2022). There is a strong requirement to understand the

cellular interaction/mechanism and pathogenesis of green

nanomaterials in the human body in the context of NDDs

(Mathieu et al., 2020; Tiwari et al., 2021; Chaudhary et al.,

FIGURE 1
State-of-the-art Green Neuro-nanotechnology: Sources, issues, nature, types, merits, challenges, applications and prospects.
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2022c). Additionally, there is a large gap between theoretical

evaluations, animal modelling, in vitro and in vivo

evaluations, animal trials and human clinical trials of

green nanosystems for managing NDDs. These challenges

can be catered to by focusing research on evaluating the

interaction of green nanosystems in multi-bio-variant

human-like environments utilizing advanced

bioinformatics, analytical docking, machine learning and

artificial intelligence techniques (Myszczynska et al., 2020;

Tăuţan et al., 2021; Chaudhary et al., 2022b, 2022a; Sonu and

Chaudhary, 2022). Moreover, there is a requirement to

explore scalable and controllable fabrication of

nanosystems with optimized physicochemical attributes

and biocompatibilities using modern-age technologies. The

abundance of biodiversity can be dedicatedly explored to

develop next-generation green nanosystems as a

sustainable approach to combat NDDs. As a result, green

nanosystems require streamlined, controlled, and directional

research and evaluations supported by clinical explorations

and are near-future of NDD’s diagnosis, monitoring,

management and treatment owing to their enhanced

neurogeneration efficacies, biocompatibility, economical

and environment-friendly manufacturing, renewable

feedstock and non-toxicity, all contributing to form

sustainable green-neuro-nanotechnology.
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